Function k_fold_split

Source
pub fn k_fold_split(
    n_samples: usize,
    n_folds: usize,
    shuffle: bool,
    random_seed: Option<u64>,
) -> Result<CrossValidationFolds>
Expand description

Performs K-fold cross-validation splitting

Splits the dataset into k consecutive folds. Each fold is used once as a validation set while the remaining k-1 folds form the training set.

§Arguments

  • n_samples - Number of samples in the dataset
  • n_folds - Number of folds (must be >= 2 and <= n_samples)
  • shuffle - Whether to shuffle the data before splitting
  • random_seed - Optional random seed for reproducible shuffling

§Returns

A vector of (train_indices, validation_indices) tuples for each fold

§Examples

use scirs2_datasets::utils::k_fold_split;

let folds = k_fold_split(10, 3, true, Some(42)).unwrap();
assert_eq!(folds.len(), 3);

// Each fold should have roughly equal size
for (train_idx, val_idx) in &folds {
    assert!(val_idx.len() >= 3 && val_idx.len() <= 4);
    assert_eq!(train_idx.len() + val_idx.len(), 10);
}
Examples found in repository?
examples/cross_validation_demo.rs (line 30)
9fn main() {
10    println!("=== Cross-Validation Demonstration ===\n");
11
12    // Create sample dataset
13    let data = Array2::from_shape_vec((20, 3), (0..60).map(|x| x as f64 / 10.0).collect()).unwrap();
14    let target = Array1::from(
15        (0..20)
16            .map(|i| if i % 2 == 0 { 0.0 } else { 1.0 })
17            .collect::<Vec<_>>(),
18    );
19
20    let dataset = Dataset::new(data.clone(), Some(target.clone()))
21        .with_description("Sample dataset for cross-validation demo".to_string());
22
23    println!("Dataset info:");
24    println!("- Samples: {}", dataset.n_samples());
25    println!("- Features: {}", dataset.n_features());
26    println!("- Description: {}\n", dataset.description.as_ref().unwrap());
27
28    // Demonstrate K-fold cross-validation
29    println!("=== K-Fold Cross-Validation (k=5) ===");
30    let k_folds = k_fold_split(dataset.n_samples(), 5, true, Some(42)).unwrap();
31
32    for (i, (train_indices, val_indices)) in k_folds.iter().enumerate() {
33        println!(
34            "Fold {}: Train size: {}, Validation size: {}",
35            i + 1,
36            train_indices.len(),
37            val_indices.len()
38        );
39        println!(
40            "  Train indices: {:?}",
41            &train_indices[..5.min(train_indices.len())]
42        );
43        println!("  Val indices: {:?}", val_indices);
44    }
45    println!();
46
47    // Demonstrate Stratified K-fold cross-validation
48    println!("=== Stratified K-Fold Cross-Validation (k=4) ===");
49    let stratified_folds = stratified_k_fold_split(&target, 4, true, Some(42)).unwrap();
50
51    for (i, (train_indices, val_indices)) in stratified_folds.iter().enumerate() {
52        // Calculate class distribution in validation set
53        let val_targets: Vec<f64> = val_indices.iter().map(|&idx| target[idx]).collect();
54        let class_0_count = val_targets.iter().filter(|&&x| x == 0.0).count();
55        let class_1_count = val_targets.iter().filter(|&&x| x == 1.0).count();
56
57        println!(
58            "Fold {}: Train size: {}, Validation size: {}",
59            i + 1,
60            train_indices.len(),
61            val_indices.len()
62        );
63        println!(
64            "  Class distribution in validation: Class 0: {}, Class 1: {}",
65            class_0_count, class_1_count
66        );
67    }
68    println!();
69
70    // Demonstrate Time Series cross-validation
71    println!("=== Time Series Cross-Validation ===");
72    let ts_folds = time_series_split(dataset.n_samples(), 3, 3, 1).unwrap();
73
74    for (i, (train_indices, val_indices)) in ts_folds.iter().enumerate() {
75        println!(
76            "Split {}: Train size: {}, Test size: {}",
77            i + 1,
78            train_indices.len(),
79            val_indices.len()
80        );
81        println!(
82            "  Train range: {} to {}",
83            train_indices.first().unwrap_or(&0),
84            train_indices.last().unwrap_or(&0)
85        );
86        println!(
87            "  Test range: {} to {}",
88            val_indices.first().unwrap_or(&0),
89            val_indices.last().unwrap_or(&0)
90        );
91    }
92    println!();
93
94    // Demonstrate usage with Dataset methods
95    println!("=== Using Cross-Validation with Dataset ===");
96    let first_fold = &k_folds[0];
97    let (train_indices, val_indices) = first_fold;
98
99    // Create training subset
100    let train_data = data.select(ndarray::Axis(0), train_indices);
101    let train_target = target.select(ndarray::Axis(0), train_indices);
102    let train_dataset = Dataset::new(train_data, Some(train_target))
103        .with_description("Training fold from K-fold CV".to_string());
104
105    // Create validation subset
106    let val_data = data.select(ndarray::Axis(0), val_indices);
107    let val_target = target.select(ndarray::Axis(0), val_indices);
108    let val_dataset = Dataset::new(val_data, Some(val_target))
109        .with_description("Validation fold from K-fold CV".to_string());
110
111    println!(
112        "Training dataset: {} samples, {} features",
113        train_dataset.n_samples(),
114        train_dataset.n_features()
115    );
116    println!(
117        "Validation dataset: {} samples, {} features",
118        val_dataset.n_samples(),
119        val_dataset.n_features()
120    );
121
122    println!("\n=== Cross-Validation Demo Complete ===");
123}