pub fn make_corrupted_dataset(
base_dataset: &Dataset,
missing_rate: f64,
missing_pattern: MissingPattern,
outlier_rate: f64,
outlier_type: OutlierType,
outlier_strength: f64,
random_seed: Option<u64>,
) -> Result<Dataset>
Expand description
Generate a dataset with controlled corruption patterns
Examples found in repository?
examples/noise_models_demo.rs (lines 217-225)
191fn demonstrate_comprehensive_corruption() {
192 println!("Testing comprehensive dataset corruption:");
193
194 // Load a real dataset
195 let iris = load_iris().unwrap();
196 println!(
197 "Original Iris dataset: {} samples, {} features",
198 iris.n_samples(),
199 iris.n_features()
200 );
201
202 let original_stats = calculate_basic_stats(&iris.data);
203 println!(
204 "Original stats - Mean: {:.3}, Std: {:.3}",
205 original_stats.0, original_stats.1
206 );
207
208 // Create different levels of corruption
209 let corruption_levels = [
210 (0.05, 0.02, "Light corruption"),
211 (0.1, 0.05, "Moderate corruption"),
212 (0.2, 0.1, "Heavy corruption"),
213 (0.3, 0.15, "Severe corruption"),
214 ];
215
216 for (missing_rate, outlier_rate, description) in corruption_levels {
217 let corrupted = make_corrupted_dataset(
218 &iris,
219 missing_rate,
220 MissingPattern::MAR, // More realistic than MCAR
221 outlier_rate,
222 OutlierType::Point,
223 2.5,
224 Some(42),
225 )
226 .unwrap();
227
228 // Calculate how much data is usable
229 let total_elements = corrupted.data.len();
230 let missing_elements = corrupted.data.iter().filter(|&&x| x.is_nan()).count();
231 let usable_percentage =
232 ((total_elements - missing_elements) as f64 / total_elements as f64) * 100.0;
233
234 println!("{}:", description);
235 println!(" Missing data: {:.1}%", missing_rate * 100.0);
236 println!(" Outliers: {:.1}%", outlier_rate * 100.0);
237 println!(" Usable data: {:.1}%", usable_percentage);
238
239 // Show metadata
240 if let Some(missing_count) = corrupted.metadata.get("missing_count") {
241 println!(" Actual missing: {} elements", missing_count);
242 }
243 if let Some(outlier_count) = corrupted.metadata.get("outlier_count") {
244 println!(" Actual outliers: {} samples", outlier_count);
245 }
246 }
247}
248
249fn demonstrate_real_world_applications() {
250 println!("Real-world application scenarios:");
251
252 println!("\n1. **Medical Data Simulation**:");
253 let medical_data = load_iris().unwrap(); // Stand-in for medical measurements
254 let _corrupted_medical = make_corrupted_dataset(
255 &medical_data,
256 0.15, // 15% missing - common in medical data
257 MissingPattern::MNAR, // High values often missing (privacy, measurement issues)
258 0.05, // 5% outliers - measurement errors
259 OutlierType::Point,
260 2.0,
261 Some(42),
262 )
263 .unwrap();
264
265 println!(" Medical dataset simulation:");
266 println!(" Missing data pattern: MNAR (high values more likely missing)");
267 println!(" Outliers: Point outliers (measurement errors)");
268 println!(" Use case: Testing imputation algorithms for clinical data");
269
270 println!("\n2. **Sensor Network Simulation**:");
271 let sensor_data = make_time_series(200, 4, true, true, 0.1, Some(42)).unwrap();
272 let mut sensor_ts = sensor_data.data.clone();
273
274 // Add realistic sensor noise
275 add_time_series_noise(
276 &mut sensor_ts,
277 &[
278 ("gaussian", 0.05), // Background noise
279 ("spikes", 0.02), // Electrical interference
280 ("drift", 0.1), // Sensor calibration drift
281 ("heteroscedastic", 0.03), // Temperature-dependent noise
282 ],
283 Some(42),
284 )
285 .unwrap();
286
287 // Add missing data (sensor failures)
288 inject_missing_data(&mut sensor_ts, 0.08, MissingPattern::Block, Some(42)).unwrap();
289
290 println!(" Sensor network simulation:");
291 println!(" Multiple noise types: gaussian + spikes + drift + heteroscedastic");
292 println!(" Missing data: Block pattern (sensor failures)");
293 println!(" Use case: Testing robust time series algorithms");
294
295 println!("\n3. **Survey Data Simulation**:");
296 let survey_data = load_iris().unwrap(); // Stand-in for survey responses
297 let _corrupted_survey = make_corrupted_dataset(
298 &survey_data,
299 0.25, // 25% missing - typical for surveys
300 MissingPattern::MAR, // Missing depends on other responses
301 0.08, // 8% outliers - data entry errors, extreme responses
302 OutlierType::Contextual,
303 1.5,
304 Some(42),
305 )
306 .unwrap();
307
308 println!(" Survey data simulation:");
309 println!(" Missing data pattern: MAR (depends on other responses)");
310 println!(" Outliers: Contextual (unusual response patterns)");
311 println!(" Use case: Testing survey analysis robustness");
312
313 println!("\n4. **Financial Data Simulation**:");
314 let mut financial_ts = make_time_series(500, 3, false, false, 0.02, Some(42))
315 .unwrap()
316 .data;
317
318 // Add financial market-specific noise
319 add_time_series_noise(
320 &mut financial_ts,
321 &[
322 ("gaussian", 0.1), // Market volatility
323 ("spikes", 0.05), // Market shocks
324 ("autocorrelated", 0.15), // Momentum effects
325 ("heteroscedastic", 0.2), // Volatility clustering
326 ],
327 Some(42),
328 )
329 .unwrap();
330
331 println!(" Financial data simulation:");
332 println!(" Noise types: volatility + shocks + momentum + clustering");
333 println!(" Use case: Testing financial models under realistic conditions");
334}