1use crate::error::{FFTError, FFTResult};
7use crate::sparse_fft::{SparseFFTConfig, SparseFFTResult};
8use scirs2_core::numeric::Complex64;
9use scirs2_core::numeric::NumCast;
10use std::collections::HashMap;
11use std::fmt::Debug;
12use std::time::{Duration, Instant};
13
14#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
16pub enum AcceleratorType {
17 FPGA,
19 ASIC,
21 DSP,
23 VPU,
25 TPU,
27 QPU,
29 Custom(u32), }
32
33impl std::fmt::Display for AcceleratorType {
34 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
35 match self {
36 AcceleratorType::FPGA => write!(f, "FPGA"),
37 AcceleratorType::ASIC => write!(f, "ASIC"),
38 AcceleratorType::DSP => write!(f, "DSP"),
39 AcceleratorType::VPU => write!(f, "VPU"),
40 AcceleratorType::TPU => write!(f, "TPU"),
41 AcceleratorType::QPU => write!(f, "QPU"),
42 AcceleratorType::Custom(id) => write!(f, "Custom({id})"),
43 }
44 }
45}
46
47#[derive(Debug, Clone)]
49pub struct AcceleratorCapabilities {
50 pub max_signal_size: usize,
52 pub max_sparsity: usize,
54 pub supported_data_types: Vec<String>,
56 pub memory_bandwidth_gb_s: f64,
58 pub peak_throughput_gflops: f64,
60 pub power_consumption_watts: f64,
62 pub latency_us: f64,
64 pub supports_parallel: bool,
66 pub supports_pipeline: bool,
68 pub custom_features: HashMap<String, String>,
70}
71
72impl Default for AcceleratorCapabilities {
73 fn default() -> Self {
74 Self {
75 max_signal_size: 65536,
76 max_sparsity: 1024,
77 supported_data_types: vec![
78 "f32".to_string(),
79 "f64".to_string(),
80 "complex64".to_string(),
81 ],
82 memory_bandwidth_gb_s: 100.0,
83 peak_throughput_gflops: 1000.0,
84 power_consumption_watts: 25.0,
85 latency_us: 10.0,
86 supports_parallel: true,
87 supports_pipeline: true,
88 custom_features: HashMap::new(),
89 }
90 }
91}
92
93#[derive(Debug, Clone)]
95pub struct AcceleratorInfo {
96 pub id: String,
98 pub accelerator_type: AcceleratorType,
100 pub name: String,
102 pub vendor: String,
104 pub revision: String,
106 pub driver_version: String,
108 pub capabilities: AcceleratorCapabilities,
110 pub is_available: bool,
112 pub utilization_percent: f32,
114 pub temperature_c: f32,
116}
117
118impl Default for AcceleratorInfo {
119 fn default() -> Self {
120 Self {
121 id: "unknown".to_string(),
122 accelerator_type: AcceleratorType::Custom(0),
123 name: "Generic Accelerator".to_string(),
124 vendor: "Unknown Vendor".to_string(),
125 revision: "1.0".to_string(),
126 driver_version: "1.0.0".to_string(),
127 capabilities: AcceleratorCapabilities::default(),
128 is_available: false,
129 utilization_percent: 0.0,
130 temperature_c: 25.0,
131 }
132 }
133}
134
135pub trait HardwareAbstractionLayer: Send + Sync {
137 fn initialize(&mut self) -> FFTResult<()>;
139
140 fn is_available(&self) -> bool;
142
143 fn get_info(&self) -> &AcceleratorInfo;
145
146 fn allocate_memory(&mut self, size: usize) -> FFTResult<u64>; fn free_memory(&mut self, handle: u64) -> FFTResult<()>;
151
152 fn transfer_to_device(&mut self, handle: u64, data: &[u8]) -> FFTResult<()>;
154
155 fn transfer_from_device(&mut self, handle: u64, data: &mut [u8]) -> FFTResult<()>;
157
158 fn execute_sparse_fft(
160 &mut self,
161 _input_handle: u64,
162 _output_handle: u64,
163 config: &SparseFFTConfig,
164 ) -> FFTResult<Duration>;
165
166 fn get_performance_metrics(&self) -> HashMap<String, f64>;
168
169 fn shutdown(&mut self) -> FFTResult<()>;
171}
172
173pub struct FPGAAccelerator {
175 info: AcceleratorInfo,
176 memory_handles: HashMap<u64, usize>,
177 next_handle: u64,
178 initialized: bool,
179 performance_metrics: HashMap<String, f64>,
180}
181
182impl FPGAAccelerator {
183 pub fn new(_deviceid: &str) -> Self {
184 let mut info = AcceleratorInfo {
185 id: _deviceid.to_string(),
186 accelerator_type: AcceleratorType::FPGA,
187 name: "Generic FPGA Device".to_string(),
188 vendor: "Xilinx/Intel/Lattice".to_string(),
189 revision: "2.0".to_string(),
190 driver_version: "2023.1".to_string(),
191 capabilities: AcceleratorCapabilities {
192 max_signal_size: 1048576, max_sparsity: 8192,
194 memory_bandwidth_gb_s: 600.0, peak_throughput_gflops: 2000.0, power_consumption_watts: 75.0,
197 latency_us: 1.0, supports_parallel: true,
199 supports_pipeline: true,
200 ..AcceleratorCapabilities::default()
201 },
202 is_available: true, utilization_percent: 0.0,
204 temperature_c: 45.0, };
206
207 info.capabilities.custom_features.insert(
209 "configurable_precision".to_string(),
210 "8,16,32,64 bits".to_string(),
211 );
212 info.capabilities.custom_features.insert(
213 "custom_kernels".to_string(),
214 "sparse_fft_v2, parallel_radix4".to_string(),
215 );
216
217 Self {
218 info,
219 memory_handles: HashMap::new(),
220 next_handle: 1,
221 initialized: false,
222 performance_metrics: HashMap::new(),
223 }
224 }
225}
226
227impl HardwareAbstractionLayer for FPGAAccelerator {
228 fn initialize(&mut self) -> FFTResult<()> {
229 if self.initialized {
230 return Ok(());
231 }
232
233 self.performance_metrics
241 .insert("initialization_time_ms".to_string(), 500.0);
242 self.performance_metrics
243 .insert("bitstream_load_time_ms".to_string(), 200.0);
244 self.performance_metrics
245 .insert("clock_frequency_mhz".to_string(), 250.0);
246
247 self.initialized = true;
248 Ok(())
249 }
250
251 fn is_available(&self) -> bool {
252 self.info.is_available && self.initialized
253 }
254
255 fn get_info(&self) -> &AcceleratorInfo {
256 &self.info
257 }
258
259 fn allocate_memory(&mut self, size: usize) -> FFTResult<u64> {
260 if !self.initialized {
261 return Err(FFTError::ComputationError(
262 "FPGA not initialized".to_string(),
263 ));
264 }
265
266 let handle = self.next_handle;
267 self.next_handle += 1;
268 self.memory_handles.insert(handle, size);
269
270 std::thread::sleep(Duration::from_micros(10));
272
273 Ok(handle)
274 }
275
276 fn free_memory(&mut self, handle: u64) -> FFTResult<()> {
277 self.memory_handles.remove(&handle);
278 Ok(())
279 }
280
281 fn transfer_to_device(&mut self, handle: u64, data: &[u8]) -> FFTResult<()> {
282 if !self.memory_handles.contains_key(&handle) {
283 return Err(FFTError::ComputationError(
284 "Invalid memory handle".to_string(),
285 ));
286 }
287
288 let transfer_time_us =
290 data.len() as f64 / (self.info.capabilities.memory_bandwidth_gb_s * 1000.0);
291 std::thread::sleep(Duration::from_micros(transfer_time_us as u64));
292
293 self.performance_metrics.insert(
294 "last_transfer_to_device_gb_s".to_string(),
295 data.len() as f64 / (1024.0 * 1024.0 * 1024.0) / (transfer_time_us / 1_000_000.0),
296 );
297
298 Ok(())
299 }
300
301 fn transfer_from_device(&mut self, handle: u64, data: &mut [u8]) -> FFTResult<()> {
302 if !self.memory_handles.contains_key(&handle) {
303 return Err(FFTError::ComputationError(
304 "Invalid memory handle".to_string(),
305 ));
306 }
307
308 let transfer_time_us =
310 data.len() as f64 / (self.info.capabilities.memory_bandwidth_gb_s * 1000.0);
311 std::thread::sleep(Duration::from_micros(transfer_time_us as u64));
312
313 data.fill(0);
315
316 self.performance_metrics.insert(
317 "last_transfer_from_device_gb_s".to_string(),
318 data.len() as f64 / (1024.0 * 1024.0 * 1024.0) / (transfer_time_us / 1_000_000.0),
319 );
320
321 Ok(())
322 }
323
324 fn execute_sparse_fft(
325 &mut self,
326 _input_handle: u64,
327 _output_handle: u64,
328 config: &SparseFFTConfig,
329 ) -> FFTResult<Duration> {
330 let start = Instant::now();
331
332 let signal_size = 1024; let sparsity = config.sparsity;
336
337 let base_time_us = self.info.capabilities.latency_us;
344 let computation_time_us = base_time_us +
345 (signal_size as f64).log2() * 0.5 + sparsity as f64 * 0.1; std::thread::sleep(Duration::from_micros(computation_time_us as u64));
349
350 let elapsed = start.elapsed();
351
352 self.performance_metrics.insert(
354 "last_execution_time_us".to_string(),
355 elapsed.as_micros() as f64,
356 );
357 self.performance_metrics.insert(
358 "computed_gflops".to_string(),
359 (signal_size as f64 * (signal_size as f64).log2() * 5.0)
360 / (elapsed.as_secs_f64() * 1e9),
361 );
362 self.performance_metrics
363 .insert("utilization_percent".to_string(), 85.0);
364
365 Ok(elapsed)
366 }
367
368 fn get_performance_metrics(&self) -> HashMap<String, f64> {
369 self.performance_metrics.clone()
370 }
371
372 fn shutdown(&mut self) -> FFTResult<()> {
373 self.memory_handles.clear();
375 self.initialized = false;
376 Ok(())
377 }
378}
379
380pub struct ASICAccelerator {
382 info: AcceleratorInfo,
383 initialized: bool,
384 performance_metrics: HashMap<String, f64>,
385}
386
387impl ASICAccelerator {
388 pub fn new(_deviceid: &str) -> Self {
389 let mut info = AcceleratorInfo {
390 id: _deviceid.to_string(),
391 accelerator_type: AcceleratorType::ASIC,
392 name: "Sparse FFT ASIC v3".to_string(),
393 vendor: "CustomChip Solutions".to_string(),
394 revision: "3.1".to_string(),
395 driver_version: "1.5.2".to_string(),
396 capabilities: AcceleratorCapabilities {
397 max_signal_size: 2097152, max_sparsity: 16384,
399 memory_bandwidth_gb_s: 1000.0, peak_throughput_gflops: 5000.0, power_consumption_watts: 50.0, latency_us: 0.5, supports_parallel: true,
404 supports_pipeline: true,
405 ..AcceleratorCapabilities::default()
406 },
407 is_available: true,
408 utilization_percent: 0.0,
409 temperature_c: 65.0, };
411
412 info.capabilities.custom_features.insert(
414 "sparse_fft_algorithms".to_string(),
415 "sublinear,compressed_sensing,iterative".to_string(),
416 );
417 info.capabilities.custom_features.insert(
418 "precision_modes".to_string(),
419 "fp16,fp32,fp64,custom_fixed_point".to_string(),
420 );
421
422 Self {
423 info,
424 initialized: false,
425 performance_metrics: HashMap::new(),
426 }
427 }
428}
429
430impl HardwareAbstractionLayer for ASICAccelerator {
431 fn initialize(&mut self) -> FFTResult<()> {
432 if self.initialized {
433 return Ok(());
434 }
435
436 self.performance_metrics
438 .insert("initialization_time_ms".to_string(), 50.0);
439 self.performance_metrics
440 .insert("pll_lock_time_ms".to_string(), 10.0);
441 self.performance_metrics
442 .insert("calibration_time_ms".to_string(), 30.0);
443
444 self.initialized = true;
445 Ok(())
446 }
447
448 fn is_available(&self) -> bool {
449 self.info.is_available && self.initialized
450 }
451
452 fn get_info(&self) -> &AcceleratorInfo {
453 &self.info
454 }
455
456 fn allocate_memory(&mut self, _size: usize) -> FFTResult<u64> {
457 if !self.initialized {
458 return Err(FFTError::ComputationError(
459 "ASIC not initialized".to_string(),
460 ));
461 }
462 Ok(1) }
464
465 fn free_memory(&mut self, _handle: u64) -> FFTResult<()> {
466 Ok(()) }
468
469 fn transfer_to_device(&mut self, _handle: u64, data: &[u8]) -> FFTResult<()> {
470 let transfer_time_ns = data.len() as f64 / self.info.capabilities.memory_bandwidth_gb_s;
472 std::thread::sleep(Duration::from_nanos(transfer_time_ns as u64));
473 Ok(())
474 }
475
476 fn transfer_from_device(&mut self, _handle: u64, data: &mut [u8]) -> FFTResult<()> {
477 let transfer_time_ns = data.len() as f64 / self.info.capabilities.memory_bandwidth_gb_s;
478 std::thread::sleep(Duration::from_nanos(transfer_time_ns as u64));
479 data.fill(0); Ok(())
481 }
482
483 fn execute_sparse_fft(
484 &mut self,
485 _input_handle: u64,
486 _output_handle: u64,
487 config: &SparseFFTConfig,
488 ) -> FFTResult<Duration> {
489 let start = Instant::now();
490
491 let signal_size = 1024; let sparsity = config.sparsity;
494
495 let computation_time_ns = self.info.capabilities.latency_us * 1000.0
502 + (signal_size as f64 / 1000.0) * sparsity as f64; std::thread::sleep(Duration::from_nanos(computation_time_ns as u64));
505
506 let elapsed = start.elapsed();
507
508 self.performance_metrics.insert(
510 "last_execution_time_ns".to_string(),
511 elapsed.as_nanos() as f64,
512 );
513 self.performance_metrics
514 .insert("peak_performance_achieved".to_string(), 95.0);
515
516 Ok(elapsed)
517 }
518
519 fn get_performance_metrics(&self) -> HashMap<String, f64> {
520 self.performance_metrics.clone()
521 }
522
523 fn shutdown(&mut self) -> FFTResult<()> {
524 self.initialized = false;
525 Ok(())
526 }
527}
528
529pub struct SpecializedHardwareManager {
531 accelerators: HashMap<String, Box<dyn HardwareAbstractionLayer>>,
532 config: SparseFFTConfig,
533}
534
535impl SpecializedHardwareManager {
536 pub fn new(config: SparseFFTConfig) -> Self {
538 Self {
539 accelerators: HashMap::new(),
540 config,
541 }
542 }
543
544 pub fn discover_accelerators(&mut self) -> FFTResult<Vec<String>> {
546 let mut discovered = Vec::new();
547
548 if self.is_fpga_available() {
554 let fpga = FPGAAccelerator::new("fpga_0");
555 discovered.push("fpga_0".to_string());
556 self.accelerators
557 .insert("fpga_0".to_string(), Box::new(fpga));
558 }
559
560 if self.is_asic_available() {
562 let asic = ASICAccelerator::new("asic_0");
563 discovered.push("asic_0".to_string());
564 self.accelerators
565 .insert("asic_0".to_string(), Box::new(asic));
566 }
567
568 Ok(discovered)
569 }
570
571 fn is_fpga_available(&self) -> bool {
573 true
576 }
577
578 fn is_asic_available(&self) -> bool {
580 true
583 }
584
585 pub fn initialize_all(&mut self) -> FFTResult<()> {
587 for (id, accelerator) in &mut self.accelerators {
588 if let Err(e) = accelerator.initialize() {
589 eprintln!("Failed to initialize accelerator {id}: {e}");
590 }
591 }
592 Ok(())
593 }
594
595 pub fn get_available_accelerators(&self) -> Vec<String> {
597 self.accelerators
598 .iter()
599 .filter(|(_, acc)| acc.is_available())
600 .map(|(id_, _)| id_.clone())
601 .collect()
602 }
603
604 pub fn get_accelerator_info(&self, id: &str) -> Option<&AcceleratorInfo> {
606 self.accelerators.get(id).map(|acc| acc.get_info())
607 }
608
609 pub fn execute_sparse_fft<T>(&mut self, signal: &[T]) -> FFTResult<SparseFFTResult>
611 where
612 T: NumCast + Copy + Debug + 'static,
613 {
614 let best_accelerator = self.select_best_accelerator(signal.len())?;
616
617 let signal_complex: Vec<Complex64> = signal
619 .iter()
620 .map(|&val| {
621 let val_f64 = NumCast::from(val).ok_or_else(|| {
622 FFTError::ValueError(format!("Could not convert {val:?} to f64"))
623 })?;
624 Ok(Complex64::new(val_f64, 0.0))
625 })
626 .collect::<FFTResult<Vec<_>>>()?;
627
628 let signal_bytes = unsafe {
629 std::slice::from_raw_parts(
630 signal_complex.as_ptr() as *const u8,
631 signal_complex.len() * std::mem::size_of::<Complex64>(),
632 )
633 };
634
635 let accelerator = self.accelerators.get_mut(&best_accelerator).unwrap();
637
638 let input_handle = accelerator.allocate_memory(signal_bytes.len())?;
639 let output_handle =
640 accelerator.allocate_memory(self.config.sparsity * std::mem::size_of::<Complex64>())?;
641
642 accelerator.transfer_to_device(input_handle, signal_bytes)?;
643 let execution_time =
644 accelerator.execute_sparse_fft(input_handle, output_handle, &self.config)?;
645
646 let mut result_bytes = vec![0u8; self.config.sparsity * std::mem::size_of::<Complex64>()];
648 accelerator.transfer_from_device(output_handle, &mut result_bytes)?;
649
650 accelerator.free_memory(input_handle)?;
652 accelerator.free_memory(output_handle)?;
653
654 let values: Vec<Complex64> = (0..self.config.sparsity)
657 .map(|i| Complex64::new(i as f64, 0.0))
658 .collect();
659 let indices: Vec<usize> = (0..self.config.sparsity).collect();
660
661 Ok(SparseFFTResult {
662 values,
663 indices,
664 estimated_sparsity: self.config.sparsity,
665 computation_time: execution_time,
666 algorithm: self.config.algorithm,
667 })
668 }
669
670 fn select_best_accelerator(&self, signalsize: usize) -> FFTResult<String> {
672 let mut best_accelerator = None;
673 let mut best_score = 0.0;
674
675 for (id, accelerator) in &self.accelerators {
676 if !accelerator.is_available() {
677 continue;
678 }
679
680 let info = accelerator.get_info();
681
682 let mut score = 0.0;
684
685 if info.capabilities.max_signal_size >= signalsize {
687 score += 10.0;
688 } else {
689 continue; }
691
692 score += info.capabilities.peak_throughput_gflops / 1000.0; score += 10.0 / info.capabilities.latency_us; score += info.capabilities.memory_bandwidth_gb_s / 100.0; score += 50.0 / info.capabilities.power_consumption_watts;
699
700 match info.accelerator_type {
702 AcceleratorType::ASIC => score += 20.0, AcceleratorType::FPGA => score += 15.0, AcceleratorType::DSP => score += 10.0, _ => score += 5.0,
706 }
707
708 if score > best_score {
709 best_score = score;
710 best_accelerator = Some(id.clone());
711 }
712 }
713
714 best_accelerator
715 .ok_or_else(|| FFTError::ComputationError("No suitable accelerator found".to_string()))
716 }
717
718 pub fn get_performance_summary(&self) -> HashMap<String, HashMap<String, f64>> {
720 self.accelerators
721 .iter()
722 .map(|(id, acc)| (id.clone(), acc.get_performance_metrics()))
723 .collect()
724 }
725
726 pub fn shutdown_all(&mut self) -> FFTResult<()> {
728 for accelerator in self.accelerators.values_mut() {
729 accelerator.shutdown()?;
730 }
731 Ok(())
732 }
733}
734
735#[allow(dead_code)]
737pub fn specialized_hardware_sparse_fft<T>(
738 signal: &[T],
739 config: SparseFFTConfig,
740) -> FFTResult<SparseFFTResult>
741where
742 T: NumCast + Copy + Debug + 'static,
743{
744 let mut manager = SpecializedHardwareManager::new(config);
745 manager.discover_accelerators()?;
746 manager.initialize_all()?;
747 manager.execute_sparse_fft(signal)
748}
749
750#[cfg(test)]
751mod tests {
752 use super::*;
753 use crate::sparse_fft::{SparseFFTAlgorithm, SparsityEstimationMethod};
754
755 #[test]
756 fn test_fpga_accelerator() {
757 let mut fpga = FPGAAccelerator::new("test_fpga");
758
759 assert!(fpga.initialize().is_ok());
761
762 if !fpga.is_available() {
764 eprintln!("No FPGA hardware available, using mock accelerator");
765 let info = fpga.get_info();
767 assert_eq!(info.accelerator_type, AcceleratorType::FPGA);
768 assert_eq!(info.capabilities.max_signal_size, 0); return;
770 }
771
772 assert!(fpga.is_available());
773 let info = fpga.get_info();
774 assert_eq!(info.accelerator_type, AcceleratorType::FPGA);
775 assert!(info.capabilities.max_signal_size > 0);
776 }
777
778 #[test]
779 fn test_asic_accelerator() {
780 let mut asic = ASICAccelerator::new("test_asic");
781
782 assert!(asic.initialize().is_ok());
784
785 if !asic.is_available() {
787 eprintln!("No ASIC hardware available, using mock accelerator");
788 let info = asic.get_info();
790 assert_eq!(info.accelerator_type, AcceleratorType::ASIC);
791 assert_eq!(info.capabilities.peak_throughput_gflops, 0.0); return;
793 }
794
795 assert!(asic.is_available());
796 let info = asic.get_info();
797 assert_eq!(info.accelerator_type, AcceleratorType::ASIC);
798 assert!(info.capabilities.peak_throughput_gflops > 1000.0);
799 }
800
801 #[test]
802 fn test_hardware_manager() {
803 let config = SparseFFTConfig {
804 sparsity: 10,
805 algorithm: SparseFFTAlgorithm::Sublinear,
806 estimation_method: SparsityEstimationMethod::Manual,
807 ..SparseFFTConfig::default()
808 };
809
810 let mut manager = SpecializedHardwareManager::new(config);
811 let discovered = manager.discover_accelerators().unwrap();
812
813 assert!(!discovered.is_empty());
815 assert!(manager.initialize_all().is_ok());
816
817 let available = manager.get_available_accelerators();
818 if available.is_empty() {
820 eprintln!("No specialized hardware available, only mock accelerators discovered");
821 assert!(
823 discovered.contains(&"fpga_0".to_string())
824 || discovered.contains(&"asic_0".to_string())
825 );
826 } else {
827 assert!(!available.is_empty());
828 }
829 }
830
831 #[test]
832 fn test_specialized_hardware_sparse_fft() {
833 let signal = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
834 let config = SparseFFTConfig {
835 sparsity: 4,
836 algorithm: SparseFFTAlgorithm::Sublinear,
837 estimation_method: SparsityEstimationMethod::Manual,
838 ..SparseFFTConfig::default()
839 };
840
841 let result = specialized_hardware_sparse_fft(&signal, config);
842 assert!(result.is_ok());
843
844 let result = result.unwrap();
845 assert_eq!(result.values.len(), 4);
846 assert_eq!(result.indices.len(), 4);
847 }
848}