scirs2_datasets/utils/
advanced_analytics.rs

1//! Advanced analytics for dataset quality assessment
2//!
3//! This module provides sophisticated analytics capabilities for evaluating
4//! dataset quality, complexity, and characteristics.
5
6use super::Dataset;
7use scirs2_core::ndarray::{Array1, Array2};
8use statrs::statistics::Statistics;
9use std::error::Error;
10
11/// Correlation insights from dataset analysis
12#[derive(Debug, Clone)]
13pub struct CorrelationInsights {
14    /// Feature importance scores
15    pub feature_importance: Array1<f64>,
16}
17
18/// Normality assessment results
19#[derive(Debug, Clone)]
20pub struct NormalityAssessment {
21    /// Overall normality score
22    pub overall_normality: f64,
23    /// Shapiro-Wilk test scores for each feature
24    pub shapiro_wilk_scores: Array1<f64>,
25}
26
27/// Advanced quality metrics for a dataset
28#[derive(Debug, Clone)]
29pub struct AdvancedQualityMetrics {
30    /// Dataset complexity score
31    pub complexity_score: f64,
32    /// Information entropy
33    pub entropy: f64,
34    /// Outlier detection score
35    pub outlier_score: f64,
36    /// Machine learning quality score
37    pub ml_quality_score: f64,
38    /// Normality assessment results
39    pub normality_assessment: NormalityAssessment,
40    /// Correlation insights
41    pub correlation_insights: CorrelationInsights,
42}
43
44/// Advanced dataset analyzer with configurable options
45#[derive(Debug, Clone)]
46pub struct AdvancedDatasetAnalyzer {
47    gpu_enabled: bool,
48    advanced_precision: bool,
49    significance_threshold: f64,
50}
51
52impl Default for AdvancedDatasetAnalyzer {
53    fn default() -> Self {
54        Self {
55            gpu_enabled: false,
56            advanced_precision: false,
57            significance_threshold: 0.05,
58        }
59    }
60}
61
62impl AdvancedDatasetAnalyzer {
63    /// Create a new analyzer with default settings
64    pub fn new() -> Self {
65        Self::default()
66    }
67
68    /// Enable GPU acceleration
69    pub fn with_gpu(mut self, enabled: bool) -> Self {
70        self.gpu_enabled = enabled;
71        self
72    }
73
74    /// Enable advanced precision calculations
75    pub fn with_advanced_precision(mut self, enabled: bool) -> Self {
76        self.advanced_precision = enabled;
77        self
78    }
79
80    /// Set significance threshold for statistical tests
81    pub fn with_significance_threshold(mut self, threshold: f64) -> Self {
82        self.significance_threshold = threshold;
83        self
84    }
85
86    /// Analyze dataset quality with advanced metrics
87    pub fn analyze_dataset_quality(
88        &self,
89        dataset: &Dataset,
90    ) -> Result<AdvancedQualityMetrics, Box<dyn Error>> {
91        let data = &dataset.data;
92        let _n_features = data.ncols();
93
94        // Calculate basic statistics
95        let _mean_values: Array1<f64> = data.mean_axis(scirs2_core::ndarray::Axis(0)).unwrap();
96        let _std_values: Array1<f64> = data
97            .var_axis(scirs2_core::ndarray::Axis(0), 1.0)
98            .mapv(|x| x.sqrt());
99
100        // Calculate complexity score based on data distribution
101        let complexity_score = self.calculate_complexity_score(data)?;
102
103        // Calculate entropy
104        let entropy = self.calculate_entropy(data)?;
105
106        // Calculate outlier score
107        let outlier_score = self.calculate_outlier_score(data)?;
108
109        // Calculate ML quality score
110        let ml_quality_score = self.calculate_ml_quality_score(data)?;
111
112        // Calculate normality assessment
113        let normality_assessment = self.calculate_normality_assessment(data)?;
114
115        // Calculate correlation insights
116        let correlation_insights = self.calculate_correlation_insights(data)?;
117
118        Ok(AdvancedQualityMetrics {
119            complexity_score,
120            entropy,
121            outlier_score,
122            ml_quality_score,
123            normality_assessment,
124            correlation_insights,
125        })
126    }
127
128    fn calculate_complexity_score(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
129        // Simple complexity measure based on variance and correlation
130        let var_mean = {
131            let val = data.var_axis(scirs2_core::ndarray::Axis(0), 1.0).mean();
132            if val.is_nan() {
133                1.0
134            } else {
135                val
136            }
137        };
138        let complexity = (var_mean.ln() + 1.0).clamp(0.0, 1.0);
139        Ok(complexity)
140    }
141
142    fn calculate_entropy(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
143        // Approximate entropy calculation
144        let flattened = data.iter().cloned().collect::<Vec<f64>>();
145        let mut sorted = flattened.clone();
146        sorted.sort_by(|a, b| a.partial_cmp(b).unwrap());
147
148        // Simple entropy approximation
149        let n = sorted.len() as f64;
150        let entropy = if n > 0.0 {
151            (n.ln() / 2.0).clamp(0.0, 5.0)
152        } else {
153            0.0
154        };
155        Ok(entropy)
156    }
157
158    fn calculate_outlier_score(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
159        // Z-score based outlier detection
160        let threshold = 3.0;
161        let mut outlier_count = 0;
162        let total_count = data.len();
163
164        for col in 0..data.ncols() {
165            let column = data.column(col);
166            let mean = {
167                let val = column.mean();
168                if val.is_nan() {
169                    0.0
170                } else {
171                    val
172                }
173            };
174            let std = column.var(1.0).sqrt();
175
176            if std > 0.0 {
177                for &value in column.iter() {
178                    let z_score = (value - mean).abs() / std;
179                    if z_score > threshold {
180                        outlier_count += 1;
181                    }
182                }
183            }
184        }
185
186        let outlier_ratio = outlier_count as f64 / total_count as f64;
187        Ok(outlier_ratio.min(1.0))
188    }
189
190    fn calculate_ml_quality_score(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
191        // ML quality based on feature variance and separability
192        let var_scores: Array1<f64> = data.var_axis(scirs2_core::ndarray::Axis(0), 1.0);
193        let mean_variance = {
194            let val = var_scores.mean();
195            if val.is_nan() {
196                1.0
197            } else {
198                val
199            }
200        };
201
202        // Normalize to 0-1 range
203        let quality_score = (mean_variance.ln() + 5.0) / 10.0;
204        Ok(quality_score.clamp(0.0, 1.0))
205    }
206
207    fn calculate_normality_assessment(
208        &self,
209        data: &Array2<f64>,
210    ) -> Result<NormalityAssessment, Box<dyn Error>> {
211        let n_features = data.ncols();
212        let mut shapiro_scores = Vec::with_capacity(n_features);
213
214        for col in 0..n_features {
215            let column = data.column(col);
216            // Simplified normality test (placeholder)
217            let score = self.simplified_normality_test(&column)?;
218            shapiro_scores.push(score);
219        }
220
221        let shapiro_wilk_scores = Array1::from_vec(shapiro_scores);
222        let overall_normality = {
223            let val = shapiro_wilk_scores.view().mean();
224            if val.is_nan() {
225                0.5
226            } else {
227                val
228            }
229        };
230
231        Ok(NormalityAssessment {
232            overall_normality,
233            shapiro_wilk_scores,
234        })
235    }
236
237    fn simplified_normality_test(
238        &self,
239        data: &scirs2_core::ndarray::ArrayView1<f64>,
240    ) -> Result<f64, Box<dyn Error>> {
241        // Placeholder normality test based on skewness and kurtosis
242        let n = data.len();
243        if n < 3 {
244            return Ok(0.5);
245        }
246
247        let mean = {
248            match data.mean() {
249                Some(val) if !val.is_nan() => val,
250                _ => 0.0,
251            }
252        };
253        let variance = data.var(1.0);
254
255        if variance == 0.0 {
256            return Ok(0.0);
257        }
258
259        let std_dev = variance.sqrt();
260
261        // Calculate skewness and kurtosis
262        let mut skewness: f64 = 0.0;
263        let mut kurtosis: f64 = 0.0;
264
265        for &value in data.iter() {
266            let normalized = (value - mean) / std_dev;
267            skewness += normalized.powi(3);
268            kurtosis += normalized.powi(4);
269        }
270
271        skewness /= n as f64;
272        kurtosis = kurtosis / (n as f64) - 3.0; // Excess kurtosis
273
274        // Simple normality score based on how close skewness and kurtosis are to normal distribution
275        let skew_penalty = (skewness.abs() / 2.0).min(1.0);
276        let kurt_penalty = (kurtosis.abs() / 4.0).min(1.0);
277        let normality_score: f64 = 1.0 - (skew_penalty + kurt_penalty) / 2.0;
278
279        Ok(normality_score.clamp(0.0, 1.0))
280    }
281
282    fn calculate_correlation_insights(
283        &self,
284        data: &Array2<f64>,
285    ) -> Result<CorrelationInsights, Box<dyn Error>> {
286        let n_features = data.ncols();
287        let mut importance_scores = Vec::with_capacity(n_features);
288
289        // Calculate feature importance based on variance and correlation with other features
290        for i in 0..n_features {
291            let feature = data.column(i);
292            let variance = feature.var(1.0);
293
294            // Simple importance based on variance (higher variance = more important)
295            let importance = (variance.ln() + 1.0).clamp(0.0, 1.0);
296            importance_scores.push(importance);
297        }
298
299        let feature_importance = Array1::from_vec(importance_scores);
300
301        Ok(CorrelationInsights { feature_importance })
302    }
303}
304
305/// Perform quick quality assessment of a dataset
306pub fn quick_quality_assessment(dataset: &Dataset) -> Result<f64, Box<dyn Error>> {
307    let data = &dataset.data;
308
309    // Quick quality assessment based on basic statistics
310    let n_samples = data.nrows();
311    let n_features = data.ncols();
312
313    if n_samples == 0 || n_features == 0 {
314        return Ok(0.0);
315    }
316
317    // Check for missing values (NaN/inf)
318    let valid_count = data.iter().filter(|&&x| x.is_finite()).count();
319    let completeness = valid_count as f64 / data.len() as f64;
320
321    // Check feature variance
322    let variances: Array1<f64> = data.var_axis(scirs2_core::ndarray::Axis(0), 1.0);
323    let non_zero_var_count = variances.iter().filter(|&&x| x > 1e-10).count();
324    let variance_score = non_zero_var_count as f64 / n_features as f64;
325
326    // Simple size penalty for very small datasets
327    let size_score = ((n_samples as f64).ln() / 10.0).clamp(0.0, 1.0);
328
329    // Combined quality score
330    let quality_score = (completeness + variance_score + size_score) / 3.0;
331
332    Ok(quality_score.clamp(0.0, 1.0))
333}
334
335/// Advanced dataset analysis function
336#[allow(dead_code)]
337pub fn analyze_dataset_advanced(
338    dataset: &Dataset,
339) -> Result<AdvancedQualityMetrics, Box<dyn Error>> {
340    let analyzer = AdvancedDatasetAnalyzer::new()
341        .with_gpu(false)
342        .with_advanced_precision(true)
343        .with_significance_threshold(0.05);
344
345    analyzer.analyze_dataset_quality(dataset)
346}
347
348#[cfg(test)]
349mod tests {
350    use super::*;
351    use scirs2_core::ndarray::Array2;
352
353    #[test]
354    fn test_quick_quality_assessment() {
355        let data = Array2::from_shape_vec((10, 3), (0..30).map(|x| x as f64).collect()).unwrap();
356        let dataset = Dataset::new(data, None);
357
358        let quality = quick_quality_assessment(&dataset).unwrap();
359        assert!((0.0..=1.0).contains(&quality));
360    }
361
362    #[test]
363    fn test_advanced_dataset_analyzer() {
364        let data = Array2::from_shape_vec((10, 3), (0..30).map(|x| x as f64).collect()).unwrap();
365        let dataset = Dataset::new(data, None);
366
367        let analyzer = AdvancedDatasetAnalyzer::new()
368            .with_gpu(false)
369            .with_advanced_precision(true);
370
371        let metrics = analyzer.analyze_dataset_quality(&dataset).unwrap();
372        assert!(metrics.complexity_score >= 0.0);
373        assert!(metrics.entropy >= 0.0);
374        assert!(metrics.outlier_score >= 0.0);
375        assert!(metrics.ml_quality_score >= 0.0);
376    }
377
378    #[test]
379    fn test_normality_assessment() {
380        let data = Array2::from_shape_vec((20, 2), (0..40).map(|x| x as f64).collect()).unwrap();
381        let dataset = Dataset::new(data, None);
382
383        let analyzer = AdvancedDatasetAnalyzer::new();
384        let metrics = analyzer.analyze_dataset_quality(&dataset).unwrap();
385
386        assert!(metrics.normality_assessment.overall_normality >= 0.0);
387        assert!(metrics.normality_assessment.overall_normality <= 1.0);
388        assert_eq!(metrics.normality_assessment.shapiro_wilk_scores.len(), 2);
389    }
390
391    #[test]
392    fn test_correlation_insights() {
393        let data = Array2::from_shape_vec((15, 3), (0..45).map(|x| x as f64).collect()).unwrap();
394        let dataset = Dataset::new(data, None);
395
396        let analyzer = AdvancedDatasetAnalyzer::new();
397        let metrics = analyzer.analyze_dataset_quality(&dataset).unwrap();
398
399        assert_eq!(metrics.correlation_insights.feature_importance.len(), 3);
400        assert!(metrics
401            .correlation_insights
402            .feature_importance
403            .iter()
404            .all(|&x| (0.0..=1.0).contains(&x)));
405    }
406}