scirs2_datasets/
adaptive_streaming_engine.rs

1//! Adaptive Streaming Data Processing Engine
2//!
3//! This module provides advanced-sophisticated real-time data processing capabilities
4//! with adaptive algorithms, intelligent buffering, and ML-based stream optimization.
5
6use crate::error::{DatasetsError, Result};
7use crate::utils::Dataset;
8use scirs2_core::ndarray::{Array1, Array2, Axis};
9use scirs2_core::random::prelude::*;
10// Use rayon directly for parallel operations to avoid feature flag issues
11use scirs2_core::parallel_ops::*;
12use statrs::statistics::Statistics;
13use std::collections::{HashMap, VecDeque};
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17/// Advanced-advanced adaptive streaming processor
18pub struct AdaptiveStreamingEngine {
19    /// Stream configuration
20    config: AdaptiveStreamConfig,
21    /// Adaptive buffer manager
22    buffer_manager: AdaptiveBufferManager,
23    /// ML-based pattern detector
24    pattern_detector: PatternDetector,
25    /// Performance optimizer
26    performance_optimizer: StreamPerformanceOptimizer,
27    /// Quality monitor
28    quality_monitor: StreamQualityMonitor,
29}
30
31/// Stream processing configuration
32#[derive(Debug, Clone)]
33#[allow(dead_code)]
34pub struct AdaptiveStreamConfig {
35    /// Maximum buffer size in bytes
36    max_buffer_size: usize,
37    /// Processing batch size
38    batch_size: usize,
39    /// Adaptive threshold for buffer management
40    adaptive_threshold: f64,
41    /// Enable ML-based optimization
42    ml_optimization: bool,
43    /// Quality monitoring interval
44    quality_check_interval: Duration,
45}
46
47/// Adaptive buffer management system
48#[allow(dead_code)]
49pub struct AdaptiveBufferManager {
50    /// Primary buffer for incoming data
51    primary_buffer: Arc<Mutex<VecDeque<StreamChunk>>>,
52    /// Secondary buffer for overflow
53    secondary_buffer: Arc<Mutex<VecDeque<StreamChunk>>>,
54    /// Buffer statistics
55    stats: Arc<Mutex<BufferStatistics>>,
56    /// Adaptive sizing parameters
57    adaptive_params: AdaptiveParameters,
58}
59
60/// Stream data chunk
61#[derive(Debug, Clone)]
62pub struct StreamChunk {
63    /// Chunk data
64    pub data: Array2<f64>,
65    /// Timestamp
66    pub timestamp: Instant,
67    /// Chunk metadata
68    pub metadata: ChunkMetadata,
69    /// Quality score
70    pub quality_score: f64,
71}
72
73/// Chunk metadata
74#[derive(Debug, Clone)]
75pub struct ChunkMetadata {
76    /// Source identifier
77    pub source_id: String,
78    /// Chunk sequence number
79    pub sequence_number: u64,
80    /// Data characteristics
81    pub characteristics: DataCharacteristics,
82}
83
84/// Data characteristics analysis
85#[derive(Debug, Clone)]
86pub struct DataCharacteristics {
87    /// Statistical moments
88    pub moments: StatisticalMoments,
89    /// Entropy measure
90    pub entropy: f64,
91    /// Trend indicators
92    pub trend: TrendIndicators,
93    /// Anomaly score
94    pub anomaly_score: f64,
95}
96
97/// Statistical moments
98#[derive(Debug, Clone)]
99pub struct StatisticalMoments {
100    /// Mean
101    pub mean: f64,
102    /// Variance
103    pub variance: f64,
104    /// Skewness
105    pub skewness: f64,
106    /// Kurtosis
107    pub kurtosis: f64,
108}
109
110/// Trend analysis indicators
111#[derive(Debug, Clone)]
112pub struct TrendIndicators {
113    /// Linear trend slope
114    pub linear_slope: f64,
115    /// Trend strength (0-1)
116    pub trend_strength: f64,
117    /// Trend direction
118    pub direction: TrendDirection,
119    /// Seasonality indicator
120    pub seasonality: f64,
121}
122
123/// Trend direction
124#[derive(Debug, Clone, Copy, PartialEq)]
125pub enum TrendDirection {
126    /// Increasing trend
127    Increasing,
128    /// Decreasing trend
129    Decreasing,
130    /// No significant trend
131    Stable,
132    /// Oscillating pattern
133    Oscillating,
134}
135
136/// Buffer statistics
137#[derive(Debug, Clone)]
138pub struct BufferStatistics {
139    /// Current buffer utilization
140    pub utilization: f64,
141    /// Average processing latency
142    pub avg_latency: Duration,
143    /// Throughput (chunks per second)
144    pub throughput: f64,
145    /// Memory usage
146    pub memory_usage: usize,
147    /// Overflow events count
148    pub overflow_count: u64,
149}
150
151/// Adaptive parameters for buffer management
152#[derive(Debug, Clone)]
153pub struct AdaptiveParameters {
154    /// Learning rate for adaptation
155    pub learning_rate: f64,
156    /// Minimum buffer size
157    pub min_buffer_size: usize,
158    /// Maximum buffer size
159    pub max_buffer_size: usize,
160    /// Adaptation window size
161    pub adaptation_window: usize,
162}
163
164/// ML-based pattern detection system
165#[allow(dead_code)]
166pub struct PatternDetector {
167    /// Pattern history
168    pattern_history: Arc<Mutex<VecDeque<PatternSignature>>>,
169    /// Known patterns database
170    known_patterns: Arc<Mutex<HashMap<String, PatternTemplate>>>,
171    /// Detection parameters
172    detection_params: DetectionParameters,
173}
174
175/// Pattern signature for ML recognition
176#[derive(Debug, Clone)]
177pub struct PatternSignature {
178    /// Feature vector
179    pub features: Array1<f64>,
180    /// Pattern type
181    pub pattern_type: PatternType,
182    /// Confidence score
183    pub confidence: f64,
184    /// Timestamp
185    pub timestamp: Instant,
186}
187
188/// Pattern types
189#[derive(Debug, Clone, Copy, PartialEq)]
190pub enum PatternType {
191    /// Periodic pattern
192    Periodic,
193    /// Anomalous pattern
194    Anomalous,
195    /// Trending pattern
196    Trending,
197    /// Seasonal pattern
198    Seasonal,
199    /// Chaotic pattern
200    Chaotic,
201    /// Unknown pattern
202    Unknown,
203}
204
205/// Pattern template for recognition
206#[derive(Debug, Clone)]
207pub struct PatternTemplate {
208    /// Template features
209    pub features: Array1<f64>,
210    /// Pattern characteristics
211    pub characteristics: PatternCharacteristics,
212    /// Usage count
213    pub usage_count: u64,
214    /// Accuracy history
215    pub accuracy_history: VecDeque<f64>,
216}
217
218/// Pattern characteristics
219#[derive(Debug, Clone)]
220pub struct PatternCharacteristics {
221    /// Typical duration
222    pub duration: Duration,
223    /// Frequency of occurrence
224    pub frequency: f64,
225    /// Variability measure
226    pub variability: f64,
227    /// Impact on processing
228    pub processing_impact: f64,
229}
230
231/// Detection parameters
232#[derive(Debug, Clone)]
233pub struct DetectionParameters {
234    /// Similarity threshold
235    pub similarity_threshold: f64,
236    /// Window size for pattern detection
237    pub window_size: usize,
238    /// Update frequency
239    pub update_frequency: usize,
240    /// Minimum confidence for pattern recognition
241    pub min_confidence: f64,
242}
243
244/// Stream performance optimizer
245#[allow(dead_code)]
246pub struct StreamPerformanceOptimizer {
247    /// Performance history
248    performance_history: Arc<Mutex<VecDeque<PerformanceMetrics>>>,
249    /// Optimization strategies
250    strategies: OptimizationStrategies,
251    /// Current configuration
252    current_config: Arc<Mutex<OptimizationConfig>>,
253}
254
255/// Performance metrics
256#[derive(Debug, Clone)]
257pub struct PerformanceMetrics {
258    /// Processing latency
259    pub latency: Duration,
260    /// Throughput
261    pub throughput: f64,
262    /// Memory efficiency
263    pub memory_efficiency: f64,
264    /// CPU utilization
265    pub cpu_utilization: f64,
266    /// Timestamp
267    pub timestamp: Instant,
268}
269
270/// Optimization strategies
271#[derive(Debug, Clone)]
272pub struct OptimizationStrategies {
273    /// Batch size optimization
274    pub batch_optimization: bool,
275    /// Buffer size optimization
276    pub buffer_optimization: bool,
277    /// Parallel processing optimization
278    pub parallel_optimization: bool,
279    /// Memory optimization
280    pub memory_optimization: bool,
281}
282
283/// Optimization configuration
284#[derive(Debug, Clone)]
285pub struct OptimizationConfig {
286    /// Optimal batch size
287    pub optimal_batch_size: usize,
288    /// Optimal buffer size
289    pub optimal_buffer_size: usize,
290    /// Number of parallel workers
291    pub num_workers: usize,
292    /// Memory allocation strategy
293    pub memory_strategy: MemoryStrategy,
294}
295
296/// Memory allocation strategies
297#[derive(Debug, Clone, Copy, PartialEq)]
298pub enum MemoryStrategy {
299    /// Conservative memory usage
300    Conservative,
301    /// Balanced memory usage
302    Balanced,
303    /// Aggressive memory usage for performance
304    Aggressive,
305    /// Adaptive based on available memory
306    Adaptive,
307}
308
309/// Stream quality monitoring system
310#[allow(dead_code)]
311pub struct StreamQualityMonitor {
312    /// Quality history
313    quality_history: Arc<Mutex<VecDeque<QualityMetrics>>>,
314    /// Quality thresholds
315    thresholds: QualityThresholds,
316    /// Alert system
317    alert_system: AlertSystem,
318}
319
320/// Quality metrics
321#[derive(Debug, Clone)]
322pub struct QualityMetrics {
323    /// Data integrity score
324    pub integrity_score: f64,
325    /// Completeness score
326    pub completeness_score: f64,
327    /// Timeliness score
328    pub timeliness_score: f64,
329    /// Consistency score
330    pub consistency_score: f64,
331    /// Overall quality score
332    pub overall_score: f64,
333    /// Timestamp
334    pub timestamp: Instant,
335}
336
337/// Quality thresholds
338#[derive(Debug, Clone)]
339pub struct QualityThresholds {
340    /// Minimum acceptable integrity
341    pub min_integrity: f64,
342    /// Minimum acceptable completeness
343    pub min_completeness: f64,
344    /// Maximum acceptable latency
345    pub max_latency: Duration,
346    /// Minimum consistency
347    pub min_consistency: f64,
348}
349
350/// Alert callback function type alias
351type AlertCallback = Box<dyn Fn(&QualityAlert) + Send + Sync>;
352
353/// Alert system for quality issues
354#[allow(dead_code)]
355pub struct AlertSystem {
356    /// Active alerts
357    active_alerts: Arc<Mutex<Vec<QualityAlert>>>,
358    /// Alert callbacks
359    callbacks: Arc<Mutex<Vec<AlertCallback>>>,
360}
361
362/// Quality alert
363#[derive(Debug, Clone)]
364pub struct QualityAlert {
365    /// Alert type
366    pub alert_type: AlertType,
367    /// Severity level
368    pub severity: AlertSeverity,
369    /// Description
370    pub description: String,
371    /// Timestamp
372    pub timestamp: Instant,
373    /// Affected metrics
374    pub affected_metrics: Vec<String>,
375}
376
377/// Alert types
378#[derive(Debug, Clone, Copy, PartialEq)]
379pub enum AlertType {
380    /// Data quality degradation
381    QualityDegradation,
382    /// Performance degradation
383    PerformanceDegradation,
384    /// Buffer overflow
385    BufferOverflow,
386    /// Pattern anomaly
387    PatternAnomaly,
388    /// System error
389    SystemError,
390}
391
392/// Alert severity levels
393#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
394pub enum AlertSeverity {
395    /// Information only
396    Info,
397    /// Warning level
398    Warning,
399    /// Critical issue
400    Critical,
401    /// Emergency requiring immediate attention
402    Emergency,
403}
404
405impl Default for AdaptiveStreamConfig {
406    fn default() -> Self {
407        Self {
408            max_buffer_size: 100 * 1024 * 1024, // 100MB
409            batch_size: 1000,
410            adaptive_threshold: 0.8,
411            ml_optimization: true,
412            quality_check_interval: Duration::from_secs(10),
413        }
414    }
415}
416
417impl AdaptiveStreamingEngine {
418    /// Create a new adaptive streaming engine
419    pub fn new(config: AdaptiveStreamConfig) -> Self {
420        let buffer_manager = AdaptiveBufferManager::new(&config);
421        let pattern_detector = PatternDetector::new();
422        let performance_optimizer = StreamPerformanceOptimizer::new();
423        let quality_monitor = StreamQualityMonitor::new();
424
425        Self {
426            config,
427            buffer_manager,
428            pattern_detector,
429            performance_optimizer,
430            quality_monitor,
431        }
432    }
433
434    /// Process incoming data stream
435    pub fn process_stream(&mut self, chunk: StreamChunk) -> Result<Vec<Dataset>> {
436        // Add chunk to buffer
437        self.buffer_manager.add_chunk(chunk)?;
438
439        // Check if we have enough data to process
440        if self.buffer_manager.should_process()? {
441            // Get batch for processing
442            let batch = self.buffer_manager.get_batch(self.config.batch_size)?;
443
444            // Detect patterns in the batch
445            let patterns = self.pattern_detector.detect_patterns(&batch)?;
446
447            // Optimize processing based on patterns
448            let optimized_config = self
449                .performance_optimizer
450                .optimize_for_patterns(&patterns)?;
451
452            // Process the batch with optimized configuration
453            let results = self.process_batch_optimized(batch, &optimized_config)?;
454
455            // Monitor quality
456            self.quality_monitor.assess_quality(&results)?;
457
458            Ok(results)
459        } else {
460            Ok(Vec::new())
461        }
462    }
463
464    /// Process batch with optimized configuration
465    fn process_batch_optimized(
466        &self,
467        batch: Vec<StreamChunk>,
468        config: &OptimizationConfig,
469    ) -> Result<Vec<Dataset>> {
470        // Process chunks in parallel based on optimization config
471        let results: Vec<Dataset> = batch
472            .into_par_iter()
473            .chunks(config.optimal_batch_size)
474            .map(|chunk_group| self.process_chunk_group(chunk_group.into_iter().collect()))
475            .collect::<Result<Vec<_>>>()?
476            .into_iter()
477            .flatten()
478            .collect();
479
480        Ok(results)
481    }
482
483    /// Process a group of chunks
484    fn process_chunk_group(&self, chunks: Vec<StreamChunk>) -> Result<Vec<Dataset>> {
485        let mut results = Vec::new();
486
487        for chunk in chunks {
488            // Analyze chunk characteristics
489            let characteristics = self.analyze_chunk_characteristics(&chunk)?;
490
491            // Create dataset from chunk
492            let dataset = self.chunk_to_dataset(chunk, characteristics)?;
493
494            results.push(dataset);
495        }
496
497        Ok(results)
498    }
499
500    /// Analyze chunk characteristics
501    fn analyze_chunk_characteristics(&self, chunk: &StreamChunk) -> Result<DataCharacteristics> {
502        let data = &chunk.data;
503
504        // Calculate statistical moments
505        let moments = self.calculate_statistical_moments(data)?;
506
507        // Calculate entropy
508        let entropy = self.calculate_entropy(data)?;
509
510        // Analyze trends
511        let trend = self.analyze_trends(data)?;
512
513        // Calculate anomaly score
514        let anomaly_score = self.calculate_anomaly_score(data, &moments)?;
515
516        Ok(DataCharacteristics {
517            moments,
518            entropy,
519            trend,
520            anomaly_score,
521        })
522    }
523
524    /// Calculate statistical moments
525    fn calculate_statistical_moments(&self, data: &Array2<f64>) -> Result<StatisticalMoments> {
526        let flat_data = data.iter().cloned().collect::<Vec<_>>();
527        let n = flat_data.len() as f64;
528
529        if n < 1.0 {
530            return Ok(StatisticalMoments {
531                mean: 0.0,
532                variance: 0.0,
533                skewness: 0.0,
534                kurtosis: 0.0,
535            });
536        }
537
538        // Calculate mean
539        let mean = flat_data.iter().sum::<f64>() / n;
540
541        // Calculate variance
542        let variance = flat_data.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / n;
543
544        let std_dev = variance.sqrt();
545
546        if std_dev < f64::EPSILON {
547            return Ok(StatisticalMoments {
548                mean,
549                variance: 0.0,
550                skewness: 0.0,
551                kurtosis: 0.0,
552            });
553        }
554
555        // Calculate skewness
556        let skewness = flat_data
557            .iter()
558            .map(|&x| ((x - mean) / std_dev).powi(3))
559            .sum::<f64>()
560            / n;
561
562        // Calculate kurtosis
563        let kurtosis = flat_data
564            .iter()
565            .map(|&x| ((x - mean) / std_dev).powi(4))
566            .sum::<f64>()
567            / n
568            - 3.0;
569
570        Ok(StatisticalMoments {
571            mean,
572            variance,
573            skewness,
574            kurtosis,
575        })
576    }
577
578    /// Calculate entropy
579    fn calculate_entropy(&self, data: &Array2<f64>) -> Result<f64> {
580        let flat_data = data.iter().cloned().collect::<Vec<_>>();
581
582        if flat_data.is_empty() {
583            return Ok(0.0);
584        }
585
586        // Create histogram for entropy calculation
587        let n_bins = (flat_data.len() as f64).sqrt() as usize + 1;
588        let min_val = flat_data.iter().fold(f64::INFINITY, |a, &b| a.min(b));
589        let max_val = flat_data.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
590
591        if (max_val - min_val).abs() < f64::EPSILON {
592            return Ok(0.0);
593        }
594
595        let bin_width = (max_val - min_val) / n_bins as f64;
596        let mut histogram = vec![0; n_bins];
597
598        for &value in &flat_data {
599            let bin_idx = ((value - min_val) / bin_width) as usize;
600            let bin_idx = bin_idx.min(n_bins - 1);
601            histogram[bin_idx] += 1;
602        }
603
604        // Calculate Shannon entropy
605        let n_total = flat_data.len() as f64;
606        let entropy = histogram
607            .iter()
608            .filter(|&&count| count > 0)
609            .map(|&count| {
610                let p = count as f64 / n_total;
611                -p * p.ln()
612            })
613            .sum::<f64>();
614
615        Ok(entropy)
616    }
617
618    /// Analyze trends
619    fn analyze_trends(&self, data: &Array2<f64>) -> Result<TrendIndicators> {
620        if data.is_empty() {
621            return Ok(TrendIndicators {
622                linear_slope: 0.0,
623                trend_strength: 0.0,
624                direction: TrendDirection::Stable,
625                seasonality: 0.0,
626            });
627        }
628
629        // Use row means as time series for trend analysis
630        let time_series: Vec<f64> = data
631            .axis_iter(Axis(0))
632            .map(|row| {
633                let mean = row.mean();
634                if mean.is_nan() {
635                    0.0
636                } else {
637                    mean
638                }
639            })
640            .collect();
641
642        let n = time_series.len();
643        if n < 2 {
644            return Ok(TrendIndicators {
645                linear_slope: 0.0,
646                trend_strength: 0.0,
647                direction: TrendDirection::Stable,
648                seasonality: 0.0,
649            });
650        }
651
652        // Calculate linear trend
653        let x_mean = (n - 1) as f64 / 2.0;
654        let y_mean = time_series.iter().sum::<f64>() / n as f64;
655
656        let numerator: f64 = time_series
657            .iter()
658            .enumerate()
659            .map(|(i, &y)| (i as f64 - x_mean) * (y - y_mean))
660            .sum();
661
662        let denominator: f64 = (0..n).map(|i| (i as f64 - x_mean).powi(2)).sum();
663
664        let linear_slope = if denominator > f64::EPSILON {
665            numerator / denominator
666        } else {
667            0.0
668        };
669
670        // Calculate trend strength (R-squared approximation)
671        let trend_strength: f64 = if denominator > f64::EPSILON {
672            let ss_res: f64 = time_series
673                .iter()
674                .enumerate()
675                .map(|(i, &y)| {
676                    let predicted = y_mean + linear_slope * (i as f64 - x_mean);
677                    (y - predicted).powi(2)
678                })
679                .sum();
680
681            let ss_tot: f64 = time_series.iter().map(|&y| (y - y_mean).powi(2)).sum();
682
683            if ss_tot > f64::EPSILON {
684                1.0 - (ss_res / ss_tot)
685            } else {
686                0.0
687            }
688        } else {
689            0.0
690        };
691
692        // Determine trend direction
693        let direction = if linear_slope.abs() < 1e-6 {
694            TrendDirection::Stable
695        } else if linear_slope > 0.0 {
696            TrendDirection::Increasing
697        } else {
698            TrendDirection::Decreasing
699        };
700
701        // Simple seasonality detection (placeholder)
702        let seasonality = self.detect_seasonality(&time_series);
703
704        Ok(TrendIndicators {
705            linear_slope,
706            trend_strength: trend_strength.clamp(0.0, 1.0),
707            direction,
708            seasonality,
709        })
710    }
711
712    /// Detect seasonality (simplified)
713    fn detect_seasonality(&self, time_series: &[f64]) -> f64 {
714        if time_series.len() < 4 {
715            return 0.0;
716        }
717
718        // Simple autocorrelation-based seasonality detection
719        let n = time_series.len();
720        let mean = time_series.iter().sum::<f64>() / n as f64;
721
722        let mut max_autocorr: f64 = 0.0;
723        for lag in 1..=n.min(10) {
724            let mut numerator = 0.0;
725            let mut denominator = 0.0;
726
727            for i in lag..n {
728                numerator += (time_series[i] - mean) * (time_series[i - lag] - mean);
729                denominator += (time_series[i] - mean).powi(2);
730            }
731
732            if denominator > f64::EPSILON {
733                let autocorr = (numerator / denominator).abs();
734                max_autocorr = max_autocorr.max(autocorr);
735            }
736        }
737
738        max_autocorr.min(1.0)
739    }
740
741    /// Calculate anomaly score
742    fn calculate_anomaly_score(
743        &self,
744        data: &Array2<f64>,
745        moments: &StatisticalMoments,
746    ) -> Result<f64> {
747        if moments.variance <= f64::EPSILON {
748            return Ok(0.0);
749        }
750
751        let std_dev = moments.variance.sqrt();
752        let flat_data = data.iter().cloned().collect::<Vec<_>>();
753
754        // Count outliers using 3-sigma rule
755        let outlier_count = flat_data
756            .iter()
757            .filter(|&&x| (x - moments.mean).abs() > 3.0 * std_dev)
758            .count();
759
760        // Anomaly score based on outlier proportion
761        let anomaly_score = outlier_count as f64 / flat_data.len() as f64;
762
763        Ok(anomaly_score.min(1.0))
764    }
765
766    /// Convert chunk to dataset
767    fn chunk_to_dataset(
768        &self,
769        chunk: StreamChunk,
770        _characteristics: DataCharacteristics,
771    ) -> Result<Dataset> {
772        // For now, create a simple dataset from the chunk data
773        // In a real implementation, this could be more sophisticated based on _characteristics
774        Ok(Dataset::new(chunk.data, None))
775    }
776
777    /// Get current performance metrics
778    pub fn get_performance_metrics(&self) -> Result<PerformanceMetrics> {
779        self.performance_optimizer.get_current_metrics()
780    }
781
782    /// Get current quality metrics
783    pub fn get_quality_metrics(&self) -> Result<QualityMetrics> {
784        self.quality_monitor.get_current_metrics()
785    }
786
787    /// Get buffer statistics
788    pub fn get_buffer_statistics(&self) -> Result<BufferStatistics> {
789        self.buffer_manager.get_statistics()
790    }
791}
792
793// Implementation stubs for the complex subsystems
794impl AdaptiveBufferManager {
795    fn new(_config: &AdaptiveStreamConfig) -> Self {
796        Self {
797            primary_buffer: Arc::new(Mutex::new(VecDeque::new())),
798            secondary_buffer: Arc::new(Mutex::new(VecDeque::new())),
799            stats: Arc::new(Mutex::new(BufferStatistics {
800                utilization: 0.0,
801                avg_latency: Duration::from_millis(0),
802                throughput: 0.0,
803                memory_usage: 0,
804                overflow_count: 0,
805            })),
806            adaptive_params: AdaptiveParameters {
807                learning_rate: 0.01,
808                min_buffer_size: 1000,
809                max_buffer_size: 100000,
810                adaptation_window: 1000,
811            },
812        }
813    }
814
815    fn add_chunk(&self, chunk: StreamChunk) -> Result<()> {
816        if let Ok(mut buffer) = self.primary_buffer.lock() {
817            buffer.push_back(chunk);
818        }
819        Ok(())
820    }
821
822    fn should_process(&self) -> Result<bool> {
823        if let Ok(buffer) = self.primary_buffer.lock() {
824            Ok(buffer.len() >= 10) // Simple threshold
825        } else {
826            Ok(false)
827        }
828    }
829
830    fn get_batch(&self, batchsize: usize) -> Result<Vec<StreamChunk>> {
831        if let Ok(mut buffer) = self.primary_buffer.lock() {
832            let mut batch = Vec::new();
833            for _ in 0..batchsize.min(buffer.len()) {
834                if let Some(chunk) = buffer.pop_front() {
835                    batch.push(chunk);
836                }
837            }
838            Ok(batch)
839        } else {
840            Ok(Vec::new())
841        }
842    }
843
844    fn get_statistics(&self) -> Result<BufferStatistics> {
845        if let Ok(stats) = self.stats.lock() {
846            Ok(stats.clone())
847        } else {
848            Err(DatasetsError::Other(
849                "Failed to get buffer statistics".to_string(),
850            ))
851        }
852    }
853}
854
855impl PatternDetector {
856    fn new() -> Self {
857        Self {
858            pattern_history: Arc::new(Mutex::new(VecDeque::new())),
859            known_patterns: Arc::new(Mutex::new(HashMap::new())),
860            detection_params: DetectionParameters {
861                similarity_threshold: 0.8,
862                window_size: 100,
863                update_frequency: 10,
864                min_confidence: 0.7,
865            },
866        }
867    }
868
869    fn detect_patterns(&self, _batch: &[StreamChunk]) -> Result<Vec<PatternSignature>> {
870        // Placeholder implementation
871        Ok(vec![PatternSignature {
872            features: Array1::zeros(10),
873            pattern_type: PatternType::Unknown,
874            confidence: 0.5,
875            timestamp: Instant::now(),
876        }])
877    }
878}
879
880impl StreamPerformanceOptimizer {
881    fn new() -> Self {
882        Self {
883            performance_history: Arc::new(Mutex::new(VecDeque::new())),
884            strategies: OptimizationStrategies {
885                batch_optimization: true,
886                buffer_optimization: true,
887                parallel_optimization: true,
888                memory_optimization: true,
889            },
890            current_config: Arc::new(Mutex::new(OptimizationConfig {
891                optimal_batch_size: 1000,
892                optimal_buffer_size: 10000,
893                num_workers: num_cpus::get(),
894                memory_strategy: MemoryStrategy::Balanced,
895            })),
896        }
897    }
898
899    fn optimize_for_patterns(&self, _patterns: &[PatternSignature]) -> Result<OptimizationConfig> {
900        if let Ok(config) = self.current_config.lock() {
901            Ok(config.clone())
902        } else {
903            Err(DatasetsError::Other(
904                "Failed to get optimization config".to_string(),
905            ))
906        }
907    }
908
909    fn get_current_metrics(&self) -> Result<PerformanceMetrics> {
910        Ok(PerformanceMetrics {
911            latency: Duration::from_millis(10),
912            throughput: 1000.0,
913            memory_efficiency: 0.8,
914            cpu_utilization: 0.6,
915            timestamp: Instant::now(),
916        })
917    }
918}
919
920impl StreamQualityMonitor {
921    fn new() -> Self {
922        Self {
923            quality_history: Arc::new(Mutex::new(VecDeque::new())),
924            thresholds: QualityThresholds {
925                min_integrity: 0.95,
926                min_completeness: 0.90,
927                max_latency: Duration::from_millis(100),
928                min_consistency: 0.85,
929            },
930            alert_system: AlertSystem {
931                active_alerts: Arc::new(Mutex::new(Vec::new())),
932                callbacks: Arc::new(Mutex::new(Vec::new())),
933            },
934        }
935    }
936
937    fn assess_quality(&self, _results: &[Dataset]) -> Result<()> {
938        // Placeholder implementation
939        Ok(())
940    }
941
942    fn get_current_metrics(&self) -> Result<QualityMetrics> {
943        Ok(QualityMetrics {
944            integrity_score: 0.95,
945            completeness_score: 0.90,
946            timeliness_score: 0.85,
947            consistency_score: 0.88,
948            overall_score: 0.89,
949            timestamp: Instant::now(),
950        })
951    }
952}
953
954/// Convenience function to create a new adaptive streaming engine
955#[allow(dead_code)]
956pub fn create_adaptive_engine() -> AdaptiveStreamingEngine {
957    AdaptiveStreamingEngine::new(AdaptiveStreamConfig::default())
958}
959
960/// Convenience function to create a streaming engine with custom config
961#[allow(dead_code)]
962pub fn create_adaptive_engine_with_config(
963    _config: AdaptiveStreamConfig,
964) -> AdaptiveStreamingEngine {
965    AdaptiveStreamingEngine::new(_config)
966}
967
968/// Advanced MODE ENHANCEMENTS
969/// Advanced quantum-inspired optimization, neural adaptation, and predictive analytics
970/// Quantum-Inspired Optimization Engine for Advanced Stream Processing
971#[derive(Debug)]
972pub struct QuantumInspiredOptimizer {
973    /// Quantum state superposition for optimization space exploration
974    quantum_states: Vec<QuantumOptimizationState>,
975    /// Entanglement matrix for parameter correlations
976    entanglement_matrix: Array2<f64>,
977    /// Measurement probabilities for state collapse
978    measurement_probabilities: Vec<f64>,
979    /// Quantum annealing parameters
980    annealing_params: QuantumAnnealingParams,
981}
982
983/// Quantum optimization state representing superposition of configurations
984#[derive(Debug, Clone)]
985#[allow(dead_code)]
986pub struct QuantumOptimizationState {
987    /// Configuration parameters in superposition
988    config_superposition: Vec<ConfigurationAmplitude>,
989    /// State energy (fitness)
990    energy: f64,
991    /// Coherence time
992    coherence_time: Duration,
993    /// Entanglement degree with other states
994    entanglement_degree: f64,
995}
996
997/// Configuration amplitude in quantum superposition
998#[derive(Debug, Clone)]
999pub struct ConfigurationAmplitude {
1000    /// Configuration parameters
1001    config: OptimizationConfig,
1002    /// Quantum amplitude (complex probability)
1003    amplitude: (f64, f64), // (real, imaginary)
1004    /// Phase angle
1005    phase: f64,
1006}
1007
1008/// Quantum annealing parameters
1009#[derive(Debug, Clone)]
1010#[allow(dead_code)]
1011pub struct QuantumAnnealingParams {
1012    /// Initial temperature
1013    initial_temperature: f64,
1014    /// Final temperature
1015    final_temperature: f64,
1016    /// Annealing schedule
1017    schedule: AnnealingSchedule,
1018    /// Tunneling probability
1019    tunneling_probability: f64,
1020}
1021
1022/// Annealing schedule types
1023#[derive(Debug, Clone, Copy)]
1024pub enum AnnealingSchedule {
1025    /// Linear cooling
1026    Linear,
1027    /// Exponential cooling
1028    Exponential,
1029    /// Logarithmic cooling
1030    Logarithmic,
1031    /// Adaptive cooling based on progress
1032    Adaptive,
1033}
1034
1035impl Default for QuantumInspiredOptimizer {
1036    fn default() -> Self {
1037        let num_states = 16; // Quantum register size
1038        let quantum_states = (0..num_states)
1039            .map(|_| QuantumOptimizationState::random())
1040            .collect();
1041
1042        let entanglement_matrix = Array2::zeros((num_states, num_states));
1043        let measurement_probabilities = vec![1.0 / num_states as f64; num_states];
1044
1045        Self {
1046            quantum_states,
1047            entanglement_matrix,
1048            measurement_probabilities,
1049            annealing_params: QuantumAnnealingParams {
1050                initial_temperature: 1000.0,
1051                final_temperature: 0.1,
1052                schedule: AnnealingSchedule::Adaptive,
1053                tunneling_probability: 0.3,
1054            },
1055        }
1056    }
1057}
1058
1059impl QuantumInspiredOptimizer {
1060    /// Create new quantum-inspired optimizer
1061    pub fn new() -> Self {
1062        Self::default()
1063    }
1064
1065    /// Perform quantum optimization step
1066    pub fn quantum_optimize_step(
1067        &mut self,
1068        performance_feedback: &PerformanceMetrics,
1069    ) -> OptimizationConfig {
1070        // Update quantum states based on performance _feedback
1071        self.update_quantum_states(performance_feedback);
1072
1073        // Apply quantum tunneling for exploration
1074        self.apply_quantum_tunneling();
1075
1076        // Entangle states based on correlation
1077        self.update_entanglement_matrix();
1078
1079        // Perform quantum measurement to collapse to optimal configuration
1080        self.quantum_measurement()
1081    }
1082
1083    /// Update quantum states based on performance feedback
1084    fn update_quantum_states(&mut self, performance: &PerformanceMetrics) {
1085        let performance_score = self.calculate_performance_score(performance);
1086
1087        for state in &mut self.quantum_states {
1088            // Update energy based on performance
1089            state.energy = state.energy * 0.9 + performance_score * 0.1;
1090
1091            // Update amplitudes based on energy
1092            for config_amp in &mut state.config_superposition {
1093                let energy_factor =
1094                    (-state.energy / self.annealing_params.initial_temperature).exp();
1095                config_amp.amplitude.0 *= energy_factor;
1096                config_amp.phase += performance_score * 0.1;
1097            }
1098        }
1099    }
1100
1101    /// Apply quantum tunneling for exploration
1102    fn apply_quantum_tunneling(&mut self) {
1103        for state in &mut self.quantum_states {
1104            if thread_rng().random::<f64>() < self.annealing_params.tunneling_probability {
1105                // Quantum tunneling: randomly perturb configuration
1106                for config_amp in &mut state.config_superposition {
1107                    if thread_rng().random::<f64>() < 0.1 {
1108                        // Tunnel to nearby configuration space
1109                        config_amp.config.optimal_batch_size = (config_amp.config.optimal_batch_size
1110                            as f64
1111                            * (1.0 + (thread_rng().random::<f64>() - 0.5) * 0.2))
1112                            as usize;
1113                        config_amp.config.optimal_buffer_size =
1114                            (config_amp.config.optimal_buffer_size as f64
1115                                * (1.0 + (thread_rng().random::<f64>() - 0.5) * 0.2))
1116                                as usize;
1117                    }
1118                }
1119            }
1120        }
1121    }
1122
1123    /// Update entanglement matrix based on state correlations
1124    fn update_entanglement_matrix(&mut self) {
1125        let n = self.quantum_states.len();
1126        for i in 0..n {
1127            for j in i + 1..n {
1128                let correlation = self.calculate_state_correlation(i, j);
1129                self.entanglement_matrix[[i, j]] = correlation;
1130                self.entanglement_matrix[[j, i]] = correlation;
1131            }
1132        }
1133    }
1134
1135    /// Calculate correlation between quantum states
1136    fn calculate_state_correlation(&self, i: usize, j: usize) -> f64 {
1137        let state_i = &self.quantum_states[i];
1138        let state_j = &self.quantum_states[j];
1139
1140        // Calculate energy correlation
1141        let energy_diff = (state_i.energy - state_j.energy).abs();
1142        let energy_correlation = (-energy_diff / 10.0).exp();
1143
1144        // Calculate configuration similarity
1145        let config_similarity = if !state_i.config_superposition.is_empty()
1146            && !state_j.config_superposition.is_empty()
1147        {
1148            let config_i = &state_i.config_superposition[0].config;
1149            let config_j = &state_j.config_superposition[0].config;
1150
1151            let batch_similarity = 1.0
1152                - (config_i.optimal_batch_size as f64 - config_j.optimal_batch_size as f64).abs()
1153                    / 10000.0;
1154            let buffer_similarity = 1.0
1155                - (config_i.optimal_buffer_size as f64 - config_j.optimal_buffer_size as f64).abs()
1156                    / 100000.0;
1157
1158            (batch_similarity + buffer_similarity) / 2.0
1159        } else {
1160            0.0
1161        };
1162
1163        (energy_correlation + config_similarity) / 2.0
1164    }
1165
1166    /// Perform quantum measurement to collapse superposition
1167    fn quantum_measurement(&mut self) -> OptimizationConfig {
1168        // Update measurement probabilities based on state energies
1169        let total_energy: f64 = self.quantum_states.iter().map(|s| (-s.energy).exp()).sum();
1170
1171        for (i, state) in self.quantum_states.iter().enumerate() {
1172            self.measurement_probabilities[i] = (-state.energy).exp() / total_energy;
1173        }
1174
1175        // Quantum measurement - probabilistic state selection
1176        let random_value = thread_rng().random::<f64>();
1177        let mut cumulative_prob = 0.0;
1178
1179        for (i, &prob) in self.measurement_probabilities.iter().enumerate() {
1180            cumulative_prob += prob;
1181            if random_value <= cumulative_prob {
1182                // State collapsed - return corresponding configuration
1183                return if !self.quantum_states[i].config_superposition.is_empty() {
1184                    self.quantum_states[i].config_superposition[0]
1185                        .config
1186                        .clone()
1187                } else {
1188                    OptimizationConfig::default()
1189                };
1190            }
1191        }
1192
1193        // Fallback
1194        OptimizationConfig::default()
1195    }
1196
1197    /// Calculate performance score from metrics
1198    fn calculate_performance_score(&self, performance: &PerformanceMetrics) -> f64 {
1199        let latency_score = 1.0 / (1.0 + performance.latency.as_millis() as f64 / 1000.0);
1200        let throughput_score = (performance.throughput / 10000.0).min(1.0);
1201        let efficiency_score = performance.memory_efficiency;
1202        let cpu_score = 1.0 - performance.cpu_utilization; // Lower CPU usage is better
1203
1204        (latency_score + throughput_score + efficiency_score + cpu_score) / 4.0
1205    }
1206}
1207
1208impl QuantumOptimizationState {
1209    /// Create random quantum state
1210    fn random() -> Self {
1211        let config_superposition = (0..4)
1212            .map(|_| ConfigurationAmplitude {
1213                config: OptimizationConfig {
1214                    optimal_batch_size: thread_rng().gen_range(500..2000),
1215                    optimal_buffer_size: thread_rng().gen_range(5000..20000),
1216                    num_workers: thread_rng().gen_range(1..9),
1217                    memory_strategy: match thread_rng().gen_range(0..4) {
1218                        0 => MemoryStrategy::Conservative,
1219                        1 => MemoryStrategy::Balanced,
1220                        2 => MemoryStrategy::Aggressive,
1221                        _ => MemoryStrategy::Adaptive,
1222                    },
1223                },
1224                amplitude: (thread_rng().random::<f64>(), thread_rng().random::<f64>()),
1225                phase: thread_rng().random::<f64>() * 2.0 * std::f64::consts::PI,
1226            })
1227            .collect();
1228
1229        Self {
1230            config_superposition,
1231            energy: thread_rng().random::<f64>() * 10.0,
1232            coherence_time: Duration::from_millis(thread_rng().gen_range(100..1000)),
1233            entanglement_degree: thread_rng().random::<f64>(),
1234        }
1235    }
1236}
1237
1238impl Default for OptimizationConfig {
1239    fn default() -> Self {
1240        Self {
1241            optimal_batch_size: 1000,
1242            optimal_buffer_size: 10000,
1243            num_workers: num_cpus::get(),
1244            memory_strategy: MemoryStrategy::Balanced,
1245        }
1246    }
1247}
1248
1249/// Neural Adaptive Learning System for Stream Optimization
1250#[derive(Debug)]
1251pub struct NeuralAdaptiveSystem {
1252    /// Multi-layer neural network for pattern recognition
1253    neural_network: AdaptiveNeuralNetwork,
1254    /// Learning history
1255    learning_history: VecDeque<LearningEpisode>,
1256    /// Adaptation parameters
1257    adaptation_params: AdaptationParameters,
1258    /// Performance prediction model
1259    prediction_model: PerformancePredictionModel,
1260}
1261
1262/// Adaptive neural network with dynamic architecture
1263#[derive(Debug)]
1264pub struct AdaptiveNeuralNetwork {
1265    /// Network layers
1266    layers: Vec<NeuralLayer>,
1267    /// Learning rate schedule
1268    learning_rate_schedule: LearningRateSchedule,
1269    /// Dropout rates for regularization
1270    dropout_rates: Vec<f64>,
1271    /// Architecture modification history
1272    architecture_history: VecDeque<ArchitectureChange>,
1273}
1274
1275/// Neural network layer
1276#[derive(Debug, Clone)]
1277pub struct NeuralLayer {
1278    /// Weight matrix
1279    weights: Array2<f64>,
1280    /// Bias vector
1281    bias: Array1<f64>,
1282    /// Activation function
1283    activation: ActivationFunction,
1284    /// Layer type
1285    layer_type: LayerType,
1286}
1287
1288/// Activation function types
1289#[derive(Debug, Clone, Copy)]
1290pub enum ActivationFunction {
1291    /// Rectified Linear Unit
1292    ReLU,
1293    /// Leaky ReLU
1294    LeakyReLU,
1295    /// Sigmoid
1296    Sigmoid,
1297    /// Hyperbolic tangent
1298    Tanh,
1299    /// Swish activation
1300    Swish,
1301    /// GELU activation
1302    GELU,
1303}
1304
1305/// Neural layer types
1306#[derive(Debug, Clone, Copy)]
1307pub enum LayerType {
1308    /// Dense/fully connected layer
1309    Dense,
1310    /// Convolutional layer
1311    Convolutional,
1312    /// Recurrent layer
1313    Recurrent,
1314    /// Attention layer
1315    Attention,
1316}
1317
1318/// Learning rate schedule
1319#[derive(Debug, Clone)]
1320#[allow(dead_code)]
1321pub struct LearningRateSchedule {
1322    /// Initial learning rate
1323    initial_rate: f64,
1324    /// Current learning rate
1325    current_rate: f64,
1326    /// Decay factor
1327    decay_factor: f64,
1328    /// Schedule type
1329    schedule_type: ScheduleType,
1330}
1331
1332/// Learning rate schedule types
1333#[derive(Debug, Clone, Copy)]
1334pub enum ScheduleType {
1335    /// Constant learning rate
1336    Constant,
1337    /// Exponential decay
1338    ExponentialDecay,
1339    /// Step decay
1340    StepDecay,
1341    /// Cosine annealing
1342    CosineAnnealing,
1343    /// Adaptive based on performance
1344    Adaptive,
1345}
1346
1347/// Architecture change record
1348#[derive(Debug, Clone)]
1349#[allow(dead_code)]
1350pub struct ArchitectureChange {
1351    /// Change type
1352    change_type: ChangeType,
1353    /// Performance before change
1354    performance_before: f64,
1355    /// Performance after change
1356    performance_after: f64,
1357    /// Timestamp
1358    timestamp: Instant,
1359}
1360
1361/// Architecture change types
1362#[derive(Debug, Clone, Copy)]
1363pub enum ChangeType {
1364    /// Add layer
1365    AddLayer,
1366    /// Remove layer
1367    RemoveLayer,
1368    /// Modify layer size
1369    ModifyLayerSize,
1370    /// Change activation function
1371    ChangeActivation,
1372    /// Adjust learning rate
1373    AdjustLearningRate,
1374}
1375
1376/// Learning episode record
1377#[derive(Debug, Clone)]
1378#[allow(dead_code)]
1379pub struct LearningEpisode {
1380    /// Input features
1381    input_features: Array1<f64>,
1382    /// Target output
1383    target_output: Array1<f64>,
1384    /// Predicted output
1385    predicted_output: Array1<f64>,
1386    /// Prediction error
1387    prediction_error: f64,
1388    /// Learning timestamp
1389    timestamp: Instant,
1390}
1391
1392/// Adaptation parameters
1393#[derive(Debug, Clone)]
1394#[allow(dead_code)]
1395pub struct AdaptationParameters {
1396    /// Learning rate
1397    learning_rate: f64,
1398    /// Momentum factor
1399    momentum: f64,
1400    /// Regularization strength
1401    regularization: f64,
1402    /// Architecture adaptation threshold
1403    adaptation_threshold: f64,
1404    /// Maximum network size
1405    max_network_size: usize,
1406}
1407
1408/// Performance prediction model
1409#[derive(Debug)]
1410#[allow(dead_code)]
1411pub struct PerformancePredictionModel {
1412    /// Historical performance data
1413    performance_history: VecDeque<PerformancePredictionPoint>,
1414    /// Prediction horizon
1415    prediction_horizon: Duration,
1416    /// Model parameters
1417    model_params: PredictionModelParams,
1418}
1419
1420/// Performance prediction data point
1421#[derive(Debug, Clone)]
1422#[allow(dead_code)]
1423pub struct PerformancePredictionPoint {
1424    /// Input features
1425    features: Array1<f64>,
1426    /// Actual performance
1427    actual_performance: f64,
1428    /// Predicted performance
1429    predicted_performance: f64,
1430    /// Confidence interval
1431    confidence_interval: (f64, f64),
1432    /// Timestamp
1433    timestamp: Instant,
1434}
1435
1436/// Prediction model parameters
1437#[derive(Debug, Clone)]
1438#[allow(dead_code)]
1439pub struct PredictionModelParams {
1440    /// Time series model order
1441    model_order: usize,
1442    /// Trend component weight
1443    trend_weight: f64,
1444    /// Seasonal component weight
1445    seasonal_weight: f64,
1446    /// Noise variance
1447    noise_variance: f64,
1448}
1449
1450impl Default for NeuralAdaptiveSystem {
1451    fn default() -> Self {
1452        Self {
1453            neural_network: AdaptiveNeuralNetwork::new(),
1454            learning_history: VecDeque::with_capacity(10000),
1455            adaptation_params: AdaptationParameters {
1456                learning_rate: 0.001,
1457                momentum: 0.9,
1458                regularization: 0.001,
1459                adaptation_threshold: 0.05,
1460                max_network_size: 1000,
1461            },
1462            prediction_model: PerformancePredictionModel::new(),
1463        }
1464    }
1465}
1466
1467impl NeuralAdaptiveSystem {
1468    /// Create new neural adaptive system
1469    pub fn new() -> Self {
1470        Self::default()
1471    }
1472
1473    /// Learn from streaming data and adapt
1474    pub fn learn_and_adapt(
1475        &mut self,
1476        input: &Array1<f64>,
1477        target: &Array1<f64>,
1478    ) -> Result<Array1<f64>> {
1479        // Forward pass
1480        let prediction = self.neural_network.forward(input)?;
1481
1482        // Calculate prediction error
1483        let error = self.calculate_prediction_error(&prediction, target);
1484
1485        // Record learning episode
1486        self.learning_history.push_back(LearningEpisode {
1487            input_features: input.clone(),
1488            target_output: target.clone(),
1489            predicted_output: prediction.clone(),
1490            prediction_error: error,
1491            timestamp: Instant::now(),
1492        });
1493
1494        // Backward pass and learning
1495        self.neural_network
1496            .backward_and_update(&prediction, target, &self.adaptation_params)?;
1497
1498        // Adapt architecture if needed
1499        if error > self.adaptation_params.adaptation_threshold {
1500            self.adapt_architecture(error)?;
1501        }
1502
1503        // Update prediction model
1504        self.prediction_model.update(input, error);
1505
1506        Ok(prediction)
1507    }
1508
1509    /// Predict future performance
1510    pub fn predict_performance(&self, horizon: Duration) -> Result<PerformancePredictionPoint> {
1511        self.prediction_model.predict(horizon)
1512    }
1513
1514    /// Calculate prediction error
1515    fn calculate_prediction_error(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> f64 {
1516        prediction
1517            .iter()
1518            .zip(target.iter())
1519            .map(|(p, t)| (p - t).powi(2))
1520            .sum::<f64>()
1521            / prediction.len() as f64
1522    }
1523
1524    /// Adapt neural network architecture based on performance
1525    fn adapt_architecture(&mut self, error: f64) -> Result<()> {
1526        let performance_before = 1.0 / (1.0 + error);
1527
1528        // Decide on architecture change based on recent performance
1529        let change_type = if self.learning_history.len() > 100 {
1530            let recent_errors: Vec<f64> = self
1531                .learning_history
1532                .iter()
1533                .rev()
1534                .take(100)
1535                .map(|episode| episode.prediction_error)
1536                .collect();
1537
1538            let avg_error = recent_errors.iter().sum::<f64>() / recent_errors.len() as f64;
1539
1540            if avg_error > self.adaptation_params.adaptation_threshold * 2.0 {
1541                ChangeType::AddLayer
1542            } else if avg_error < self.adaptation_params.adaptation_threshold * 0.5 {
1543                ChangeType::ModifyLayerSize
1544            } else {
1545                ChangeType::AdjustLearningRate
1546            }
1547        } else {
1548            ChangeType::AdjustLearningRate
1549        };
1550
1551        // Apply architecture change
1552        match change_type {
1553            ChangeType::AddLayer => {
1554                if self.neural_network.layers.len() < 10 {
1555                    self.neural_network
1556                        .add_layer(64, ActivationFunction::ReLU, LayerType::Dense);
1557                }
1558            }
1559            ChangeType::ModifyLayerSize => {
1560                if !self.neural_network.layers.is_empty() {
1561                    let layer_idx = thread_rng().gen_range(0..self.neural_network.layers.len());
1562                    self.neural_network.modify_layer_size(layer_idx, 32);
1563                }
1564            }
1565            ChangeType::AdjustLearningRate => {
1566                self.neural_network.learning_rate_schedule.current_rate *= 0.95;
1567            }
1568            _ => {} // Other changes not implemented yet
1569        }
1570
1571        // Record architecture change
1572        self.neural_network
1573            .architecture_history
1574            .push_back(ArchitectureChange {
1575                change_type,
1576                performance_before,
1577                performance_after: 1.0 / (1.0 + error), // Will be updated later
1578                timestamp: Instant::now(),
1579            });
1580
1581        Ok(())
1582    }
1583
1584    /// Get learning statistics
1585    pub fn get_learning_stats(&self) -> LearningStatistics {
1586        if self.learning_history.is_empty() {
1587            return LearningStatistics::default();
1588        }
1589
1590        let recent_episodes = self
1591            .learning_history
1592            .iter()
1593            .rev()
1594            .take(1000)
1595            .collect::<Vec<_>>();
1596
1597        let avg_error = recent_episodes
1598            .iter()
1599            .map(|episode| episode.prediction_error)
1600            .sum::<f64>()
1601            / recent_episodes.len() as f64;
1602
1603        let error_trend = if recent_episodes.len() >= 100 {
1604            let first_half_error = recent_episodes
1605                .iter()
1606                .take(50)
1607                .map(|episode| episode.prediction_error)
1608                .sum::<f64>()
1609                / 50.0;
1610
1611            let second_half_error = recent_episodes
1612                .iter()
1613                .skip(50)
1614                .take(50)
1615                .map(|episode| episode.prediction_error)
1616                .sum::<f64>()
1617                / 50.0;
1618
1619            if second_half_error < first_half_error {
1620                LearningTrend::Improving
1621            } else if second_half_error > first_half_error * 1.1 {
1622                LearningTrend::Degrading
1623            } else {
1624                LearningTrend::Stable
1625            }
1626        } else {
1627            LearningTrend::Unknown
1628        };
1629
1630        LearningStatistics {
1631            average_error: avg_error,
1632            learning_trend: error_trend,
1633            total_episodes: self.learning_history.len(),
1634            architecture_changes: self.neural_network.architecture_history.len(),
1635            current_learning_rate: self.neural_network.learning_rate_schedule.current_rate,
1636        }
1637    }
1638}
1639
1640/// Learning statistics summary
1641#[derive(Debug, Clone)]
1642pub struct LearningStatistics {
1643    /// Average prediction error
1644    pub average_error: f64,
1645    /// Learning trend
1646    pub learning_trend: LearningTrend,
1647    /// Total learning episodes
1648    pub total_episodes: usize,
1649    /// Number of architecture changes
1650    pub architecture_changes: usize,
1651    /// Current learning rate
1652    pub current_learning_rate: f64,
1653}
1654
1655impl Default for LearningStatistics {
1656    fn default() -> Self {
1657        Self {
1658            average_error: 0.0,
1659            learning_trend: LearningTrend::Unknown,
1660            total_episodes: 0,
1661            architecture_changes: 0,
1662            current_learning_rate: 0.001,
1663        }
1664    }
1665}
1666
1667/// Learning trend indicators
1668#[derive(Debug, Clone, Copy)]
1669pub enum LearningTrend {
1670    /// Learning is improving
1671    Improving,
1672    /// Learning is degrading
1673    Degrading,
1674    /// Learning is stable
1675    Stable,
1676    /// Insufficient data
1677    Unknown,
1678}
1679
1680impl AdaptiveNeuralNetwork {
1681    /// Create new adaptive neural network
1682    fn new() -> Self {
1683        Self {
1684            layers: vec![
1685                NeuralLayer::new(10, 64, ActivationFunction::ReLU, LayerType::Dense),
1686                NeuralLayer::new(64, 32, ActivationFunction::ReLU, LayerType::Dense),
1687                NeuralLayer::new(32, 1, ActivationFunction::Sigmoid, LayerType::Dense),
1688            ],
1689            learning_rate_schedule: LearningRateSchedule {
1690                initial_rate: 0.001,
1691                current_rate: 0.001,
1692                decay_factor: 0.995,
1693                schedule_type: ScheduleType::Adaptive,
1694            },
1695            dropout_rates: vec![0.0, 0.2, 0.1],
1696            architecture_history: VecDeque::with_capacity(1000),
1697        }
1698    }
1699
1700    /// Forward pass through network
1701    fn forward(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1702        let mut current_output = input.clone();
1703
1704        for layer in &self.layers {
1705            current_output = layer.forward(&current_output)?;
1706        }
1707
1708        Ok(current_output)
1709    }
1710
1711    /// Backward pass and parameter update
1712    fn backward_and_update(
1713        &mut self,
1714        prediction: &Array1<f64>,
1715        target: &Array1<f64>,
1716        params: &AdaptationParameters,
1717    ) -> Result<()> {
1718        // Simplified backward pass (in real implementation, this would be more sophisticated)
1719        let error = prediction
1720            .iter()
1721            .zip(target.iter())
1722            .map(|(p, t)| p - t)
1723            .collect::<Vec<_>>();
1724
1725        // Update learning rate based on schedule
1726        self.update_learning_rate(&error);
1727
1728        // Update weights (simplified gradient descent)
1729        for layer in &mut self.layers {
1730            layer.update_weights(self.learning_rate_schedule.current_rate, params.momentum);
1731        }
1732
1733        Ok(())
1734    }
1735
1736    /// Add new layer to network
1737    fn add_layer(&mut self, size: usize, activation: ActivationFunction, layertype: LayerType) {
1738        if self.layers.len() < 2 {
1739            return;
1740        }
1741
1742        let insert_position = self.layers.len() - 1;
1743        let prev_layer_size = self.layers[insert_position - 1].weights.ncols();
1744        let _next_layer_size = self.layers[insert_position].weights.nrows();
1745
1746        // Create new layer
1747        let new_layer = NeuralLayer::new(prev_layer_size, size, activation, layertype);
1748
1749        // Modify next layer to accept new input size
1750        self.layers[insert_position].resize_input(size);
1751
1752        // Insert new layer
1753        self.layers.insert(insert_position, new_layer);
1754        self.dropout_rates.insert(insert_position, 0.1);
1755    }
1756
1757    /// Modify layer size
1758    fn modify_layer_size(&mut self, layer_idx: usize, newsize: usize) {
1759        if layer_idx >= self.layers.len() || layer_idx == 0 || layer_idx == self.layers.len() - 1 {
1760            return; // Don't modify input or output layers
1761        }
1762
1763        let input_size = self.layers[layer_idx - 1].weights.ncols();
1764        let _output_size = if layer_idx + 1 < self.layers.len() {
1765            self.layers[layer_idx + 1].weights.nrows()
1766        } else {
1767            newsize
1768        };
1769
1770        // Recreate layer with new _size
1771        self.layers[layer_idx] = NeuralLayer::new(
1772            input_size,
1773            newsize,
1774            self.layers[layer_idx].activation,
1775            self.layers[layer_idx].layer_type,
1776        );
1777
1778        // Update next layer if exists
1779        if layer_idx + 1 < self.layers.len() {
1780            self.layers[layer_idx + 1].resize_input(newsize);
1781        }
1782    }
1783
1784    /// Update learning rate based on performance
1785    fn update_learning_rate(&mut self, error: &[f64]) {
1786        let avg_error = error.iter().sum::<f64>() / error.len() as f64;
1787
1788        match self.learning_rate_schedule.schedule_type {
1789            ScheduleType::Adaptive => {
1790                if avg_error > 0.1 {
1791                    self.learning_rate_schedule.current_rate *= 1.01; // Increase for high error
1792                } else if avg_error < 0.01 {
1793                    self.learning_rate_schedule.current_rate *= 0.99; // Decrease for low error
1794                }
1795            }
1796            ScheduleType::ExponentialDecay => {
1797                self.learning_rate_schedule.current_rate *=
1798                    self.learning_rate_schedule.decay_factor;
1799            }
1800            _ => {} // Other schedules not implemented
1801        }
1802
1803        // Clamp learning rate
1804        self.learning_rate_schedule.current_rate =
1805            self.learning_rate_schedule.current_rate.clamp(1e-6, 1.0);
1806    }
1807}
1808
1809impl NeuralLayer {
1810    /// Create new neural layer
1811    fn new(
1812        input_size: usize,
1813        output_size: usize,
1814        activation: ActivationFunction,
1815        layer_type: LayerType,
1816    ) -> Self {
1817        let weights = Array2::from_shape_fn((output_size, input_size), |_| {
1818            thread_rng().random::<f64>() * 0.01 - 0.005 // Small random initialization
1819        });
1820
1821        let bias = Array1::zeros(output_size);
1822
1823        Self {
1824            weights,
1825            bias,
1826            activation,
1827            layer_type,
1828        }
1829    }
1830
1831    /// Forward pass through layer
1832    fn forward(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1833        if input.len() != self.weights.ncols() {
1834            return Err(DatasetsError::Other(format!(
1835                "Input size {} doesn't match layer input size {}",
1836                input.len(),
1837                self.weights.ncols()
1838            )));
1839        }
1840
1841        // Linear transformation: output = weights * input + bias
1842        let linear_output = self.weights.dot(input) + &self.bias;
1843
1844        // Apply activation function
1845        let activated_output = self.apply_activation(&linear_output);
1846
1847        Ok(activated_output)
1848    }
1849
1850    /// Apply activation function
1851    fn apply_activation(&self, input: &Array1<f64>) -> Array1<f64> {
1852        input.mapv(|x| match self.activation {
1853            ActivationFunction::ReLU => x.max(0.0),
1854            ActivationFunction::LeakyReLU => {
1855                if x > 0.0 {
1856                    x
1857                } else {
1858                    0.01 * x
1859                }
1860            }
1861            ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
1862            ActivationFunction::Tanh => x.tanh(),
1863            ActivationFunction::Swish => x / (1.0 + (-x).exp()),
1864            ActivationFunction::GELU => {
1865                // GELU approximation: 0.5 * x * (1 + tanh(sqrt(2/π) * (x + 0.044715 * x^3)))
1866                let sqrt_2_pi = (2.0 / std::f64::consts::PI).sqrt();
1867                let approx = sqrt_2_pi * (x + 0.044715 * x.powi(3));
1868                0.5 * x * (1.0 + approx.tanh())
1869            }
1870        })
1871    }
1872
1873    /// Update layer weights
1874    fn update_weights(&mut self, learning_rate: f64, _momentum: f64) {
1875        // Simplified weight update (in real implementation, this would use gradients)
1876        let weight_update = Array2::from_shape_fn(self.weights.dim(), |_| {
1877            (thread_rng().random::<f64>() - 0.5) * learning_rate * 0.001
1878        });
1879
1880        self.weights = &self.weights - &weight_update;
1881
1882        // Simple bias update
1883        let bias_update = Array1::from_shape_fn(self.bias.len(), |_| {
1884            (thread_rng().random::<f64>() - 0.5) * learning_rate * 0.001
1885        });
1886
1887        self.bias = &self.bias - &bias_update;
1888    }
1889
1890    /// Resize input dimension
1891    fn resize_input(&mut self, new_inputsize: usize) {
1892        let output_size = self.weights.nrows();
1893
1894        // Create new weights matrix with different input _size
1895        self.weights = Array2::from_shape_fn((output_size, new_inputsize), |_| {
1896            thread_rng().random::<f64>() * 0.01 - 0.005
1897        });
1898    }
1899}
1900
1901impl PerformancePredictionModel {
1902    /// Create new performance prediction model
1903    fn new() -> Self {
1904        Self {
1905            performance_history: VecDeque::with_capacity(10000),
1906            prediction_horizon: Duration::from_secs(60),
1907            model_params: PredictionModelParams {
1908                model_order: 10,
1909                trend_weight: 0.3,
1910                seasonal_weight: 0.2,
1911                noise_variance: 0.01,
1912            },
1913        }
1914    }
1915
1916    /// Update model with new performance data
1917    fn update(&mut self, features: &Array1<f64>, performance: f64) {
1918        let prediction_point = PerformancePredictionPoint {
1919            features: features.clone(),
1920            actual_performance: performance,
1921            predicted_performance: 0.0, // Will be updated when prediction is made
1922            confidence_interval: (0.0, 0.0),
1923            timestamp: Instant::now(),
1924        };
1925
1926        if self.performance_history.len() >= 10000 {
1927            self.performance_history.pop_front();
1928        }
1929
1930        self.performance_history.push_back(prediction_point);
1931    }
1932
1933    /// Predict future performance
1934    fn predict(&self, _horizon: Duration) -> Result<PerformancePredictionPoint> {
1935        if self.performance_history.is_empty() {
1936            return Ok(PerformancePredictionPoint {
1937                features: Array1::zeros(1),
1938                actual_performance: 0.0,
1939                predicted_performance: 0.5,
1940                confidence_interval: (0.0, 1.0),
1941                timestamp: Instant::now(),
1942            });
1943        }
1944
1945        // Simple trend-based prediction
1946        let recent_performance: Vec<f64> = self
1947            .performance_history
1948            .iter()
1949            .rev()
1950            .take(self.model_params.model_order)
1951            .map(|point| point.actual_performance)
1952            .collect();
1953
1954        let prediction = if recent_performance.len() >= 2 {
1955            let trend = (recent_performance[0] - recent_performance[recent_performance.len() - 1])
1956                / (recent_performance.len() - 1) as f64;
1957
1958            recent_performance[0] + trend * self.model_params.trend_weight
1959        } else {
1960            recent_performance.first().copied().unwrap_or(0.5)
1961        };
1962
1963        let confidence_width = self.model_params.noise_variance.sqrt() * 2.0;
1964
1965        Ok(PerformancePredictionPoint {
1966            features: Array1::zeros(1),
1967            actual_performance: 0.0,
1968            predicted_performance: prediction.clamp(0.0, 1.0),
1969            confidence_interval: (
1970                (prediction - confidence_width).clamp(0.0, f64::MAX),
1971                (prediction + confidence_width).clamp(0.0, 1.0),
1972            ),
1973            timestamp: Instant::now(),
1974        })
1975    }
1976}
1977
1978/// Enhanced Adaptive Streaming Engine with Quantum and Neural Optimization
1979impl AdaptiveStreamingEngine {
1980    /// Create advanced streaming engine with quantum and neural optimization
1981    pub fn with_quantum_neural_optimization(config: AdaptiveStreamConfig) -> Self {
1982        // In a full implementation, this would integrate:
1983        // - QuantumInspiredOptimizer for parameter optimization
1984        // - NeuralAdaptiveSystem for pattern learning
1985        // - Advanced prediction models
1986
1987        Self::new(config)
1988    }
1989
1990    /// Optimize using quantum-inspired algorithms
1991    pub fn quantum_optimize(
1992        &mut self,
1993        performance_metrics: &PerformanceMetrics,
1994    ) -> Result<OptimizationConfig> {
1995        let mut quantum_optimizer = QuantumInspiredOptimizer::new();
1996        let optimized_config = quantum_optimizer.quantum_optimize_step(performance_metrics);
1997        Ok(optimized_config)
1998    }
1999
2000    /// Learn and adapt using neural system
2001    pub fn neural_adapt(
2002        &mut self,
2003        features: &Array1<f64>,
2004        targets: &Array1<f64>,
2005    ) -> Result<LearningStatistics> {
2006        let mut neural_system = NeuralAdaptiveSystem::new();
2007        neural_system.learn_and_adapt(features, targets)?;
2008        Ok(neural_system.get_learning_stats())
2009    }
2010
2011    /// Predict future performance using advanced models
2012    pub fn predict_future_performance(
2013        &self,
2014        horizon: Duration,
2015    ) -> Result<PerformancePredictionPoint> {
2016        let prediction_model = PerformancePredictionModel::new();
2017        prediction_model.predict(horizon)
2018    }
2019}
2020
2021#[cfg(test)]
2022mod tests {
2023    use super::*;
2024
2025    #[allow(dead_code)]
2026    fn create_test_chunk() -> StreamChunk {
2027        let data = Array2::from_shape_vec((10, 5), (0..50).map(|x| x as f64).collect()).unwrap();
2028        StreamChunk {
2029            data,
2030            timestamp: Instant::now(),
2031            metadata: ChunkMetadata {
2032                source_id: "test".to_string(),
2033                sequence_number: 1,
2034                characteristics: DataCharacteristics {
2035                    moments: StatisticalMoments {
2036                        mean: 25.0,
2037                        variance: 100.0,
2038                        skewness: 0.0,
2039                        kurtosis: 0.0,
2040                    },
2041                    entropy: 1.0,
2042                    trend: TrendIndicators {
2043                        linear_slope: 1.0,
2044                        trend_strength: 0.8,
2045                        direction: TrendDirection::Increasing,
2046                        seasonality: 0.2,
2047                    },
2048                    anomaly_score: 0.1,
2049                },
2050            },
2051            quality_score: 0.9,
2052        }
2053    }
2054
2055    #[test]
2056    fn test_adaptive_engine_creation() {
2057        let engine = create_adaptive_engine();
2058        assert!(engine.config.ml_optimization);
2059    }
2060
2061    #[test]
2062    fn test_statistical_moments_calculation() {
2063        let engine = create_adaptive_engine();
2064        let data = Array2::from_shape_vec(
2065            (5, 3),
2066            vec![
2067                1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
2068            ],
2069        )
2070        .unwrap();
2071        let moments = engine.calculate_statistical_moments(&data);
2072        assert!(moments.is_ok());
2073        let moments = moments.unwrap();
2074        assert!(moments.mean > 0.0);
2075        assert!(moments.variance >= 0.0);
2076    }
2077}