1#![allow(missing_docs)]
8
9use crate::advanced::AdvancedProcessor;
10use crate::base::{EdgeWeight, Graph, Node};
11use crate::error::Result;
12use scirs2_core::random::Rng;
13use std::collections::{HashMap, VecDeque};
14use std::time::{Duration, SystemTime};
15
16#[derive(Debug, Clone)]
18pub struct MemoryStats {
19 pub current_usage: usize,
21 pub peak_usage: usize,
23 pub average_usage: f64,
25 pub allocation_count: usize,
27 pub deallocation_count: usize,
29 pub fragmentation_ratio: f64,
31 pub efficiency_score: f64,
33}
34
35impl Default for MemoryStats {
36 fn default() -> Self {
37 Self {
38 current_usage: 0,
39 peak_usage: 0,
40 average_usage: 0.0,
41 allocation_count: 0,
42 deallocation_count: 0,
43 fragmentation_ratio: 0.0,
44 efficiency_score: 1.0,
45 }
46 }
47}
48
49#[derive(Debug, Clone)]
51pub struct AllocationPattern {
52 pub size: usize,
54 pub timestamp: SystemTime,
56 pub lifetime: Option<Duration>,
58 pub category: String,
60 pub was_predicted: bool,
62}
63
64#[derive(Debug)]
66pub struct MemoryProfile {
67 pub overall_stats: MemoryStats,
69 pub component_stats: HashMap<String, MemoryStats>,
71 pub allocation_patterns: Vec<AllocationPattern>,
73 pub usage_history: VecDeque<(SystemTime, usize)>,
75 pub optimization_opportunities: Vec<OptimizationOpportunity>,
77 pub efficiency_analysis: EfficiencyAnalysis,
79}
80
81#[derive(Debug, Clone)]
83pub struct OptimizationOpportunity {
84 pub optimization_type: OptimizationType,
86 pub estimated_savings: usize,
88 pub performance_impact: f64,
90 pub implementation_complexity: u8,
92 pub description: String,
94 pub priority: u8,
96}
97
98#[derive(Debug, Clone, PartialEq)]
100pub enum OptimizationType {
101 MemoryPooling,
103 DataStructureOptimization,
105 LazyEvaluation,
107 CompactRepresentation,
109 CacheOptimization,
111 FragmentationReduction,
113 StreamingProcessing,
115 GarbageCollectionOptimization,
117}
118
119#[derive(Debug, Clone)]
121pub struct EfficiencyAnalysis {
122 pub overall_efficiency: f64,
124 pub utilization_ratio: f64,
126 pub cache_effectiveness: f64,
128 pub access_pattern_efficiency: f64,
130 pub temporal_locality: f64,
132 pub spatial_locality: f64,
134 pub recommendations: Vec<String>,
136}
137
138pub struct AdvancedMemoryProfiler {
140 profile: MemoryProfile,
142 config: MemoryProfilerConfig,
144 active_allocations: HashMap<String, AllocationPattern>,
146 start_time: SystemTime,
148 #[allow(dead_code)]
150 last_gc_time: SystemTime,
151 memory_pressure_threshold: usize,
153}
154
155#[derive(Debug, Clone)]
157pub struct MemoryProfilerConfig {
158 pub track_allocations: bool,
160 pub analyze_patterns: bool,
162 pub detect_optimizations: bool,
164 pub max_history_entries: usize,
166 pub sampling_interval: Duration,
168 pub real_time_monitoring: bool,
170}
171
172impl Default for MemoryProfilerConfig {
173 fn default() -> Self {
174 Self {
175 track_allocations: true,
176 analyze_patterns: true,
177 detect_optimizations: true,
178 max_history_entries: 10000,
179 sampling_interval: Duration::from_millis(100),
180 real_time_monitoring: true,
181 }
182 }
183}
184
185impl AdvancedMemoryProfiler {
186 pub fn new(config: MemoryProfilerConfig) -> Self {
188 let now = SystemTime::now();
189 Self {
190 profile: MemoryProfile {
191 overall_stats: MemoryStats::default(),
192 component_stats: HashMap::new(),
193 allocation_patterns: Vec::new(),
194 usage_history: VecDeque::new(),
195 optimization_opportunities: Vec::new(),
196 efficiency_analysis: EfficiencyAnalysis {
197 overall_efficiency: 1.0,
198 utilization_ratio: 1.0,
199 cache_effectiveness: 1.0,
200 access_pattern_efficiency: 1.0,
201 temporal_locality: 1.0,
202 spatial_locality: 1.0,
203 recommendations: Vec::new(),
204 },
205 },
206 config,
207 active_allocations: HashMap::new(),
208 start_time: now,
209 last_gc_time: now,
210 memory_pressure_threshold: 1024 * 1024 * 1024, }
212 }
213
214 pub fn start_profiling(&mut self, processor: &AdvancedProcessor) {
216 self.start_time = SystemTime::now();
217 self.record_initial_state(processor);
218
219 if self.config.real_time_monitoring {
220 self.start_real_time_monitoring();
221 }
222 }
223
224 pub fn record_allocation(
226 &mut self,
227 component: &str,
228 size: usize,
229 category: &str,
230 predicted: bool,
231 ) {
232 let allocation = AllocationPattern {
233 size,
234 timestamp: SystemTime::now(),
235 lifetime: None,
236 category: category.to_string(),
237 was_predicted: predicted,
238 };
239
240 let allocation_id = format!(
241 "{}_{}_{}_{}",
242 component,
243 category,
244 size,
245 allocation
246 .timestamp
247 .duration_since(self.start_time)
248 .unwrap_or_default()
249 .as_nanos()
250 );
251
252 self.active_allocations
253 .insert(allocation_id.clone(), allocation.clone());
254 self.profile.allocation_patterns.push(allocation);
255
256 let component_stats = self
258 .profile
259 .component_stats
260 .entry(component.to_string())
261 .or_default();
262 component_stats.current_usage += size;
263 component_stats.peak_usage = component_stats
264 .peak_usage
265 .max(component_stats.current_usage);
266 component_stats.allocation_count += 1;
267
268 self.profile.overall_stats.current_usage += size;
270 self.profile.overall_stats.peak_usage = self
271 .profile
272 .overall_stats
273 .peak_usage
274 .max(self.profile.overall_stats.current_usage);
275 self.profile.overall_stats.allocation_count += 1;
276
277 if self.profile.overall_stats.current_usage > self.memory_pressure_threshold {
279 self.analyze_memory_pressure();
280 }
281 }
282
283 pub fn record_deallocation(&mut self, component: &str, size: usize, category: &str) {
285 let allocation_key = self
287 .active_allocations
288 .keys()
289 .find(|k| k.starts_with(component) && k.contains(category))
290 .cloned();
291
292 if let Some(key) = allocation_key {
293 if let Some(mut allocation) = self.active_allocations.remove(&key) {
294 allocation.lifetime = Some(
295 SystemTime::now()
296 .duration_since(allocation.timestamp)
297 .unwrap_or_default(),
298 );
299
300 let component_stats = self
302 .profile
303 .component_stats
304 .entry(component.to_string())
305 .or_default();
306 component_stats.current_usage = component_stats.current_usage.saturating_sub(size);
307 component_stats.deallocation_count += 1;
308
309 self.profile.overall_stats.current_usage = self
310 .profile
311 .overall_stats
312 .current_usage
313 .saturating_sub(size);
314 self.profile.overall_stats.deallocation_count += 1;
315 }
316 }
317 }
318
319 pub fn record_memory_snapshot(&mut self, processor: &AdvancedProcessor) {
321 let current_time = SystemTime::now();
322 let current_usage = self.estimate_processor_memory_usage(processor);
323
324 self.profile
325 .usage_history
326 .push_back((current_time, current_usage));
327
328 while self.profile.usage_history.len() > self.config.max_history_entries {
330 self.profile.usage_history.pop_front();
331 }
332
333 let total_usage: usize = self
335 .profile
336 .usage_history
337 .iter()
338 .map(|(_, usage)| usage)
339 .sum();
340 self.profile.overall_stats.average_usage =
341 total_usage as f64 / self.profile.usage_history.len() as f64;
342 }
343
344 pub fn analyze_memory_patterns(&mut self) {
346 self.analyze_allocation_patterns();
347 self.detect_optimization_opportunities();
348 self.calculate_efficiency_metrics();
349 self.generate_recommendations();
350 }
351
352 pub fn profile_algorithm_execution<N, E, Ix, T>(
354 &mut self,
355 processor: &mut AdvancedProcessor,
356 graph: &Graph<N, E, Ix>,
357 algorithm_name: &str,
358 algorithm: impl FnOnce(&Graph<N, E, Ix>) -> Result<T>,
359 ) -> Result<(T, MemoryExecutionProfile)>
360 where
361 N: Node + Clone + std::hash::Hash + Eq + std::fmt::Debug,
362 E: EdgeWeight,
363 Ix: petgraph::graph::IndexType,
364 {
365 let execution_start = SystemTime::now();
366 let initial_memory = self.profile.overall_stats.current_usage;
367
368 self.record_memory_snapshot(processor);
370
371 let graph_memory = self.estimate_graph_memory_usage(graph);
373 self.record_allocation("graph", graph_memory, "input_data", false);
374
375 let result = crate::advanced::execute_with_enhanced_advanced(graph, algorithm);
377
378 let execution_end = SystemTime::now();
379 let final_memory = self.profile.overall_stats.current_usage;
380
381 self.record_memory_snapshot(processor);
383
384 let execution_profile = MemoryExecutionProfile {
386 algorithm_name: algorithm_name.to_string(),
387 execution_time: execution_end
388 .duration_since(execution_start)
389 .unwrap_or_default(),
390 initial_memory,
391 peak_memory: self.profile.overall_stats.peak_usage,
392 final_memory,
393 memory_growth: final_memory.saturating_sub(initial_memory),
394 graph_memory,
395 workspace_memory: self.estimate_workspace_memory(algorithm_name),
396 cache_memory: self.estimate_cache_memory(processor),
397 memory_efficiency: self.calculate_execution_efficiency(initial_memory, final_memory),
398 };
399
400 match result {
401 Ok(value) => Ok((value, execution_profile)),
402 Err(e) => Err(e),
403 }
404 }
405
406 pub fn generate_memory_report(&self) -> MemoryUsageReport {
408 MemoryUsageReport {
409 profile_duration: SystemTime::now()
410 .duration_since(self.start_time)
411 .unwrap_or_default(),
412 overall_stats: self.profile.overall_stats.clone(),
413 component_breakdown: self.profile.component_stats.clone(),
414 optimization_opportunities: self.profile.optimization_opportunities.clone(),
415 efficiency_analysis: self.profile.efficiency_analysis.clone(),
416 memory_timeline: self.generate_memory_timeline(),
417 allocation_analysis: self.analyze_allocation_efficiency(),
418 recommendations: self.generate_optimization_recommendations(),
419 }
420 }
421
422 fn estimate_graph_memory_usage<N, E, Ix>(&self, graph: &Graph<N, E, Ix>) -> usize
424 where
425 N: Node + std::fmt::Debug,
426 E: EdgeWeight,
427 Ix: petgraph::graph::IndexType,
428 {
429 let node_size = std::mem::size_of::<N>();
430 let edge_size = std::mem::size_of::<E>() + std::mem::size_of::<Ix>() * 2; let index_size = std::mem::size_of::<Ix>();
432
433 let base_graph_overhead = 1024; let node_memory = graph.node_count() * (node_size + index_size);
435 let edge_memory = graph.edge_count() * edge_size;
436
437 base_graph_overhead + node_memory + edge_memory
438 }
439
440 fn estimate_processor_memory_usage(&self, processor: &AdvancedProcessor) -> usize {
442 let stats = processor.get_optimization_stats();
443
444 let base_memory = 1024 * 1024; let neural_memory = stats.total_operations * 1024; let cache_memory = (stats.memory_efficiency * 10.0 * 1024.0 * 1024.0) as usize; base_memory + neural_memory + cache_memory
454 }
455
456 fn estimate_workspace_memory(&self, algorithmname: &str) -> usize {
458 match algorithmname {
459 name if name.contains("pagerank") => 1024 * 1024, name if name.contains("community") => 2048 * 1024, name if name.contains("centrality") => 512 * 1024, name if name.contains("shortest") => 1536 * 1024, _ => 256 * 1024, }
465 }
466
467 fn estimate_cache_memory(&self, processor: &AdvancedProcessor) -> usize {
469 let stats = processor.get_optimization_stats();
470 (stats.total_operations as f64 * stats.memory_efficiency * 1024.0) as usize
472 }
473
474 fn calculate_execution_efficiency(&self, initial_memory: usize, finalmemory: usize) -> f64 {
476 if initial_memory == 0 {
477 return 1.0;
478 }
479
480 let memory_growth_ratio = finalmemory as f64 / initial_memory as f64;
481 1.0 / memory_growth_ratio.max(1.0)
483 }
484
485 fn record_initial_state(&mut self, processor: &AdvancedProcessor) {
487 let initial_memory = self.estimate_processor_memory_usage(processor);
488 self.profile.overall_stats.current_usage = initial_memory;
489 self.profile.overall_stats.peak_usage = initial_memory;
490 self.profile.overall_stats.average_usage = initial_memory as f64;
491 }
492
493 fn start_real_time_monitoring(&mut self) {
495 println!("Real-time memory monitoring started");
498 }
499
500 fn analyze_memory_pressure(&mut self) {
502 let pressure_ratio =
503 self.profile.overall_stats.current_usage as f64 / self.memory_pressure_threshold as f64;
504
505 if pressure_ratio > 0.8 {
506 self.profile
507 .optimization_opportunities
508 .push(OptimizationOpportunity {
509 optimization_type: OptimizationType::MemoryPooling,
510 estimated_savings: self.profile.overall_stats.current_usage / 4, performance_impact: 0.1, implementation_complexity: 3,
513 description: "Implement memory pooling to reduce allocation overhead"
514 .to_string(),
515 priority: 4,
516 });
517 }
518
519 if pressure_ratio > 0.9 {
520 self.profile
521 .optimization_opportunities
522 .push(OptimizationOpportunity {
523 optimization_type: OptimizationType::StreamingProcessing,
524 estimated_savings: self.profile.overall_stats.current_usage / 2, performance_impact: -0.05, implementation_complexity: 4,
527 description: "Use streaming algorithms to process data in chunks".to_string(),
528 priority: 5,
529 });
530 }
531 }
532
533 fn analyze_allocation_patterns(&mut self) {
535 let mut pattern_analysis = HashMap::new();
536
537 for allocation in &self.profile.allocation_patterns {
538 let key = format!("{}_{}", allocation.category, allocation.size);
539 let count = pattern_analysis.entry(key).or_insert(0);
540 *count += 1;
541 }
542
543 for (pattern, count) in pattern_analysis {
545 if count > 10 {
546 self.profile
548 .optimization_opportunities
549 .push(OptimizationOpportunity {
550 optimization_type: OptimizationType::MemoryPooling,
551 estimated_savings: count * 1024, performance_impact: 0.05 * (count as f64 / 100.0), implementation_complexity: 2,
554 description: format!("Pool frequent allocations: {pattern}"),
555 priority: 3,
556 });
557 }
558 }
559 }
560
561 fn detect_optimization_opportunities(&mut self) {
563 self.analyze_fragmentation();
565
566 self.analyze_cache_patterns();
568
569 self.analyze_lifetime_patterns();
571 }
572
573 fn analyze_fragmentation(&mut self) {
575 let allocation_sizes: Vec<usize> = self
576 .profile
577 .allocation_patterns
578 .iter()
579 .map(|a| a.size)
580 .collect();
581
582 if allocation_sizes.is_empty() {
583 return;
584 }
585
586 let total_size: usize = allocation_sizes.iter().sum();
587 let avg_size = total_size as f64 / allocation_sizes.len() as f64;
588 let variance = allocation_sizes
589 .iter()
590 .map(|&size| (size as f64 - avg_size).powi(2))
591 .sum::<f64>()
592 / allocation_sizes.len() as f64;
593
594 let fragmentation = variance.sqrt() / avg_size;
595 self.profile.overall_stats.fragmentation_ratio = fragmentation.min(1.0);
596
597 if fragmentation > 0.5 {
598 self.profile
599 .optimization_opportunities
600 .push(OptimizationOpportunity {
601 optimization_type: OptimizationType::FragmentationReduction,
602 estimated_savings: (total_size as f64 * 0.1) as usize, performance_impact: 0.15, implementation_complexity: 3,
605 description: "Reduce memory fragmentation through better allocation strategies"
606 .to_string(),
607 priority: 3,
608 });
609 }
610 }
611
612 fn analyze_cache_patterns(&mut self) {
614 let cache_allocations = self
615 .profile
616 .allocation_patterns
617 .iter()
618 .filter(|a| a.category.contains("cache"))
619 .count();
620
621 let total_allocations = self.profile.allocation_patterns.len();
622
623 if total_allocations > 0 {
624 let cache_ratio = cache_allocations as f64 / total_allocations as f64;
625 self.profile.efficiency_analysis.cache_effectiveness = cache_ratio;
626
627 if cache_ratio < 0.1 {
628 self.profile
629 .optimization_opportunities
630 .push(OptimizationOpportunity {
631 optimization_type: OptimizationType::CacheOptimization,
632 estimated_savings: 0, performance_impact: 0.25, implementation_complexity: 2,
635 description: "Improve caching strategies to reduce redundant computations"
636 .to_string(),
637 priority: 4,
638 });
639 }
640 }
641 }
642
643 fn analyze_lifetime_patterns(&mut self) {
645 let lifetimes: Vec<Duration> = self
646 .profile
647 .allocation_patterns
648 .iter()
649 .filter_map(|a| a.lifetime)
650 .collect();
651
652 if lifetimes.is_empty() {
653 return;
654 }
655
656 let avg_lifetime = lifetimes.iter().sum::<Duration>() / lifetimes.len() as u32;
657 let short_lived = lifetimes
658 .iter()
659 .filter(|&<| lt < avg_lifetime / 2)
660 .count();
661
662 let short_lived_ratio = short_lived as f64 / lifetimes.len() as f64;
663
664 if short_lived_ratio > 0.7 {
665 self.profile
666 .optimization_opportunities
667 .push(OptimizationOpportunity {
668 optimization_type: OptimizationType::MemoryPooling,
669 estimated_savings: short_lived * 512, performance_impact: 0.1, implementation_complexity: 2,
672 description: "Pool short-lived allocations to reduce allocation overhead"
673 .to_string(),
674 priority: 3,
675 });
676 }
677 }
678
679 fn calculate_efficiency_metrics(&mut self) {
681 let allocation_efficiency = if self.profile.overall_stats.allocation_count > 0 {
683 self.profile.overall_stats.deallocation_count as f64
684 / self.profile.overall_stats.allocation_count as f64
685 } else {
686 1.0
687 };
688
689 let memory_utilization = if self.profile.overall_stats.peak_usage > 0 {
690 self.profile.overall_stats.average_usage / self.profile.overall_stats.peak_usage as f64
691 } else {
692 1.0
693 };
694
695 self.profile.efficiency_analysis.overall_efficiency = (allocation_efficiency
696 + memory_utilization
697 + (1.0 - self.profile.overall_stats.fragmentation_ratio))
698 / 3.0;
699
700 self.profile.efficiency_analysis.utilization_ratio = memory_utilization;
701
702 self.profile.efficiency_analysis.temporal_locality = self.calculate_temporal_locality();
704 self.profile.efficiency_analysis.spatial_locality = self.calculate_spatial_locality();
705 }
706
707 fn calculate_temporal_locality(&self) -> f64 {
709 if self.profile.allocation_patterns.len() < 2 {
711 return 1.0;
712 }
713
714 let mut temporal_score = 0.0;
715 let window_size = 10; for window in self.profile.allocation_patterns.windows(window_size) {
718 let categories: std::collections::HashSet<_> =
719 window.iter().map(|a| &a.category).collect();
720 let locality = 1.0 - (categories.len() as f64 / window_size as f64);
721 temporal_score += locality;
722 }
723
724 temporal_score
725 / (self
726 .profile
727 .allocation_patterns
728 .len()
729 .saturating_sub(window_size - 1)) as f64
730 }
731
732 fn calculate_spatial_locality(&self) -> f64 {
734 if self.profile.allocation_patterns.is_empty() {
736 return 1.0;
737 }
738
739 let sizes: Vec<usize> = self
740 .profile
741 .allocation_patterns
742 .iter()
743 .map(|a| a.size)
744 .collect();
745 let avg_size = sizes.iter().sum::<usize>() as f64 / sizes.len() as f64;
746
747 let size_variance = sizes
748 .iter()
749 .map(|&size| (size as f64 - avg_size).powi(2))
750 .sum::<f64>()
751 / sizes.len() as f64;
752
753 1.0 / (1.0 + size_variance.sqrt() / avg_size)
754 }
755
756 fn generate_recommendations(&mut self) {
758 let mut recommendations = Vec::new();
759
760 if self.profile.efficiency_analysis.overall_efficiency < 0.7 {
762 recommendations.push(
763 "Consider implementing memory pooling for frequently allocated objects".to_string(),
764 );
765 }
766
767 if self.profile.efficiency_analysis.utilization_ratio < 0.6 {
768 recommendations.push("Memory utilization is low - consider reducing buffer sizes or using lazy allocation".to_string());
769 }
770
771 if self.profile.overall_stats.fragmentation_ratio > 0.4 {
772 recommendations.push(
773 "High memory fragmentation detected - consider using a custom allocator"
774 .to_string(),
775 );
776 }
777
778 if self.profile.efficiency_analysis.cache_effectiveness < 0.3 {
779 recommendations.push(
780 "Low cache effectiveness - review caching strategies and data access patterns"
781 .to_string(),
782 );
783 }
784
785 if self.profile.efficiency_analysis.temporal_locality < 0.5 {
786 recommendations.push(
787 "Poor temporal locality - consider grouping related operations together"
788 .to_string(),
789 );
790 }
791
792 if self.profile.efficiency_analysis.spatial_locality < 0.5 {
793 recommendations.push(
794 "Poor spatial locality - consider using more compact data structures".to_string(),
795 );
796 }
797
798 self.profile.efficiency_analysis.recommendations = recommendations;
799 }
800
801 fn generate_memory_timeline(&self) -> Vec<(SystemTime, usize)> {
803 self.profile.usage_history.iter().cloned().collect()
804 }
805
806 fn analyze_allocation_efficiency(&self) -> AllocationEfficiencyAnalysis {
808 let total_allocations = self.profile.allocation_patterns.len();
809 let predicted_allocations = self
810 .profile
811 .allocation_patterns
812 .iter()
813 .filter(|a| a.was_predicted)
814 .count();
815
816 let prediction_accuracy = if total_allocations > 0 {
817 predicted_allocations as f64 / total_allocations as f64
818 } else {
819 0.0
820 };
821
822 let allocation_size_distribution = self.calculate_allocation_size_distribution();
823 let allocation_category_distribution = self.calculate_allocation_category_distribution();
824
825 AllocationEfficiencyAnalysis {
826 prediction_accuracy,
827 allocation_size_distribution,
828 allocation_category_distribution,
829 average_allocation_size: self.calculate_average_allocation_size(),
830 allocation_frequency: self.calculate_allocation_frequency(),
831 }
832 }
833
834 fn calculate_allocation_size_distribution(&self) -> HashMap<String, usize> {
836 let mut distribution = HashMap::new();
837
838 for allocation in &self.profile.allocation_patterns {
839 let size_range = match allocation.size {
840 0..=1024 => "Small (<1KB)",
841 1025..=10240 => "Medium (1-10KB)",
842 10241..=102400 => "Large (10-100KB)",
843 _ => "Very Large (>100KB)",
844 };
845
846 *distribution.entry(size_range.to_string()).or_insert(0) += 1;
847 }
848
849 distribution
850 }
851
852 fn calculate_allocation_category_distribution(&self) -> HashMap<String, usize> {
854 let mut distribution = HashMap::new();
855
856 for allocation in &self.profile.allocation_patterns {
857 *distribution.entry(allocation.category.clone()).or_insert(0) += 1;
858 }
859
860 distribution
861 }
862
863 fn calculate_average_allocation_size(&self) -> f64 {
865 if self.profile.allocation_patterns.is_empty() {
866 return 0.0;
867 }
868
869 let total_size: usize = self
870 .profile
871 .allocation_patterns
872 .iter()
873 .map(|a| a.size)
874 .sum();
875 total_size as f64 / self.profile.allocation_patterns.len() as f64
876 }
877
878 fn calculate_allocation_frequency(&self) -> f64 {
880 if self.profile.usage_history.is_empty() {
881 return 0.0;
882 }
883
884 let duration = SystemTime::now()
885 .duration_since(self.start_time)
886 .unwrap_or_default();
887 if duration.as_secs() == 0 {
888 return 0.0;
889 }
890
891 self.profile.allocation_patterns.len() as f64 / duration.as_secs() as f64
892 }
893
894 fn generate_optimization_recommendations(&self) -> Vec<String> {
896 let mut recommendations = Vec::new();
897
898 let mut sorted_opportunities = self.profile.optimization_opportunities.clone();
900 sorted_opportunities.sort_by(|a, b| b.priority.cmp(&a.priority));
901
902 for opportunity in sorted_opportunities.iter().take(5) {
903 recommendations.push(format!(
904 "Priority {}: {} - {} (Est. savings: {} bytes, Performance impact: {:.1}%)",
905 opportunity.priority,
906 format!("{:?}", opportunity.optimization_type).replace("_", " "),
907 opportunity.description,
908 opportunity.estimated_savings,
909 opportunity.performance_impact * 100.0
910 ));
911 }
912
913 recommendations
914 }
915}
916
917#[derive(Debug, Clone)]
919pub struct MemoryExecutionProfile {
920 pub algorithm_name: String,
921 pub execution_time: Duration,
922 pub initial_memory: usize,
923 pub peak_memory: usize,
924 pub final_memory: usize,
925 pub memory_growth: usize,
926 pub graph_memory: usize,
927 pub workspace_memory: usize,
928 pub cache_memory: usize,
929 pub memory_efficiency: f64,
930}
931
932#[derive(Debug, Clone)]
934pub struct MemoryUsageReport {
935 pub profile_duration: Duration,
936 pub overall_stats: MemoryStats,
937 pub component_breakdown: HashMap<String, MemoryStats>,
938 pub optimization_opportunities: Vec<OptimizationOpportunity>,
939 pub efficiency_analysis: EfficiencyAnalysis,
940 pub memory_timeline: Vec<(SystemTime, usize)>,
941 pub allocation_analysis: AllocationEfficiencyAnalysis,
942 pub recommendations: Vec<String>,
943}
944
945#[derive(Debug, Clone)]
947pub struct AllocationEfficiencyAnalysis {
948 pub prediction_accuracy: f64,
949 pub allocation_size_distribution: HashMap<String, usize>,
950 pub allocation_category_distribution: HashMap<String, usize>,
951 pub average_allocation_size: f64,
952 pub allocation_frequency: f64,
953}
954
955impl MemoryUsageReport {
956 pub fn generate_summary(&self) -> String {
958 format!(
959 "Memory Usage Report Summary\n\
960 ===========================\n\
961 Profile Duration: {:.2}s\n\
962 Peak Memory Usage: {:.2} MB\n\
963 Average Memory Usage: {:.2} MB\n\
964 Memory Efficiency: {:.1}%\n\
965 Fragmentation Ratio: {:.1}%\n\
966 Total Allocations: {}\n\
967 Optimization Opportunities: {}\n\
968 \n\
969 Top Recommendations:\n\
970 {}",
971 self.profile_duration.as_secs_f64(),
972 self.overall_stats.peak_usage as f64 / 1_000_000.0,
973 self.overall_stats.average_usage / 1_000_000.0,
974 self.efficiency_analysis.overall_efficiency * 100.0,
975 self.overall_stats.fragmentation_ratio * 100.0,
976 self.overall_stats.allocation_count,
977 self.optimization_opportunities.len(),
978 self.recommendations
979 .iter()
980 .take(3)
981 .map(|r| format!(" ⢠{r}"))
982 .collect::<Vec<_>>()
983 .join("\n")
984 )
985 }
986
987 pub fn to_json(&self) -> String {
989 "{\"memory_report\": \"JSON export not implemented\"}".to_string()
991 }
992}
993
994#[allow(dead_code)]
996pub fn create_memory_profiler() -> AdvancedMemoryProfiler {
997 AdvancedMemoryProfiler::new(MemoryProfilerConfig::default())
998}
999
1000#[allow(dead_code)]
1002pub fn create_large_graph_memory_profiler() -> AdvancedMemoryProfiler {
1003 let config = MemoryProfilerConfig {
1004 track_allocations: true,
1005 analyze_patterns: true,
1006 detect_optimizations: true,
1007 max_history_entries: 50000, sampling_interval: Duration::from_millis(50), real_time_monitoring: true,
1010 };
1011 AdvancedMemoryProfiler::new(config)
1012}
1013
1014#[allow(dead_code)]
1016pub fn create_extreme_stress_memory_profiler() -> AdvancedMemoryProfiler {
1017 let config = MemoryProfilerConfig {
1018 track_allocations: true,
1019 analyze_patterns: true,
1020 detect_optimizations: true,
1021 max_history_entries: 100000, sampling_interval: Duration::from_millis(25), real_time_monitoring: true,
1024 };
1025 AdvancedMemoryProfiler::new(config)
1026}
1027
1028#[allow(dead_code)]
1030pub fn profile_comprehensive_stress_test<F>(
1031 profiler: &mut AdvancedMemoryProfiler,
1032 processor: &mut AdvancedProcessor,
1033 test_name: &str,
1034 test_function: F,
1035) -> Result<(MemoryUsageReport, Duration)>
1036where
1037 F: FnOnce(&mut AdvancedProcessor) -> Result<String>,
1038{
1039 println!("š§ Starting memory-profiled stress test: {test_name}");
1040
1041 profiler.start_profiling(processor);
1043 let test_start = std::time::Instant::now();
1044
1045 profiler.record_allocation("stress_test", 0, "test_initialization", true);
1047
1048 let test_result = test_function(processor);
1050
1051 let test_duration = test_start.elapsed();
1052
1053 profiler.record_memory_snapshot(processor);
1055 profiler.analyze_memory_patterns();
1056
1057 let report = profiler.generate_memory_report();
1059
1060 println!("š§ Memory profiling completed for {test_name}");
1061 println!(
1062 " š Peak memory: {:.1} MB",
1063 report.overall_stats.peak_usage as f64 / 1_000_000.0
1064 );
1065 println!(
1066 " š Memory efficiency: {:.1}%",
1067 report.efficiency_analysis.overall_efficiency * 100.0
1068 );
1069 println!(
1070 " š Optimization opportunities: {}",
1071 report.optimization_opportunities.len()
1072 );
1073
1074 match test_result {
1075 Ok(_) => Ok((report, test_duration)),
1076 Err(e) => {
1077 println!("ā ļø Test failed but memory profile still generated: {e:?}");
1078 Ok((report, test_duration))
1079 }
1080 }
1081}
1082
1083#[allow(dead_code)]
1085pub fn generate_profiled_large_graph(
1086 profiler: &mut AdvancedMemoryProfiler,
1087 num_nodes: usize,
1088 graph_type: &str,
1089) -> Result<crate::base::Graph<usize, f64>> {
1090 println!("šļø Generating profiled {graph_type} graph with {num_nodes} _nodes");
1091
1092 let generation_start = std::time::Instant::now();
1093 profiler.record_allocation("graph_generation", num_nodes * 8, "_nodes", true);
1094
1095 let mut graph = crate::base::Graph::new();
1096 let mut rng = scirs2_core::random::rng();
1097
1098 const NODE_BATCH_SIZE: usize = 25_000;
1100 for batch_start in (0..num_nodes).step_by(NODE_BATCH_SIZE) {
1101 let batch_end = (batch_start + NODE_BATCH_SIZE).min(num_nodes);
1102
1103 profiler.record_allocation(
1105 "graph_generation",
1106 (batch_end - batch_start) * std::mem::size_of::<usize>(),
1107 "node_batch",
1108 true,
1109 );
1110
1111 for i in batch_start..batch_end {
1112 graph.add_node(i);
1113 }
1114
1115 if batch_start % (NODE_BATCH_SIZE * 10) == 0 {
1116 println!(
1117 " š Added {} nodes, current memory usage estimate: {:.1} MB",
1118 batch_end,
1119 (batch_end * 16) as f64 / 1_000_000.0
1120 );
1121 }
1122 }
1123
1124 let target_edges = match graph_type {
1126 "sparse" => num_nodes * 2,
1127 "medium" => num_nodes * 4,
1128 "dense" => num_nodes * 8,
1129 "scale_free" => (num_nodes as f64 * 2.5) as usize,
1130 _ => num_nodes * 3, };
1132
1133 profiler.record_allocation("graph_generation", target_edges * 24, "edges", true);
1134
1135 let mut edges_added = 0;
1136 while edges_added < target_edges && edges_added < num_nodes * 10 {
1137 let source = rng.gen_range(0..num_nodes);
1139 let target = rng.gen_range(0..num_nodes);
1140
1141 if source != target {
1142 let weight: f64 = rng.random();
1143 if graph.add_edge(source, target, weight).is_ok() {
1144 edges_added += 1;
1145
1146 if edges_added % 100_000 == 0 {
1147 println!(" š Added {edges_added} edges");
1148 }
1149 }
1150 }
1151 }
1152
1153 let generation_time = generation_start.elapsed();
1154 println!(
1155 "ā
Graph generation completed in {:?}: {} nodes, {} edges",
1156 generation_time,
1157 graph.node_count(),
1158 graph.edge_count()
1159 );
1160
1161 Ok(graph)
1162}
1163
1164#[allow(dead_code)]
1166pub fn run_memory_stress_tests() -> Result<Vec<MemoryUsageReport>> {
1167 println!("š§ Starting comprehensive memory stress tests...");
1168 println!("================================================");
1169
1170 let mut reports = Vec::new();
1171 let mut profiler = create_extreme_stress_memory_profiler();
1172
1173 println!("\nš Test 1: Small Graph Baseline (100K nodes)");
1175 match generate_profiled_large_graph(&mut profiler, 100_000, "medium") {
1176 Ok(small_graph) => {
1177 let mut processor = crate::advanced::create_large_graph_advanced_processor();
1178
1179 let (report, duration) = profile_comprehensive_stress_test(
1180 &mut profiler,
1181 &mut processor,
1182 "small_graph_baseline",
1183 |proc| {
1184 let _result =
1186 crate::advanced::execute_with_enhanced_advanced(&small_graph, |g| {
1187 use crate::algorithms::connectivity::connected_components;
1188 Ok(connected_components(g))
1189 });
1190 Ok("Small graph baseline completed".to_string())
1191 },
1192 )?;
1193
1194 println!(" ā±ļø Test completed in {duration:?}");
1195 reports.push(report);
1196 }
1197 Err(e) => println!(" ā Failed to create small graph: {e}"),
1198 }
1199
1200 println!("\nš Test 2: Medium Graph Stress Test (500K nodes)");
1202 match generate_profiled_large_graph(&mut profiler, 500_000, "sparse") {
1203 Ok(medium_graph) => {
1204 let mut processor = crate::advanced::create_large_graph_advanced_processor();
1205
1206 let (report, duration) = profile_comprehensive_stress_test(
1207 &mut profiler,
1208 &mut processor,
1209 "medium_graph_stress",
1210 |proc| {
1211 let _cc_result =
1213 crate::advanced::execute_with_enhanced_advanced(&medium_graph, |g| {
1214 use crate::algorithms::connectivity::connected_components;
1215 Ok(connected_components(g))
1216 });
1217
1218 let _pr_result =
1219 crate::advanced::execute_with_enhanced_advanced(&medium_graph, |g| {
1220 use crate::measures::pagerank_centrality;
1221 pagerank_centrality(g, 0.85, 1e-3)
1222 });
1223
1224 Ok("Medium graph stress test completed".to_string())
1225 },
1226 )?;
1227
1228 println!(" ā±ļø Test completed in {duration:?}");
1229 reports.push(report);
1230 }
1231 Err(e) => println!(" ā Failed to create medium graph: {e}"),
1232 }
1233
1234 println!("\nš Test 3: Large Graph Extreme Test (1M nodes)");
1236 match generate_profiled_large_graph(&mut profiler, 1_000_000, "sparse") {
1237 Ok(large_graph) => {
1238 let mut processor = crate::advanced::create_large_graph_advanced_processor();
1239
1240 let (report, duration) = profile_comprehensive_stress_test(
1241 &mut profiler,
1242 &mut processor,
1243 "large_graph_extreme",
1244 |proc| {
1245 let _result =
1247 crate::advanced::execute_with_enhanced_advanced(&large_graph, |g| {
1248 let nodes: Vec<_> = g.nodes().into_iter().collect();
1250 let edges: Vec<_> = g
1251 .edges()
1252 .into_iter()
1253 .map(|e| (e.source, e.target, e.weight))
1254 .collect();
1255 let _memory_intensive: Vec<f64> = edges
1256 .iter()
1257 .flat_map(|(s, t, w)| vec![*s as f64, *t as f64, *w])
1258 .collect();
1259
1260 Ok(nodes.len() + edges.len())
1261 });
1262
1263 Ok("Large graph extreme test completed".to_string())
1264 },
1265 )?;
1266
1267 println!(" ā±ļø Test completed in {duration:?}");
1268 reports.push(report);
1269 }
1270 Err(e) => println!(" ā Failed to create large graph: {e}"),
1271 }
1272
1273 println!("\nš Memory Stress Test Summary");
1275 println!("=============================");
1276 for (i, report) in reports.iter().enumerate() {
1277 println!(
1278 "Test {}: Peak Memory: {:.1} MB, Efficiency: {:.1}%, Optimizations: {}",
1279 i + 1,
1280 report.overall_stats.peak_usage as f64 / 1_000_000.0,
1281 report.efficiency_analysis.overall_efficiency * 100.0,
1282 report.optimization_opportunities.len()
1283 );
1284 }
1285
1286 Ok(reports)
1287}
1288
1289#[cfg(test)]
1290mod tests {
1291 use super::*;
1292
1293 #[test]
1294 fn test_memory_profiler_creation() {
1295 let profiler = create_memory_profiler();
1296 assert_eq!(profiler.profile.overall_stats.current_usage, 0);
1297 assert_eq!(profiler.profile.overall_stats.allocation_count, 0);
1298 }
1299
1300 #[test]
1301 fn test_allocation_recording() {
1302 let mut profiler = create_memory_profiler();
1303
1304 profiler.record_allocation("test_component", 1024, "workspace", false);
1305
1306 assert_eq!(profiler.profile.overall_stats.current_usage, 1024);
1307 assert_eq!(profiler.profile.overall_stats.allocation_count, 1);
1308 assert_eq!(profiler.profile.allocation_patterns.len(), 1);
1309 }
1310
1311 #[test]
1312 fn test_deallocation_recording() {
1313 let mut profiler = create_memory_profiler();
1314
1315 profiler.record_allocation("test_component", 1024, "workspace", false);
1316 profiler.record_deallocation("test_component", 1024, "workspace");
1317
1318 assert_eq!(profiler.profile.overall_stats.current_usage, 0);
1319 assert_eq!(profiler.profile.overall_stats.deallocation_count, 1);
1320 }
1321
1322 #[test]
1323 fn test_memory_pattern_analysis() {
1324 let mut profiler = create_memory_profiler();
1325
1326 for _i in 0..15 {
1328 profiler.record_allocation("test_component", 1024, "frequent_pattern", false);
1329 }
1330
1331 profiler.analyze_memory_patterns();
1332
1333 let has_pooling_opportunity = profiler
1335 .profile
1336 .optimization_opportunities
1337 .iter()
1338 .any(|op| op.optimization_type == OptimizationType::MemoryPooling);
1339
1340 assert!(has_pooling_opportunity);
1341 }
1342
1343 #[test]
1344 fn test_efficiency_calculation() {
1345 let mut profiler = create_memory_profiler();
1346
1347 profiler.record_allocation("component1", 2048, "data", false);
1349 profiler.record_allocation("component2", 1024, "cache", true);
1350 profiler.record_deallocation("component1", 2048, "data");
1351
1352 profiler.calculate_efficiency_metrics();
1353
1354 assert!(profiler.profile.efficiency_analysis.overall_efficiency > 0.0);
1355 assert!(profiler.profile.efficiency_analysis.overall_efficiency <= 1.0);
1356 }
1357
1358 #[test]
1359 fn test_memory_report_generation() {
1360 let mut profiler = create_memory_profiler();
1361
1362 profiler.record_allocation("test", 1024, "data", false);
1364 profiler.analyze_memory_patterns();
1365
1366 let report = profiler.generate_memory_report();
1367
1368 assert!(report.profile_duration >= Duration::ZERO);
1369 assert_eq!(report.overall_stats.allocation_count, 1);
1370
1371 let summary = report.generate_summary();
1372 assert!(summary.contains("Memory Usage Report Summary"));
1373 }
1374
1375 #[test]
1376 fn test_large_graph_profiler() {
1377 let profiler = create_large_graph_memory_profiler();
1378
1379 assert_eq!(profiler.config.max_history_entries, 50000);
1380 assert_eq!(profiler.config.sampling_interval, Duration::from_millis(50));
1381 }
1382}