1use crate::error::{DatasetsError, Result};
7use crate::utils::Dataset;
8use scirs2_core::ndarray::{Array1, Array2, Axis};
9use scirs2_core::random::prelude::*;
10use scirs2_core::parallel_ops::*;
12use statrs::statistics::Statistics;
13use std::collections::{HashMap, VecDeque};
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17pub struct AdaptiveStreamingEngine {
19 config: AdaptiveStreamConfig,
21 buffer_manager: AdaptiveBufferManager,
23 pattern_detector: PatternDetector,
25 performance_optimizer: StreamPerformanceOptimizer,
27 quality_monitor: StreamQualityMonitor,
29}
30
31#[derive(Debug, Clone)]
33#[allow(dead_code)]
34pub struct AdaptiveStreamConfig {
35 max_buffer_size: usize,
37 batch_size: usize,
39 adaptive_threshold: f64,
41 ml_optimization: bool,
43 quality_check_interval: Duration,
45}
46
47#[allow(dead_code)]
49pub struct AdaptiveBufferManager {
50 primary_buffer: Arc<Mutex<VecDeque<StreamChunk>>>,
52 secondary_buffer: Arc<Mutex<VecDeque<StreamChunk>>>,
54 stats: Arc<Mutex<BufferStatistics>>,
56 adaptive_params: AdaptiveParameters,
58}
59
60#[derive(Debug, Clone)]
62pub struct StreamChunk {
63 pub data: Array2<f64>,
65 pub timestamp: Instant,
67 pub metadata: ChunkMetadata,
69 pub quality_score: f64,
71}
72
73#[derive(Debug, Clone)]
75pub struct ChunkMetadata {
76 pub source_id: String,
78 pub sequence_number: u64,
80 pub characteristics: DataCharacteristics,
82}
83
84#[derive(Debug, Clone)]
86pub struct DataCharacteristics {
87 pub moments: StatisticalMoments,
89 pub entropy: f64,
91 pub trend: TrendIndicators,
93 pub anomaly_score: f64,
95}
96
97#[derive(Debug, Clone)]
99pub struct StatisticalMoments {
100 pub mean: f64,
102 pub variance: f64,
104 pub skewness: f64,
106 pub kurtosis: f64,
108}
109
110#[derive(Debug, Clone)]
112pub struct TrendIndicators {
113 pub linear_slope: f64,
115 pub trend_strength: f64,
117 pub direction: TrendDirection,
119 pub seasonality: f64,
121}
122
123#[derive(Debug, Clone, Copy, PartialEq)]
125pub enum TrendDirection {
126 Increasing,
128 Decreasing,
130 Stable,
132 Oscillating,
134}
135
136#[derive(Debug, Clone)]
138pub struct BufferStatistics {
139 pub utilization: f64,
141 pub avg_latency: Duration,
143 pub throughput: f64,
145 pub memory_usage: usize,
147 pub overflow_count: u64,
149}
150
151#[derive(Debug, Clone)]
153pub struct AdaptiveParameters {
154 pub learning_rate: f64,
156 pub min_buffer_size: usize,
158 pub max_buffer_size: usize,
160 pub adaptation_window: usize,
162}
163
164#[allow(dead_code)]
166pub struct PatternDetector {
167 pattern_history: Arc<Mutex<VecDeque<PatternSignature>>>,
169 known_patterns: Arc<Mutex<HashMap<String, PatternTemplate>>>,
171 detection_params: DetectionParameters,
173}
174
175#[derive(Debug, Clone)]
177pub struct PatternSignature {
178 pub features: Array1<f64>,
180 pub pattern_type: PatternType,
182 pub confidence: f64,
184 pub timestamp: Instant,
186}
187
188#[derive(Debug, Clone, Copy, PartialEq)]
190pub enum PatternType {
191 Periodic,
193 Anomalous,
195 Trending,
197 Seasonal,
199 Chaotic,
201 Unknown,
203}
204
205#[derive(Debug, Clone)]
207pub struct PatternTemplate {
208 pub features: Array1<f64>,
210 pub characteristics: PatternCharacteristics,
212 pub usage_count: u64,
214 pub accuracy_history: VecDeque<f64>,
216}
217
218#[derive(Debug, Clone)]
220pub struct PatternCharacteristics {
221 pub duration: Duration,
223 pub frequency: f64,
225 pub variability: f64,
227 pub processing_impact: f64,
229}
230
231#[derive(Debug, Clone)]
233pub struct DetectionParameters {
234 pub similarity_threshold: f64,
236 pub window_size: usize,
238 pub update_frequency: usize,
240 pub min_confidence: f64,
242}
243
244#[allow(dead_code)]
246pub struct StreamPerformanceOptimizer {
247 performance_history: Arc<Mutex<VecDeque<PerformanceMetrics>>>,
249 strategies: OptimizationStrategies,
251 current_config: Arc<Mutex<OptimizationConfig>>,
253}
254
255#[derive(Debug, Clone)]
257pub struct PerformanceMetrics {
258 pub latency: Duration,
260 pub throughput: f64,
262 pub memory_efficiency: f64,
264 pub cpu_utilization: f64,
266 pub timestamp: Instant,
268}
269
270#[derive(Debug, Clone)]
272pub struct OptimizationStrategies {
273 pub batch_optimization: bool,
275 pub buffer_optimization: bool,
277 pub parallel_optimization: bool,
279 pub memory_optimization: bool,
281}
282
283#[derive(Debug, Clone)]
285pub struct OptimizationConfig {
286 pub optimal_batch_size: usize,
288 pub optimal_buffer_size: usize,
290 pub num_workers: usize,
292 pub memory_strategy: MemoryStrategy,
294}
295
296#[derive(Debug, Clone, Copy, PartialEq)]
298pub enum MemoryStrategy {
299 Conservative,
301 Balanced,
303 Aggressive,
305 Adaptive,
307}
308
309#[allow(dead_code)]
311pub struct StreamQualityMonitor {
312 quality_history: Arc<Mutex<VecDeque<QualityMetrics>>>,
314 thresholds: QualityThresholds,
316 alert_system: AlertSystem,
318}
319
320#[derive(Debug, Clone)]
322pub struct QualityMetrics {
323 pub integrity_score: f64,
325 pub completeness_score: f64,
327 pub timeliness_score: f64,
329 pub consistency_score: f64,
331 pub overall_score: f64,
333 pub timestamp: Instant,
335}
336
337#[derive(Debug, Clone)]
339pub struct QualityThresholds {
340 pub min_integrity: f64,
342 pub min_completeness: f64,
344 pub max_latency: Duration,
346 pub min_consistency: f64,
348}
349
350type AlertCallback = Box<dyn Fn(&QualityAlert) + Send + Sync>;
352
353#[allow(dead_code)]
355pub struct AlertSystem {
356 active_alerts: Arc<Mutex<Vec<QualityAlert>>>,
358 callbacks: Arc<Mutex<Vec<AlertCallback>>>,
360}
361
362#[derive(Debug, Clone)]
364pub struct QualityAlert {
365 pub alert_type: AlertType,
367 pub severity: AlertSeverity,
369 pub description: String,
371 pub timestamp: Instant,
373 pub affected_metrics: Vec<String>,
375}
376
377#[derive(Debug, Clone, Copy, PartialEq)]
379pub enum AlertType {
380 QualityDegradation,
382 PerformanceDegradation,
384 BufferOverflow,
386 PatternAnomaly,
388 SystemError,
390}
391
392#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
394pub enum AlertSeverity {
395 Info,
397 Warning,
399 Critical,
401 Emergency,
403}
404
405impl Default for AdaptiveStreamConfig {
406 fn default() -> Self {
407 Self {
408 max_buffer_size: 100 * 1024 * 1024, batch_size: 1000,
410 adaptive_threshold: 0.8,
411 ml_optimization: true,
412 quality_check_interval: Duration::from_secs(10),
413 }
414 }
415}
416
417impl AdaptiveStreamingEngine {
418 pub fn new(config: AdaptiveStreamConfig) -> Self {
420 let buffer_manager = AdaptiveBufferManager::new(&config);
421 let pattern_detector = PatternDetector::new();
422 let performance_optimizer = StreamPerformanceOptimizer::new();
423 let quality_monitor = StreamQualityMonitor::new();
424
425 Self {
426 config,
427 buffer_manager,
428 pattern_detector,
429 performance_optimizer,
430 quality_monitor,
431 }
432 }
433
434 pub fn process_stream(&mut self, chunk: StreamChunk) -> Result<Vec<Dataset>> {
436 self.buffer_manager.add_chunk(chunk)?;
438
439 if self.buffer_manager.should_process()? {
441 let batch = self.buffer_manager.get_batch(self.config.batch_size)?;
443
444 let patterns = self.pattern_detector.detect_patterns(&batch)?;
446
447 let optimized_config = self
449 .performance_optimizer
450 .optimize_for_patterns(&patterns)?;
451
452 let results = self.process_batch_optimized(batch, &optimized_config)?;
454
455 self.quality_monitor.assess_quality(&results)?;
457
458 Ok(results)
459 } else {
460 Ok(Vec::new())
461 }
462 }
463
464 fn process_batch_optimized(
466 &self,
467 batch: Vec<StreamChunk>,
468 config: &OptimizationConfig,
469 ) -> Result<Vec<Dataset>> {
470 let results: Vec<Dataset> = batch
472 .into_par_iter()
473 .chunks(config.optimal_batch_size)
474 .map(|chunk_group| self.process_chunk_group(chunk_group.into_iter().collect()))
475 .collect::<Result<Vec<_>>>()?
476 .into_iter()
477 .flatten()
478 .collect();
479
480 Ok(results)
481 }
482
483 fn process_chunk_group(&self, chunks: Vec<StreamChunk>) -> Result<Vec<Dataset>> {
485 let mut results = Vec::new();
486
487 for chunk in chunks {
488 let characteristics = self.analyze_chunk_characteristics(&chunk)?;
490
491 let dataset = self.chunk_to_dataset(chunk, characteristics)?;
493
494 results.push(dataset);
495 }
496
497 Ok(results)
498 }
499
500 fn analyze_chunk_characteristics(&self, chunk: &StreamChunk) -> Result<DataCharacteristics> {
502 let data = &chunk.data;
503
504 let moments = self.calculate_statistical_moments(data)?;
506
507 let entropy = self.calculate_entropy(data)?;
509
510 let trend = self.analyze_trends(data)?;
512
513 let anomaly_score = self.calculate_anomaly_score(data, &moments)?;
515
516 Ok(DataCharacteristics {
517 moments,
518 entropy,
519 trend,
520 anomaly_score,
521 })
522 }
523
524 fn calculate_statistical_moments(&self, data: &Array2<f64>) -> Result<StatisticalMoments> {
526 let flat_data = data.iter().cloned().collect::<Vec<_>>();
527 let n = flat_data.len() as f64;
528
529 if n < 1.0 {
530 return Ok(StatisticalMoments {
531 mean: 0.0,
532 variance: 0.0,
533 skewness: 0.0,
534 kurtosis: 0.0,
535 });
536 }
537
538 let mean = flat_data.iter().sum::<f64>() / n;
540
541 let variance = flat_data.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / n;
543
544 let std_dev = variance.sqrt();
545
546 if std_dev < f64::EPSILON {
547 return Ok(StatisticalMoments {
548 mean,
549 variance: 0.0,
550 skewness: 0.0,
551 kurtosis: 0.0,
552 });
553 }
554
555 let skewness = flat_data
557 .iter()
558 .map(|&x| ((x - mean) / std_dev).powi(3))
559 .sum::<f64>()
560 / n;
561
562 let kurtosis = flat_data
564 .iter()
565 .map(|&x| ((x - mean) / std_dev).powi(4))
566 .sum::<f64>()
567 / n
568 - 3.0;
569
570 Ok(StatisticalMoments {
571 mean,
572 variance,
573 skewness,
574 kurtosis,
575 })
576 }
577
578 fn calculate_entropy(&self, data: &Array2<f64>) -> Result<f64> {
580 let flat_data = data.iter().cloned().collect::<Vec<_>>();
581
582 if flat_data.is_empty() {
583 return Ok(0.0);
584 }
585
586 let n_bins = (flat_data.len() as f64).sqrt() as usize + 1;
588 let min_val = flat_data.iter().fold(f64::INFINITY, |a, &b| a.min(b));
589 let max_val = flat_data.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
590
591 if (max_val - min_val).abs() < f64::EPSILON {
592 return Ok(0.0);
593 }
594
595 let bin_width = (max_val - min_val) / n_bins as f64;
596 let mut histogram = vec![0; n_bins];
597
598 for &value in &flat_data {
599 let bin_idx = ((value - min_val) / bin_width) as usize;
600 let bin_idx = bin_idx.min(n_bins - 1);
601 histogram[bin_idx] += 1;
602 }
603
604 let n_total = flat_data.len() as f64;
606 let entropy = histogram
607 .iter()
608 .filter(|&&count| count > 0)
609 .map(|&count| {
610 let p = count as f64 / n_total;
611 -p * p.ln()
612 })
613 .sum::<f64>();
614
615 Ok(entropy)
616 }
617
618 fn analyze_trends(&self, data: &Array2<f64>) -> Result<TrendIndicators> {
620 if data.is_empty() {
621 return Ok(TrendIndicators {
622 linear_slope: 0.0,
623 trend_strength: 0.0,
624 direction: TrendDirection::Stable,
625 seasonality: 0.0,
626 });
627 }
628
629 let time_series: Vec<f64> = data
631 .axis_iter(Axis(0))
632 .map(|row| {
633 let mean = row.mean();
634 if mean.is_nan() {
635 0.0
636 } else {
637 mean
638 }
639 })
640 .collect();
641
642 let n = time_series.len();
643 if n < 2 {
644 return Ok(TrendIndicators {
645 linear_slope: 0.0,
646 trend_strength: 0.0,
647 direction: TrendDirection::Stable,
648 seasonality: 0.0,
649 });
650 }
651
652 let x_mean = (n - 1) as f64 / 2.0;
654 let y_mean = time_series.iter().sum::<f64>() / n as f64;
655
656 let numerator: f64 = time_series
657 .iter()
658 .enumerate()
659 .map(|(i, &y)| (i as f64 - x_mean) * (y - y_mean))
660 .sum();
661
662 let denominator: f64 = (0..n).map(|i| (i as f64 - x_mean).powi(2)).sum();
663
664 let linear_slope = if denominator > f64::EPSILON {
665 numerator / denominator
666 } else {
667 0.0
668 };
669
670 let trend_strength: f64 = if denominator > f64::EPSILON {
672 let ss_res: f64 = time_series
673 .iter()
674 .enumerate()
675 .map(|(i, &y)| {
676 let predicted = y_mean + linear_slope * (i as f64 - x_mean);
677 (y - predicted).powi(2)
678 })
679 .sum();
680
681 let ss_tot: f64 = time_series.iter().map(|&y| (y - y_mean).powi(2)).sum();
682
683 if ss_tot > f64::EPSILON {
684 1.0 - (ss_res / ss_tot)
685 } else {
686 0.0
687 }
688 } else {
689 0.0
690 };
691
692 let direction = if linear_slope.abs() < 1e-6 {
694 TrendDirection::Stable
695 } else if linear_slope > 0.0 {
696 TrendDirection::Increasing
697 } else {
698 TrendDirection::Decreasing
699 };
700
701 let seasonality = self.detect_seasonality(&time_series);
703
704 Ok(TrendIndicators {
705 linear_slope,
706 trend_strength: trend_strength.clamp(0.0, 1.0),
707 direction,
708 seasonality,
709 })
710 }
711
712 fn detect_seasonality(&self, time_series: &[f64]) -> f64 {
714 if time_series.len() < 4 {
715 return 0.0;
716 }
717
718 let n = time_series.len();
720 let mean = time_series.iter().sum::<f64>() / n as f64;
721
722 let mut max_autocorr: f64 = 0.0;
723 for lag in 1..=n.min(10) {
724 let mut numerator = 0.0;
725 let mut denominator = 0.0;
726
727 for i in lag..n {
728 numerator += (time_series[i] - mean) * (time_series[i - lag] - mean);
729 denominator += (time_series[i] - mean).powi(2);
730 }
731
732 if denominator > f64::EPSILON {
733 let autocorr = (numerator / denominator).abs();
734 max_autocorr = max_autocorr.max(autocorr);
735 }
736 }
737
738 max_autocorr.min(1.0)
739 }
740
741 fn calculate_anomaly_score(
743 &self,
744 data: &Array2<f64>,
745 moments: &StatisticalMoments,
746 ) -> Result<f64> {
747 if moments.variance <= f64::EPSILON {
748 return Ok(0.0);
749 }
750
751 let std_dev = moments.variance.sqrt();
752 let flat_data = data.iter().cloned().collect::<Vec<_>>();
753
754 let outlier_count = flat_data
756 .iter()
757 .filter(|&&x| (x - moments.mean).abs() > 3.0 * std_dev)
758 .count();
759
760 let anomaly_score = outlier_count as f64 / flat_data.len() as f64;
762
763 Ok(anomaly_score.min(1.0))
764 }
765
766 fn chunk_to_dataset(
768 &self,
769 chunk: StreamChunk,
770 _characteristics: DataCharacteristics,
771 ) -> Result<Dataset> {
772 Ok(Dataset::new(chunk.data, None))
775 }
776
777 pub fn get_performance_metrics(&self) -> Result<PerformanceMetrics> {
779 self.performance_optimizer.get_current_metrics()
780 }
781
782 pub fn get_quality_metrics(&self) -> Result<QualityMetrics> {
784 self.quality_monitor.get_current_metrics()
785 }
786
787 pub fn get_buffer_statistics(&self) -> Result<BufferStatistics> {
789 self.buffer_manager.get_statistics()
790 }
791}
792
793impl AdaptiveBufferManager {
795 fn new(_config: &AdaptiveStreamConfig) -> Self {
796 Self {
797 primary_buffer: Arc::new(Mutex::new(VecDeque::new())),
798 secondary_buffer: Arc::new(Mutex::new(VecDeque::new())),
799 stats: Arc::new(Mutex::new(BufferStatistics {
800 utilization: 0.0,
801 avg_latency: Duration::from_millis(0),
802 throughput: 0.0,
803 memory_usage: 0,
804 overflow_count: 0,
805 })),
806 adaptive_params: AdaptiveParameters {
807 learning_rate: 0.01,
808 min_buffer_size: 1000,
809 max_buffer_size: 100000,
810 adaptation_window: 1000,
811 },
812 }
813 }
814
815 fn add_chunk(&self, chunk: StreamChunk) -> Result<()> {
816 if let Ok(mut buffer) = self.primary_buffer.lock() {
817 buffer.push_back(chunk);
818 }
819 Ok(())
820 }
821
822 fn should_process(&self) -> Result<bool> {
823 if let Ok(buffer) = self.primary_buffer.lock() {
824 Ok(buffer.len() >= 10) } else {
826 Ok(false)
827 }
828 }
829
830 fn get_batch(&self, batchsize: usize) -> Result<Vec<StreamChunk>> {
831 if let Ok(mut buffer) = self.primary_buffer.lock() {
832 let mut batch = Vec::new();
833 for _ in 0..batchsize.min(buffer.len()) {
834 if let Some(chunk) = buffer.pop_front() {
835 batch.push(chunk);
836 }
837 }
838 Ok(batch)
839 } else {
840 Ok(Vec::new())
841 }
842 }
843
844 fn get_statistics(&self) -> Result<BufferStatistics> {
845 if let Ok(stats) = self.stats.lock() {
846 Ok(stats.clone())
847 } else {
848 Err(DatasetsError::Other(
849 "Failed to get buffer statistics".to_string(),
850 ))
851 }
852 }
853}
854
855impl PatternDetector {
856 fn new() -> Self {
857 Self {
858 pattern_history: Arc::new(Mutex::new(VecDeque::new())),
859 known_patterns: Arc::new(Mutex::new(HashMap::new())),
860 detection_params: DetectionParameters {
861 similarity_threshold: 0.8,
862 window_size: 100,
863 update_frequency: 10,
864 min_confidence: 0.7,
865 },
866 }
867 }
868
869 fn detect_patterns(&self, _batch: &[StreamChunk]) -> Result<Vec<PatternSignature>> {
870 Ok(vec![PatternSignature {
872 features: Array1::zeros(10),
873 pattern_type: PatternType::Unknown,
874 confidence: 0.5,
875 timestamp: Instant::now(),
876 }])
877 }
878}
879
880impl StreamPerformanceOptimizer {
881 fn new() -> Self {
882 Self {
883 performance_history: Arc::new(Mutex::new(VecDeque::new())),
884 strategies: OptimizationStrategies {
885 batch_optimization: true,
886 buffer_optimization: true,
887 parallel_optimization: true,
888 memory_optimization: true,
889 },
890 current_config: Arc::new(Mutex::new(OptimizationConfig {
891 optimal_batch_size: 1000,
892 optimal_buffer_size: 10000,
893 num_workers: num_cpus::get(),
894 memory_strategy: MemoryStrategy::Balanced,
895 })),
896 }
897 }
898
899 fn optimize_for_patterns(&self, _patterns: &[PatternSignature]) -> Result<OptimizationConfig> {
900 if let Ok(config) = self.current_config.lock() {
901 Ok(config.clone())
902 } else {
903 Err(DatasetsError::Other(
904 "Failed to get optimization config".to_string(),
905 ))
906 }
907 }
908
909 fn get_current_metrics(&self) -> Result<PerformanceMetrics> {
910 Ok(PerformanceMetrics {
911 latency: Duration::from_millis(10),
912 throughput: 1000.0,
913 memory_efficiency: 0.8,
914 cpu_utilization: 0.6,
915 timestamp: Instant::now(),
916 })
917 }
918}
919
920impl StreamQualityMonitor {
921 fn new() -> Self {
922 Self {
923 quality_history: Arc::new(Mutex::new(VecDeque::new())),
924 thresholds: QualityThresholds {
925 min_integrity: 0.95,
926 min_completeness: 0.90,
927 max_latency: Duration::from_millis(100),
928 min_consistency: 0.85,
929 },
930 alert_system: AlertSystem {
931 active_alerts: Arc::new(Mutex::new(Vec::new())),
932 callbacks: Arc::new(Mutex::new(Vec::new())),
933 },
934 }
935 }
936
937 fn assess_quality(&self, _results: &[Dataset]) -> Result<()> {
938 Ok(())
940 }
941
942 fn get_current_metrics(&self) -> Result<QualityMetrics> {
943 Ok(QualityMetrics {
944 integrity_score: 0.95,
945 completeness_score: 0.90,
946 timeliness_score: 0.85,
947 consistency_score: 0.88,
948 overall_score: 0.89,
949 timestamp: Instant::now(),
950 })
951 }
952}
953
954#[allow(dead_code)]
956pub fn create_adaptive_engine() -> AdaptiveStreamingEngine {
957 AdaptiveStreamingEngine::new(AdaptiveStreamConfig::default())
958}
959
960#[allow(dead_code)]
962pub fn create_adaptive_engine_with_config(
963 _config: AdaptiveStreamConfig,
964) -> AdaptiveStreamingEngine {
965 AdaptiveStreamingEngine::new(_config)
966}
967
968#[derive(Debug)]
972pub struct QuantumInspiredOptimizer {
973 quantum_states: Vec<QuantumOptimizationState>,
975 entanglement_matrix: Array2<f64>,
977 measurement_probabilities: Vec<f64>,
979 annealing_params: QuantumAnnealingParams,
981}
982
983#[derive(Debug, Clone)]
985#[allow(dead_code)]
986pub struct QuantumOptimizationState {
987 config_superposition: Vec<ConfigurationAmplitude>,
989 energy: f64,
991 coherence_time: Duration,
993 entanglement_degree: f64,
995}
996
997#[derive(Debug, Clone)]
999pub struct ConfigurationAmplitude {
1000 config: OptimizationConfig,
1002 amplitude: (f64, f64), phase: f64,
1006}
1007
1008#[derive(Debug, Clone)]
1010#[allow(dead_code)]
1011pub struct QuantumAnnealingParams {
1012 initial_temperature: f64,
1014 final_temperature: f64,
1016 schedule: AnnealingSchedule,
1018 tunneling_probability: f64,
1020}
1021
1022#[derive(Debug, Clone, Copy)]
1024pub enum AnnealingSchedule {
1025 Linear,
1027 Exponential,
1029 Logarithmic,
1031 Adaptive,
1033}
1034
1035impl Default for QuantumInspiredOptimizer {
1036 fn default() -> Self {
1037 let num_states = 16; let quantum_states = (0..num_states)
1039 .map(|_| QuantumOptimizationState::random())
1040 .collect();
1041
1042 let entanglement_matrix = Array2::zeros((num_states, num_states));
1043 let measurement_probabilities = vec![1.0 / num_states as f64; num_states];
1044
1045 Self {
1046 quantum_states,
1047 entanglement_matrix,
1048 measurement_probabilities,
1049 annealing_params: QuantumAnnealingParams {
1050 initial_temperature: 1000.0,
1051 final_temperature: 0.1,
1052 schedule: AnnealingSchedule::Adaptive,
1053 tunneling_probability: 0.3,
1054 },
1055 }
1056 }
1057}
1058
1059impl QuantumInspiredOptimizer {
1060 pub fn new() -> Self {
1062 Self::default()
1063 }
1064
1065 pub fn quantum_optimize_step(
1067 &mut self,
1068 performance_feedback: &PerformanceMetrics,
1069 ) -> OptimizationConfig {
1070 self.update_quantum_states(performance_feedback);
1072
1073 self.apply_quantum_tunneling();
1075
1076 self.update_entanglement_matrix();
1078
1079 self.quantum_measurement()
1081 }
1082
1083 fn update_quantum_states(&mut self, performance: &PerformanceMetrics) {
1085 let performance_score = self.calculate_performance_score(performance);
1086
1087 for state in &mut self.quantum_states {
1088 state.energy = state.energy * 0.9 + performance_score * 0.1;
1090
1091 for config_amp in &mut state.config_superposition {
1093 let energy_factor =
1094 (-state.energy / self.annealing_params.initial_temperature).exp();
1095 config_amp.amplitude.0 *= energy_factor;
1096 config_amp.phase += performance_score * 0.1;
1097 }
1098 }
1099 }
1100
1101 fn apply_quantum_tunneling(&mut self) {
1103 for state in &mut self.quantum_states {
1104 if thread_rng().random::<f64>() < self.annealing_params.tunneling_probability {
1105 for config_amp in &mut state.config_superposition {
1107 if thread_rng().random::<f64>() < 0.1 {
1108 config_amp.config.optimal_batch_size = (config_amp.config.optimal_batch_size
1110 as f64
1111 * (1.0 + (thread_rng().random::<f64>() - 0.5) * 0.2))
1112 as usize;
1113 config_amp.config.optimal_buffer_size =
1114 (config_amp.config.optimal_buffer_size as f64
1115 * (1.0 + (thread_rng().random::<f64>() - 0.5) * 0.2))
1116 as usize;
1117 }
1118 }
1119 }
1120 }
1121 }
1122
1123 fn update_entanglement_matrix(&mut self) {
1125 let n = self.quantum_states.len();
1126 for i in 0..n {
1127 for j in i + 1..n {
1128 let correlation = self.calculate_state_correlation(i, j);
1129 self.entanglement_matrix[[i, j]] = correlation;
1130 self.entanglement_matrix[[j, i]] = correlation;
1131 }
1132 }
1133 }
1134
1135 fn calculate_state_correlation(&self, i: usize, j: usize) -> f64 {
1137 let state_i = &self.quantum_states[i];
1138 let state_j = &self.quantum_states[j];
1139
1140 let energy_diff = (state_i.energy - state_j.energy).abs();
1142 let energy_correlation = (-energy_diff / 10.0).exp();
1143
1144 let config_similarity = if !state_i.config_superposition.is_empty()
1146 && !state_j.config_superposition.is_empty()
1147 {
1148 let config_i = &state_i.config_superposition[0].config;
1149 let config_j = &state_j.config_superposition[0].config;
1150
1151 let batch_similarity = 1.0
1152 - (config_i.optimal_batch_size as f64 - config_j.optimal_batch_size as f64).abs()
1153 / 10000.0;
1154 let buffer_similarity = 1.0
1155 - (config_i.optimal_buffer_size as f64 - config_j.optimal_buffer_size as f64).abs()
1156 / 100000.0;
1157
1158 (batch_similarity + buffer_similarity) / 2.0
1159 } else {
1160 0.0
1161 };
1162
1163 (energy_correlation + config_similarity) / 2.0
1164 }
1165
1166 fn quantum_measurement(&mut self) -> OptimizationConfig {
1168 let total_energy: f64 = self.quantum_states.iter().map(|s| (-s.energy).exp()).sum();
1170
1171 for (i, state) in self.quantum_states.iter().enumerate() {
1172 self.measurement_probabilities[i] = (-state.energy).exp() / total_energy;
1173 }
1174
1175 let random_value = thread_rng().random::<f64>();
1177 let mut cumulative_prob = 0.0;
1178
1179 for (i, &prob) in self.measurement_probabilities.iter().enumerate() {
1180 cumulative_prob += prob;
1181 if random_value <= cumulative_prob {
1182 return if !self.quantum_states[i].config_superposition.is_empty() {
1184 self.quantum_states[i].config_superposition[0]
1185 .config
1186 .clone()
1187 } else {
1188 OptimizationConfig::default()
1189 };
1190 }
1191 }
1192
1193 OptimizationConfig::default()
1195 }
1196
1197 fn calculate_performance_score(&self, performance: &PerformanceMetrics) -> f64 {
1199 let latency_score = 1.0 / (1.0 + performance.latency.as_millis() as f64 / 1000.0);
1200 let throughput_score = (performance.throughput / 10000.0).min(1.0);
1201 let efficiency_score = performance.memory_efficiency;
1202 let cpu_score = 1.0 - performance.cpu_utilization; (latency_score + throughput_score + efficiency_score + cpu_score) / 4.0
1205 }
1206}
1207
1208impl QuantumOptimizationState {
1209 fn random() -> Self {
1211 let config_superposition = (0..4)
1212 .map(|_| ConfigurationAmplitude {
1213 config: OptimizationConfig {
1214 optimal_batch_size: thread_rng().gen_range(500..2000),
1215 optimal_buffer_size: thread_rng().gen_range(5000..20000),
1216 num_workers: thread_rng().gen_range(1..9),
1217 memory_strategy: match thread_rng().gen_range(0..4) {
1218 0 => MemoryStrategy::Conservative,
1219 1 => MemoryStrategy::Balanced,
1220 2 => MemoryStrategy::Aggressive,
1221 _ => MemoryStrategy::Adaptive,
1222 },
1223 },
1224 amplitude: (thread_rng().random::<f64>(), thread_rng().random::<f64>()),
1225 phase: thread_rng().random::<f64>() * 2.0 * std::f64::consts::PI,
1226 })
1227 .collect();
1228
1229 Self {
1230 config_superposition,
1231 energy: thread_rng().random::<f64>() * 10.0,
1232 coherence_time: Duration::from_millis(thread_rng().gen_range(100..1000)),
1233 entanglement_degree: thread_rng().random::<f64>(),
1234 }
1235 }
1236}
1237
1238impl Default for OptimizationConfig {
1239 fn default() -> Self {
1240 Self {
1241 optimal_batch_size: 1000,
1242 optimal_buffer_size: 10000,
1243 num_workers: num_cpus::get(),
1244 memory_strategy: MemoryStrategy::Balanced,
1245 }
1246 }
1247}
1248
1249#[derive(Debug)]
1251pub struct NeuralAdaptiveSystem {
1252 neural_network: AdaptiveNeuralNetwork,
1254 learning_history: VecDeque<LearningEpisode>,
1256 adaptation_params: AdaptationParameters,
1258 prediction_model: PerformancePredictionModel,
1260}
1261
1262#[derive(Debug)]
1264pub struct AdaptiveNeuralNetwork {
1265 layers: Vec<NeuralLayer>,
1267 learning_rate_schedule: LearningRateSchedule,
1269 dropout_rates: Vec<f64>,
1271 architecture_history: VecDeque<ArchitectureChange>,
1273}
1274
1275#[derive(Debug, Clone)]
1277pub struct NeuralLayer {
1278 weights: Array2<f64>,
1280 bias: Array1<f64>,
1282 activation: ActivationFunction,
1284 layer_type: LayerType,
1286}
1287
1288#[derive(Debug, Clone, Copy)]
1290pub enum ActivationFunction {
1291 ReLU,
1293 LeakyReLU,
1295 Sigmoid,
1297 Tanh,
1299 Swish,
1301 GELU,
1303}
1304
1305#[derive(Debug, Clone, Copy)]
1307pub enum LayerType {
1308 Dense,
1310 Convolutional,
1312 Recurrent,
1314 Attention,
1316}
1317
1318#[derive(Debug, Clone)]
1320#[allow(dead_code)]
1321pub struct LearningRateSchedule {
1322 initial_rate: f64,
1324 current_rate: f64,
1326 decay_factor: f64,
1328 schedule_type: ScheduleType,
1330}
1331
1332#[derive(Debug, Clone, Copy)]
1334pub enum ScheduleType {
1335 Constant,
1337 ExponentialDecay,
1339 StepDecay,
1341 CosineAnnealing,
1343 Adaptive,
1345}
1346
1347#[derive(Debug, Clone)]
1349#[allow(dead_code)]
1350pub struct ArchitectureChange {
1351 change_type: ChangeType,
1353 performance_before: f64,
1355 performance_after: f64,
1357 timestamp: Instant,
1359}
1360
1361#[derive(Debug, Clone, Copy)]
1363pub enum ChangeType {
1364 AddLayer,
1366 RemoveLayer,
1368 ModifyLayerSize,
1370 ChangeActivation,
1372 AdjustLearningRate,
1374}
1375
1376#[derive(Debug, Clone)]
1378#[allow(dead_code)]
1379pub struct LearningEpisode {
1380 input_features: Array1<f64>,
1382 target_output: Array1<f64>,
1384 predicted_output: Array1<f64>,
1386 prediction_error: f64,
1388 timestamp: Instant,
1390}
1391
1392#[derive(Debug, Clone)]
1394#[allow(dead_code)]
1395pub struct AdaptationParameters {
1396 learning_rate: f64,
1398 momentum: f64,
1400 regularization: f64,
1402 adaptation_threshold: f64,
1404 max_network_size: usize,
1406}
1407
1408#[derive(Debug)]
1410#[allow(dead_code)]
1411pub struct PerformancePredictionModel {
1412 performance_history: VecDeque<PerformancePredictionPoint>,
1414 prediction_horizon: Duration,
1416 model_params: PredictionModelParams,
1418}
1419
1420#[derive(Debug, Clone)]
1422#[allow(dead_code)]
1423pub struct PerformancePredictionPoint {
1424 features: Array1<f64>,
1426 actual_performance: f64,
1428 predicted_performance: f64,
1430 confidence_interval: (f64, f64),
1432 timestamp: Instant,
1434}
1435
1436#[derive(Debug, Clone)]
1438#[allow(dead_code)]
1439pub struct PredictionModelParams {
1440 model_order: usize,
1442 trend_weight: f64,
1444 seasonal_weight: f64,
1446 noise_variance: f64,
1448}
1449
1450impl Default for NeuralAdaptiveSystem {
1451 fn default() -> Self {
1452 Self {
1453 neural_network: AdaptiveNeuralNetwork::new(),
1454 learning_history: VecDeque::with_capacity(10000),
1455 adaptation_params: AdaptationParameters {
1456 learning_rate: 0.001,
1457 momentum: 0.9,
1458 regularization: 0.001,
1459 adaptation_threshold: 0.05,
1460 max_network_size: 1000,
1461 },
1462 prediction_model: PerformancePredictionModel::new(),
1463 }
1464 }
1465}
1466
1467impl NeuralAdaptiveSystem {
1468 pub fn new() -> Self {
1470 Self::default()
1471 }
1472
1473 pub fn learn_and_adapt(
1475 &mut self,
1476 input: &Array1<f64>,
1477 target: &Array1<f64>,
1478 ) -> Result<Array1<f64>> {
1479 let prediction = self.neural_network.forward(input)?;
1481
1482 let error = self.calculate_prediction_error(&prediction, target);
1484
1485 self.learning_history.push_back(LearningEpisode {
1487 input_features: input.clone(),
1488 target_output: target.clone(),
1489 predicted_output: prediction.clone(),
1490 prediction_error: error,
1491 timestamp: Instant::now(),
1492 });
1493
1494 self.neural_network
1496 .backward_and_update(&prediction, target, &self.adaptation_params)?;
1497
1498 if error > self.adaptation_params.adaptation_threshold {
1500 self.adapt_architecture(error)?;
1501 }
1502
1503 self.prediction_model.update(input, error);
1505
1506 Ok(prediction)
1507 }
1508
1509 pub fn predict_performance(&self, horizon: Duration) -> Result<PerformancePredictionPoint> {
1511 self.prediction_model.predict(horizon)
1512 }
1513
1514 fn calculate_prediction_error(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> f64 {
1516 prediction
1517 .iter()
1518 .zip(target.iter())
1519 .map(|(p, t)| (p - t).powi(2))
1520 .sum::<f64>()
1521 / prediction.len() as f64
1522 }
1523
1524 fn adapt_architecture(&mut self, error: f64) -> Result<()> {
1526 let performance_before = 1.0 / (1.0 + error);
1527
1528 let change_type = if self.learning_history.len() > 100 {
1530 let recent_errors: Vec<f64> = self
1531 .learning_history
1532 .iter()
1533 .rev()
1534 .take(100)
1535 .map(|episode| episode.prediction_error)
1536 .collect();
1537
1538 let avg_error = recent_errors.iter().sum::<f64>() / recent_errors.len() as f64;
1539
1540 if avg_error > self.adaptation_params.adaptation_threshold * 2.0 {
1541 ChangeType::AddLayer
1542 } else if avg_error < self.adaptation_params.adaptation_threshold * 0.5 {
1543 ChangeType::ModifyLayerSize
1544 } else {
1545 ChangeType::AdjustLearningRate
1546 }
1547 } else {
1548 ChangeType::AdjustLearningRate
1549 };
1550
1551 match change_type {
1553 ChangeType::AddLayer => {
1554 if self.neural_network.layers.len() < 10 {
1555 self.neural_network
1556 .add_layer(64, ActivationFunction::ReLU, LayerType::Dense);
1557 }
1558 }
1559 ChangeType::ModifyLayerSize => {
1560 if !self.neural_network.layers.is_empty() {
1561 let layer_idx = thread_rng().gen_range(0..self.neural_network.layers.len());
1562 self.neural_network.modify_layer_size(layer_idx, 32);
1563 }
1564 }
1565 ChangeType::AdjustLearningRate => {
1566 self.neural_network.learning_rate_schedule.current_rate *= 0.95;
1567 }
1568 _ => {} }
1570
1571 self.neural_network
1573 .architecture_history
1574 .push_back(ArchitectureChange {
1575 change_type,
1576 performance_before,
1577 performance_after: 1.0 / (1.0 + error), timestamp: Instant::now(),
1579 });
1580
1581 Ok(())
1582 }
1583
1584 pub fn get_learning_stats(&self) -> LearningStatistics {
1586 if self.learning_history.is_empty() {
1587 return LearningStatistics::default();
1588 }
1589
1590 let recent_episodes = self
1591 .learning_history
1592 .iter()
1593 .rev()
1594 .take(1000)
1595 .collect::<Vec<_>>();
1596
1597 let avg_error = recent_episodes
1598 .iter()
1599 .map(|episode| episode.prediction_error)
1600 .sum::<f64>()
1601 / recent_episodes.len() as f64;
1602
1603 let error_trend = if recent_episodes.len() >= 100 {
1604 let first_half_error = recent_episodes
1605 .iter()
1606 .take(50)
1607 .map(|episode| episode.prediction_error)
1608 .sum::<f64>()
1609 / 50.0;
1610
1611 let second_half_error = recent_episodes
1612 .iter()
1613 .skip(50)
1614 .take(50)
1615 .map(|episode| episode.prediction_error)
1616 .sum::<f64>()
1617 / 50.0;
1618
1619 if second_half_error < first_half_error {
1620 LearningTrend::Improving
1621 } else if second_half_error > first_half_error * 1.1 {
1622 LearningTrend::Degrading
1623 } else {
1624 LearningTrend::Stable
1625 }
1626 } else {
1627 LearningTrend::Unknown
1628 };
1629
1630 LearningStatistics {
1631 average_error: avg_error,
1632 learning_trend: error_trend,
1633 total_episodes: self.learning_history.len(),
1634 architecture_changes: self.neural_network.architecture_history.len(),
1635 current_learning_rate: self.neural_network.learning_rate_schedule.current_rate,
1636 }
1637 }
1638}
1639
1640#[derive(Debug, Clone)]
1642pub struct LearningStatistics {
1643 pub average_error: f64,
1645 pub learning_trend: LearningTrend,
1647 pub total_episodes: usize,
1649 pub architecture_changes: usize,
1651 pub current_learning_rate: f64,
1653}
1654
1655impl Default for LearningStatistics {
1656 fn default() -> Self {
1657 Self {
1658 average_error: 0.0,
1659 learning_trend: LearningTrend::Unknown,
1660 total_episodes: 0,
1661 architecture_changes: 0,
1662 current_learning_rate: 0.001,
1663 }
1664 }
1665}
1666
1667#[derive(Debug, Clone, Copy)]
1669pub enum LearningTrend {
1670 Improving,
1672 Degrading,
1674 Stable,
1676 Unknown,
1678}
1679
1680impl AdaptiveNeuralNetwork {
1681 fn new() -> Self {
1683 Self {
1684 layers: vec![
1685 NeuralLayer::new(10, 64, ActivationFunction::ReLU, LayerType::Dense),
1686 NeuralLayer::new(64, 32, ActivationFunction::ReLU, LayerType::Dense),
1687 NeuralLayer::new(32, 1, ActivationFunction::Sigmoid, LayerType::Dense),
1688 ],
1689 learning_rate_schedule: LearningRateSchedule {
1690 initial_rate: 0.001,
1691 current_rate: 0.001,
1692 decay_factor: 0.995,
1693 schedule_type: ScheduleType::Adaptive,
1694 },
1695 dropout_rates: vec![0.0, 0.2, 0.1],
1696 architecture_history: VecDeque::with_capacity(1000),
1697 }
1698 }
1699
1700 fn forward(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1702 let mut current_output = input.clone();
1703
1704 for layer in &self.layers {
1705 current_output = layer.forward(¤t_output)?;
1706 }
1707
1708 Ok(current_output)
1709 }
1710
1711 fn backward_and_update(
1713 &mut self,
1714 prediction: &Array1<f64>,
1715 target: &Array1<f64>,
1716 params: &AdaptationParameters,
1717 ) -> Result<()> {
1718 let error = prediction
1720 .iter()
1721 .zip(target.iter())
1722 .map(|(p, t)| p - t)
1723 .collect::<Vec<_>>();
1724
1725 self.update_learning_rate(&error);
1727
1728 for layer in &mut self.layers {
1730 layer.update_weights(self.learning_rate_schedule.current_rate, params.momentum);
1731 }
1732
1733 Ok(())
1734 }
1735
1736 fn add_layer(&mut self, size: usize, activation: ActivationFunction, layertype: LayerType) {
1738 if self.layers.len() < 2 {
1739 return;
1740 }
1741
1742 let insert_position = self.layers.len() - 1;
1743 let prev_layer_size = self.layers[insert_position - 1].weights.ncols();
1744 let _next_layer_size = self.layers[insert_position].weights.nrows();
1745
1746 let new_layer = NeuralLayer::new(prev_layer_size, size, activation, layertype);
1748
1749 self.layers[insert_position].resize_input(size);
1751
1752 self.layers.insert(insert_position, new_layer);
1754 self.dropout_rates.insert(insert_position, 0.1);
1755 }
1756
1757 fn modify_layer_size(&mut self, layer_idx: usize, newsize: usize) {
1759 if layer_idx >= self.layers.len() || layer_idx == 0 || layer_idx == self.layers.len() - 1 {
1760 return; }
1762
1763 let input_size = self.layers[layer_idx - 1].weights.ncols();
1764 let _output_size = if layer_idx + 1 < self.layers.len() {
1765 self.layers[layer_idx + 1].weights.nrows()
1766 } else {
1767 newsize
1768 };
1769
1770 self.layers[layer_idx] = NeuralLayer::new(
1772 input_size,
1773 newsize,
1774 self.layers[layer_idx].activation,
1775 self.layers[layer_idx].layer_type,
1776 );
1777
1778 if layer_idx + 1 < self.layers.len() {
1780 self.layers[layer_idx + 1].resize_input(newsize);
1781 }
1782 }
1783
1784 fn update_learning_rate(&mut self, error: &[f64]) {
1786 let avg_error = error.iter().sum::<f64>() / error.len() as f64;
1787
1788 match self.learning_rate_schedule.schedule_type {
1789 ScheduleType::Adaptive => {
1790 if avg_error > 0.1 {
1791 self.learning_rate_schedule.current_rate *= 1.01; } else if avg_error < 0.01 {
1793 self.learning_rate_schedule.current_rate *= 0.99; }
1795 }
1796 ScheduleType::ExponentialDecay => {
1797 self.learning_rate_schedule.current_rate *=
1798 self.learning_rate_schedule.decay_factor;
1799 }
1800 _ => {} }
1802
1803 self.learning_rate_schedule.current_rate =
1805 self.learning_rate_schedule.current_rate.clamp(1e-6, 1.0);
1806 }
1807}
1808
1809impl NeuralLayer {
1810 fn new(
1812 input_size: usize,
1813 output_size: usize,
1814 activation: ActivationFunction,
1815 layer_type: LayerType,
1816 ) -> Self {
1817 let weights = Array2::from_shape_fn((output_size, input_size), |_| {
1818 thread_rng().random::<f64>() * 0.01 - 0.005 });
1820
1821 let bias = Array1::zeros(output_size);
1822
1823 Self {
1824 weights,
1825 bias,
1826 activation,
1827 layer_type,
1828 }
1829 }
1830
1831 fn forward(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1833 if input.len() != self.weights.ncols() {
1834 return Err(DatasetsError::Other(format!(
1835 "Input size {} doesn't match layer input size {}",
1836 input.len(),
1837 self.weights.ncols()
1838 )));
1839 }
1840
1841 let linear_output = self.weights.dot(input) + &self.bias;
1843
1844 let activated_output = self.apply_activation(&linear_output);
1846
1847 Ok(activated_output)
1848 }
1849
1850 fn apply_activation(&self, input: &Array1<f64>) -> Array1<f64> {
1852 input.mapv(|x| match self.activation {
1853 ActivationFunction::ReLU => x.max(0.0),
1854 ActivationFunction::LeakyReLU => {
1855 if x > 0.0 {
1856 x
1857 } else {
1858 0.01 * x
1859 }
1860 }
1861 ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
1862 ActivationFunction::Tanh => x.tanh(),
1863 ActivationFunction::Swish => x / (1.0 + (-x).exp()),
1864 ActivationFunction::GELU => {
1865 let sqrt_2_pi = (2.0 / std::f64::consts::PI).sqrt();
1867 let approx = sqrt_2_pi * (x + 0.044715 * x.powi(3));
1868 0.5 * x * (1.0 + approx.tanh())
1869 }
1870 })
1871 }
1872
1873 fn update_weights(&mut self, learning_rate: f64, _momentum: f64) {
1875 let weight_update = Array2::from_shape_fn(self.weights.dim(), |_| {
1877 (thread_rng().random::<f64>() - 0.5) * learning_rate * 0.001
1878 });
1879
1880 self.weights = &self.weights - &weight_update;
1881
1882 let bias_update = Array1::from_shape_fn(self.bias.len(), |_| {
1884 (thread_rng().random::<f64>() - 0.5) * learning_rate * 0.001
1885 });
1886
1887 self.bias = &self.bias - &bias_update;
1888 }
1889
1890 fn resize_input(&mut self, new_inputsize: usize) {
1892 let output_size = self.weights.nrows();
1893
1894 self.weights = Array2::from_shape_fn((output_size, new_inputsize), |_| {
1896 thread_rng().random::<f64>() * 0.01 - 0.005
1897 });
1898 }
1899}
1900
1901impl PerformancePredictionModel {
1902 fn new() -> Self {
1904 Self {
1905 performance_history: VecDeque::with_capacity(10000),
1906 prediction_horizon: Duration::from_secs(60),
1907 model_params: PredictionModelParams {
1908 model_order: 10,
1909 trend_weight: 0.3,
1910 seasonal_weight: 0.2,
1911 noise_variance: 0.01,
1912 },
1913 }
1914 }
1915
1916 fn update(&mut self, features: &Array1<f64>, performance: f64) {
1918 let prediction_point = PerformancePredictionPoint {
1919 features: features.clone(),
1920 actual_performance: performance,
1921 predicted_performance: 0.0, confidence_interval: (0.0, 0.0),
1923 timestamp: Instant::now(),
1924 };
1925
1926 if self.performance_history.len() >= 10000 {
1927 self.performance_history.pop_front();
1928 }
1929
1930 self.performance_history.push_back(prediction_point);
1931 }
1932
1933 fn predict(&self, _horizon: Duration) -> Result<PerformancePredictionPoint> {
1935 if self.performance_history.is_empty() {
1936 return Ok(PerformancePredictionPoint {
1937 features: Array1::zeros(1),
1938 actual_performance: 0.0,
1939 predicted_performance: 0.5,
1940 confidence_interval: (0.0, 1.0),
1941 timestamp: Instant::now(),
1942 });
1943 }
1944
1945 let recent_performance: Vec<f64> = self
1947 .performance_history
1948 .iter()
1949 .rev()
1950 .take(self.model_params.model_order)
1951 .map(|point| point.actual_performance)
1952 .collect();
1953
1954 let prediction = if recent_performance.len() >= 2 {
1955 let trend = (recent_performance[0] - recent_performance[recent_performance.len() - 1])
1956 / (recent_performance.len() - 1) as f64;
1957
1958 recent_performance[0] + trend * self.model_params.trend_weight
1959 } else {
1960 recent_performance.first().copied().unwrap_or(0.5)
1961 };
1962
1963 let confidence_width = self.model_params.noise_variance.sqrt() * 2.0;
1964
1965 Ok(PerformancePredictionPoint {
1966 features: Array1::zeros(1),
1967 actual_performance: 0.0,
1968 predicted_performance: prediction.clamp(0.0, 1.0),
1969 confidence_interval: (
1970 (prediction - confidence_width).clamp(0.0, f64::MAX),
1971 (prediction + confidence_width).clamp(0.0, 1.0),
1972 ),
1973 timestamp: Instant::now(),
1974 })
1975 }
1976}
1977
1978impl AdaptiveStreamingEngine {
1980 pub fn with_quantum_neural_optimization(config: AdaptiveStreamConfig) -> Self {
1982 Self::new(config)
1988 }
1989
1990 pub fn quantum_optimize(
1992 &mut self,
1993 performance_metrics: &PerformanceMetrics,
1994 ) -> Result<OptimizationConfig> {
1995 let mut quantum_optimizer = QuantumInspiredOptimizer::new();
1996 let optimized_config = quantum_optimizer.quantum_optimize_step(performance_metrics);
1997 Ok(optimized_config)
1998 }
1999
2000 pub fn neural_adapt(
2002 &mut self,
2003 features: &Array1<f64>,
2004 targets: &Array1<f64>,
2005 ) -> Result<LearningStatistics> {
2006 let mut neural_system = NeuralAdaptiveSystem::new();
2007 neural_system.learn_and_adapt(features, targets)?;
2008 Ok(neural_system.get_learning_stats())
2009 }
2010
2011 pub fn predict_future_performance(
2013 &self,
2014 horizon: Duration,
2015 ) -> Result<PerformancePredictionPoint> {
2016 let prediction_model = PerformancePredictionModel::new();
2017 prediction_model.predict(horizon)
2018 }
2019}
2020
2021#[cfg(test)]
2022mod tests {
2023 use super::*;
2024
2025 #[allow(dead_code)]
2026 fn create_test_chunk() -> StreamChunk {
2027 let data = Array2::from_shape_vec((10, 5), (0..50).map(|x| x as f64).collect()).unwrap();
2028 StreamChunk {
2029 data,
2030 timestamp: Instant::now(),
2031 metadata: ChunkMetadata {
2032 source_id: "test".to_string(),
2033 sequence_number: 1,
2034 characteristics: DataCharacteristics {
2035 moments: StatisticalMoments {
2036 mean: 25.0,
2037 variance: 100.0,
2038 skewness: 0.0,
2039 kurtosis: 0.0,
2040 },
2041 entropy: 1.0,
2042 trend: TrendIndicators {
2043 linear_slope: 1.0,
2044 trend_strength: 0.8,
2045 direction: TrendDirection::Increasing,
2046 seasonality: 0.2,
2047 },
2048 anomaly_score: 0.1,
2049 },
2050 },
2051 quality_score: 0.9,
2052 }
2053 }
2054
2055 #[test]
2056 fn test_adaptive_engine_creation() {
2057 let engine = create_adaptive_engine();
2058 assert!(engine.config.ml_optimization);
2059 }
2060
2061 #[test]
2062 fn test_statistical_moments_calculation() {
2063 let engine = create_adaptive_engine();
2064 let data = Array2::from_shape_vec(
2065 (5, 3),
2066 vec![
2067 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
2068 ],
2069 )
2070 .unwrap();
2071 let moments = engine.calculate_statistical_moments(&data);
2072 assert!(moments.is_ok());
2073 let moments = moments.unwrap();
2074 assert!(moments.mean > 0.0);
2075 assert!(moments.variance >= 0.0);
2076 }
2077}