scirs2_integrate/analysis/ml_prediction/
neural_network.rs

1//! Neural Network Components for Bifurcation Prediction
2//!
3//! This module contains the core neural network structures and activation functions
4//! used in bifurcation prediction and classification.
5
6use crate::analysis::types::*;
7use crate::error::{IntegrateError, IntegrateResult};
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::random::Rng;
10use std::collections::HashMap;
11
12/// Neural network for bifurcation classification and prediction
13#[derive(Debug, Clone)]
14pub struct BifurcationPredictionNetwork {
15    /// Network architecture specification
16    pub architecture: NetworkArchitecture,
17    /// Trained model weights and biases
18    pub model_parameters: ModelParameters,
19    /// Training configuration
20    pub training_config: super::training::TrainingConfiguration,
21    /// Feature extraction settings
22    pub feature_extraction: super::features::FeatureExtraction,
23    /// Model performance metrics
24    pub performance_metrics: super::uncertainty::PerformanceMetrics,
25    /// Uncertainty quantification
26    pub uncertainty_quantification: super::uncertainty::UncertaintyQuantification,
27}
28
29/// Neural network architecture configuration
30#[derive(Debug, Clone)]
31pub struct NetworkArchitecture {
32    /// Input layer size (feature dimension)
33    pub input_size: usize,
34    /// Hidden layer sizes
35    pub hidden_layers: Vec<usize>,
36    /// Output layer size (number of bifurcation types)
37    pub output_size: usize,
38    /// Activation functions for each layer
39    pub activation_functions: Vec<ActivationFunction>,
40    /// Dropout rates for regularization
41    pub dropoutrates: Vec<f64>,
42    /// Batch normalization layers
43    pub batch_normalization: Vec<bool>,
44    /// Skip connections (ResNet-style)
45    pub skip_connections: Vec<SkipConnection>,
46}
47
48/// Activation function types
49#[derive(Debug, Clone, Copy)]
50pub enum ActivationFunction {
51    /// Rectified Linear Unit
52    ReLU,
53    /// Leaky ReLU with negative slope
54    LeakyReLU(f64),
55    /// Hyperbolic tangent
56    Tanh,
57    /// Sigmoid function
58    Sigmoid,
59    /// Softmax (for output layer)
60    Softmax,
61    /// Swish activation (x * sigmoid(x))
62    Swish,
63    /// GELU (Gaussian Error Linear Unit)
64    GELU,
65    /// ELU (Exponential Linear Unit)
66    ELU(f64),
67}
68
69/// Skip connection configuration
70#[derive(Debug, Clone)]
71pub struct SkipConnection {
72    /// Source layer index
73    pub from_layer: usize,
74    /// Destination layer index
75    pub to_layer: usize,
76    /// Connection type
77    pub connection_type: ConnectionType,
78}
79
80/// Types of skip connections
81#[derive(Debug, Clone, Copy)]
82pub enum ConnectionType {
83    /// Direct addition (ResNet-style)
84    Addition,
85    /// Concatenation (DenseNet-style)
86    Concatenation,
87    /// Gated connection
88    Gated,
89}
90
91/// Model parameters (weights and biases)
92#[derive(Debug, Clone)]
93pub struct ModelParameters {
94    /// Weight matrices for each layer
95    pub weights: Vec<Array2<f64>>,
96    /// Bias vectors for each layer
97    pub biases: Vec<Array1<f64>>,
98    /// Batch normalization parameters
99    pub batch_norm_params: Vec<BatchNormParams>,
100    /// Dropout masks (if applicable)
101    pub dropout_masks: Vec<Array1<bool>>,
102}
103
104/// Batch normalization parameters
105#[derive(Debug, Clone)]
106pub struct BatchNormParams {
107    /// Scale parameters (gamma)
108    pub scale: Array1<f64>,
109    /// Shift parameters (beta)
110    pub shift: Array1<f64>,
111    /// Running mean (for inference)
112    pub running_mean: Array1<f64>,
113    /// Running variance (for inference)
114    pub running_var: Array1<f64>,
115}
116
117/// Bifurcation prediction result
118#[derive(Debug, Clone)]
119pub struct BifurcationPrediction {
120    /// Predicted bifurcation type
121    pub bifurcation_type: BifurcationType,
122    /// Predicted parameter value
123    pub predicted_parameter: f64,
124    /// Prediction confidence
125    pub confidence: f64,
126    /// Raw network output
127    pub raw_output: Array1<f64>,
128    /// Uncertainty estimate
129    pub uncertainty_estimate: Option<UncertaintyEstimate>,
130}
131
132/// Uncertainty estimate for predictions
133#[derive(Debug, Clone)]
134pub struct UncertaintyEstimate {
135    /// Epistemic uncertainty (model uncertainty)
136    pub epistemic_uncertainty: f64,
137    /// Aleatoric uncertainty (data uncertainty)
138    pub aleatoric_uncertainty: f64,
139    /// Total uncertainty
140    pub total_uncertainty: f64,
141    /// Confidence interval
142    pub confidence_interval: (f64, f64),
143}
144
145impl BifurcationPredictionNetwork {
146    /// Create a new bifurcation prediction network
147    pub fn new(input_size: usize, hidden_layers: Vec<usize>, output_size: usize) -> Self {
148        let architecture = NetworkArchitecture {
149            input_size,
150            hidden_layers: hidden_layers.clone(),
151            output_size,
152            activation_functions: vec![ActivationFunction::ReLU; hidden_layers.len() + 1],
153            dropoutrates: vec![0.0; hidden_layers.len() + 1],
154            batch_normalization: vec![false; hidden_layers.len() + 1],
155            skip_connections: Vec::new(),
156        };
157
158        let model_parameters = Self::initialize_parameters(&architecture);
159
160        Self {
161            architecture,
162            model_parameters,
163            training_config: super::training::TrainingConfiguration::default(),
164            feature_extraction: super::features::FeatureExtraction::default(),
165            performance_metrics: super::uncertainty::PerformanceMetrics::default(),
166            uncertainty_quantification: super::uncertainty::UncertaintyQuantification::default(),
167        }
168    }
169
170    /// Initialize network parameters
171    fn initialize_parameters(arch: &NetworkArchitecture) -> ModelParameters {
172        let mut weights = Vec::new();
173        let mut biases = Vec::new();
174
175        let mut prev_size = arch.input_size;
176        for &layer_size in &arch.hidden_layers {
177            weights.push(Array2::zeros((prev_size, layer_size)));
178            biases.push(Array1::zeros(layer_size));
179            prev_size = layer_size;
180        }
181
182        // Output layer
183        weights.push(Array2::zeros((prev_size, arch.output_size)));
184        biases.push(Array1::zeros(arch.output_size));
185
186        ModelParameters {
187            weights,
188            biases,
189            batch_norm_params: Vec::new(),
190            dropout_masks: Vec::new(),
191        }
192    }
193
194    /// Forward pass through the network
195    pub fn forward(&self, input: &Array1<f64>) -> IntegrateResult<Array1<f64>> {
196        let mut activation = input.clone();
197
198        for (i, (weights, bias)) in self
199            .model_parameters
200            .weights
201            .iter()
202            .zip(&self.model_parameters.biases)
203            .enumerate()
204        {
205            // Linear transformation
206            activation = weights.t().dot(&activation) + bias;
207
208            // Apply activation function
209            activation = self.apply_activation_function(
210                &activation,
211                self.architecture.activation_functions[i],
212            )?;
213
214            // Apply dropout if training
215            if self.architecture.dropoutrates[i] > 0.0 {
216                activation = Self::apply_dropout(&activation, self.architecture.dropoutrates[i])?;
217            }
218        }
219
220        Ok(activation)
221    }
222
223    /// Apply activation function
224    fn apply_activation_function(
225        &self,
226        x: &Array1<f64>,
227        func: ActivationFunction,
228    ) -> IntegrateResult<Array1<f64>> {
229        let result = match func {
230            ActivationFunction::ReLU => x.mapv(|v| v.max(0.0)),
231            ActivationFunction::LeakyReLU(alpha) => x.mapv(|v| if v > 0.0 { v } else { alpha * v }),
232            ActivationFunction::Tanh => x.mapv(|v| v.tanh()),
233            ActivationFunction::Sigmoid => x.mapv(|v| 1.0 / (1.0 + (-v).exp())),
234            ActivationFunction::Softmax => {
235                let exp_x = x.mapv(|v| v.exp());
236                let sum = exp_x.sum();
237                exp_x / sum
238            }
239            ActivationFunction::Swish => x.mapv(|v| v / (1.0 + (-v).exp())),
240            ActivationFunction::GELU => x.mapv(|v| 0.5 * v * (1.0 + (v / (2.0_f64).sqrt()).tanh())),
241            ActivationFunction::ELU(alpha) => {
242                x.mapv(|v| if v > 0.0 { v } else { alpha * (v.exp() - 1.0) })
243            }
244        };
245
246        Ok(result)
247    }
248
249    /// Apply dropout during training
250    fn apply_dropout(x: &Array1<f64>, dropout_rate: f64) -> IntegrateResult<Array1<f64>> {
251        if dropout_rate == 0.0 {
252            return Ok(x.clone());
253        }
254
255        let mut rng = scirs2_core::random::rng();
256        let mask: Array1<f64> = Array1::from_shape_fn(x.len(), |_| {
257            if rng.random::<f64>() < dropout_rate {
258                0.0
259            } else {
260                1.0 / (1.0 - dropout_rate)
261            }
262        });
263
264        Ok(x * &mask)
265    }
266
267    /// Train the network on bifurcation data
268    pub fn train(
269        &mut self,
270        training_data: &[(Array1<f64>, Array1<f64>)],
271        validation_data: Option<&[(Array1<f64>, Array1<f64>)]>,
272    ) -> IntegrateResult<()> {
273        let mut training_metrics = Vec::new();
274        let mut validation_metrics = Vec::new();
275
276        for epoch in 0..self.training_config.epochs {
277            let epoch_loss = self.train_epoch(training_data)?;
278
279            let epoch_metric = super::uncertainty::EpochMetrics {
280                epoch,
281                loss: epoch_loss,
282                accuracy: None,
283                precision: None,
284                recall: None,
285                f1_score: None,
286                learning_rate: self.get_current_learning_rate(epoch),
287            };
288
289            training_metrics.push(epoch_metric.clone());
290
291            if let Some(val_data) = validation_data {
292                let val_loss = self.evaluate(val_data)?;
293                let val_metric = super::uncertainty::EpochMetrics {
294                    epoch,
295                    loss: val_loss,
296                    accuracy: None,
297                    precision: None,
298                    recall: None,
299                    f1_score: None,
300                    learning_rate: epoch_metric.learning_rate,
301                };
302                validation_metrics.push(val_metric);
303            }
304
305            // Early stopping check
306            if self.should_early_stop(&training_metrics, &validation_metrics) {
307                break;
308            }
309        }
310
311        self.performance_metrics.training_metrics = training_metrics;
312        self.performance_metrics.validation_metrics = validation_metrics;
313
314        Ok(())
315    }
316
317    /// Train for one epoch
318    fn train_epoch(
319        &mut self,
320        training_data: &[(Array1<f64>, Array1<f64>)],
321    ) -> IntegrateResult<f64> {
322        let mut total_loss = 0.0;
323        let batch_size = self.training_config.batch_size;
324
325        for batch_start in (0..training_data.len()).step_by(batch_size) {
326            let batch_end = (batch_start + batch_size).min(training_data.len());
327            let batch = &training_data[batch_start..batch_end];
328
329            let batch_loss = self.train_batch(batch)?;
330            total_loss += batch_loss;
331        }
332
333        Ok(total_loss / (training_data.len() as f64 / batch_size as f64))
334    }
335
336    /// Train on a single batch
337    fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> IntegrateResult<f64> {
338        let mut total_loss = 0.0;
339
340        for (input, target) in batch {
341            let prediction = self.forward(input)?;
342            let loss = self.calculate_loss(&prediction, target)?;
343            total_loss += loss;
344
345            // Backpropagation would be implemented here
346            self.backward(&prediction, target, input)?;
347        }
348
349        Ok(total_loss / batch.len() as f64)
350    }
351
352    /// Calculate loss
353    fn calculate_loss(
354        &self,
355        prediction: &Array1<f64>,
356        target: &Array1<f64>,
357    ) -> IntegrateResult<f64> {
358        match self.training_config.loss_function {
359            super::training::LossFunction::MSE => {
360                let diff = prediction - target;
361                Ok(diff.dot(&diff) / prediction.len() as f64)
362            }
363            super::training::LossFunction::CrossEntropy => {
364                let epsilon = 1e-15;
365                let pred_clipped = prediction.mapv(|p| p.max(epsilon).min(1.0 - epsilon));
366                let loss = -target
367                    .iter()
368                    .zip(pred_clipped.iter())
369                    .map(|(&t, &p)| t * p.ln())
370                    .sum::<f64>();
371                Ok(loss)
372            }
373            super::training::LossFunction::FocalLoss(alpha, gamma) => {
374                let epsilon = 1e-15;
375                let pred_clipped = prediction.mapv(|p| p.max(epsilon).min(1.0 - epsilon));
376                let loss = -alpha
377                    * target
378                        .iter()
379                        .zip(pred_clipped.iter())
380                        .map(|(&t, &p)| t * (1.0 - p).powf(gamma) * p.ln())
381                        .sum::<f64>();
382                Ok(loss)
383            }
384            super::training::LossFunction::HuberLoss(delta) => {
385                let diff = prediction - target;
386                let abs_diff = diff.mapv(|d| d.abs());
387                let loss = abs_diff
388                    .iter()
389                    .map(|&d| {
390                        if d <= delta {
391                            0.5 * d * d
392                        } else {
393                            delta * d - 0.5 * delta * delta
394                        }
395                    })
396                    .sum::<f64>();
397                Ok(loss / prediction.len() as f64)
398            }
399            super::training::LossFunction::WeightedMSE => {
400                // Placeholder implementation
401                let diff = prediction - target;
402                Ok(diff.dot(&diff) / prediction.len() as f64)
403            }
404        }
405    }
406
407    /// Backward pass (gradient computation)
408    fn backward(
409        &mut self,
410        _prediction: &Array1<f64>,
411        _target: &Array1<f64>,
412        _input: &Array1<f64>,
413    ) -> IntegrateResult<()> {
414        // Placeholder for backpropagation implementation
415        // In a real implementation, this would compute gradients and update weights
416        Ok(())
417    }
418
419    /// Evaluate model performance
420    pub fn evaluate(&self, test_data: &[(Array1<f64>, Array1<f64>)]) -> IntegrateResult<f64> {
421        let mut total_loss = 0.0;
422
423        for (input, target) in test_data {
424            let prediction = self.forward(input)?;
425            let loss = self.calculate_loss(&prediction, target)?;
426            total_loss += loss;
427        }
428
429        Ok(total_loss / test_data.len() as f64)
430    }
431
432    /// Get current learning rate
433    fn get_current_learning_rate(&self, epoch: usize) -> f64 {
434        match &self.training_config.learning_rate {
435            super::training::LearningRateSchedule::Constant(lr) => *lr,
436            super::training::LearningRateSchedule::ExponentialDecay {
437                initial_lr,
438                decay_rate,
439                decay_steps,
440            } => initial_lr * decay_rate.powf(epoch as f64 / *decay_steps as f64),
441            super::training::LearningRateSchedule::CosineAnnealing {
442                initial_lr,
443                min_lr,
444                cycle_length,
445            } => {
446                let cycle_pos = (epoch % cycle_length) as f64 / *cycle_length as f64;
447                min_lr
448                    + (initial_lr - min_lr) * (1.0 + (cycle_pos * std::f64::consts::PI).cos()) / 2.0
449            }
450            super::training::LearningRateSchedule::StepDecay {
451                initial_lr,
452                drop_rate,
453                epochs_drop,
454            } => initial_lr * drop_rate.powf((epoch / epochs_drop) as f64),
455            super::training::LearningRateSchedule::Adaptive { initial_lr, .. } => {
456                // Placeholder for adaptive learning rate
457                *initial_lr
458            }
459        }
460    }
461
462    /// Check if early stopping should be triggered
463    fn should_early_stop(
464        &self,
465        _training_metrics: &[super::uncertainty::EpochMetrics],
466        _validation_metrics: &[super::uncertainty::EpochMetrics],
467    ) -> bool {
468        if !self.training_config.early_stopping.enabled {
469            return false;
470        }
471
472        // Placeholder for early stopping logic
473        false
474    }
475
476    /// Predict bifurcation type and location
477    pub fn predict_bifurcation(
478        &self,
479        features: &Array1<f64>,
480    ) -> IntegrateResult<BifurcationPrediction> {
481        let raw_output = self.forward(features)?;
482
483        // Convert network output to bifurcation prediction
484        let bifurcation_type = self.classify_bifurcation_type(&raw_output)?;
485        let confidence = self.calculate_confidence(&raw_output)?;
486        let predicted_parameter = raw_output[0]; // Assuming first output is parameter
487
488        Ok(BifurcationPrediction {
489            bifurcation_type,
490            predicted_parameter,
491            confidence,
492            raw_output,
493            uncertainty_estimate: None,
494        })
495    }
496
497    /// Classify bifurcation type from network output
498    fn classify_bifurcation_type(&self, output: &Array1<f64>) -> IntegrateResult<BifurcationType> {
499        // Find the class with highest probability
500        let max_idx = output
501            .iter()
502            .enumerate()
503            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
504            .map(|(idx, _)| idx)
505            .unwrap_or(0);
506
507        // Map index to bifurcation type
508        let bifurcation_type = match max_idx {
509            0 => BifurcationType::Fold,
510            1 => BifurcationType::Transcritical,
511            2 => BifurcationType::Pitchfork,
512            3 => BifurcationType::Hopf,
513            4 => BifurcationType::PeriodDoubling,
514            5 => BifurcationType::Homoclinic,
515            _ => BifurcationType::Unknown,
516        };
517
518        Ok(bifurcation_type)
519    }
520
521    /// Calculate prediction confidence
522    fn calculate_confidence(&self, output: &Array1<f64>) -> IntegrateResult<f64> {
523        // Use max probability as confidence
524        let max_prob = output.iter().cloned().fold(0.0, f64::max);
525        Ok(max_prob)
526    }
527}