Function make_anisotropic_blobs

Source
pub fn make_anisotropic_blobs(
    n_samples: usize,
    n_features: usize,
    centers: usize,
    cluster_std: f64,
    anisotropy_factor: f64,
    random_seed: Option<u64>,
) -> Result<Dataset>
Expand description

Generate anisotropic (elongated) clusters

Examples found in repository?
examples/complex_patterns_demo.rs (line 49)
11fn main() {
12    println!("=== Complex Pattern Generators Demonstration ===\n");
13
14    // Demonstrate non-linear pattern generators
15    println!("=== Non-Linear Pattern Generators ================");
16
17    // Spiral dataset
18    println!("1. Spiral Patterns:");
19    let spirals = make_spirals(200, 3, 0.1, Some(42)).unwrap();
20    println!(
21        "   Generated {} spirals with {} samples",
22        3,
23        spirals.n_samples()
24    );
25    print_dataset_summary(&spirals, "Spirals");
26
27    // Two moons dataset
28    println!("\n2. Two Moons Pattern:");
29    let moons = make_moons(300, 0.05, Some(42)).unwrap();
30    print_dataset_summary(&moons, "Moons");
31
32    // Concentric circles
33    println!("\n3. Concentric Circles:");
34    let circles = make_circles(250, 0.4, 0.03, Some(42)).unwrap();
35    print_dataset_summary(&circles, "Circles");
36
37    // Swiss roll manifold
38    println!("\n4. Swiss Roll Manifold:");
39    let swiss_roll = make_swiss_roll(400, 0.1, Some(42)).unwrap();
40    print_dataset_summary(&swiss_roll, "Swiss Roll");
41    println!("   3D manifold with intrinsic 2D structure");
42    println!();
43
44    // Demonstrate complex clustering patterns
45    println!("=== Complex Clustering Patterns ==================");
46
47    // Anisotropic (elongated) clusters
48    println!("1. Anisotropic Clusters:");
49    let aniso_clusters = make_anisotropic_blobs(300, 2, 4, 1.0, 5.0, Some(42)).unwrap();
50    print_dataset_summary(&aniso_clusters, "Anisotropic Clusters");
51    println!("   Elongated clusters with anisotropy factor 5.0");
52
53    // Different anisotropy factors demonstration
54    println!("\n   Anisotropy Factor Comparison:");
55    for factor in [1.0, 2.0, 5.0, 10.0] {
56        let _dataset = make_anisotropic_blobs(100, 2, 3, 1.0, factor, Some(42)).unwrap();
57        println!("     Factor {:.1}: {} clusters", factor, 3);
58    }
59
60    // Hierarchical clusters
61    println!("\n2. Hierarchical Clusters:");
62    let hierarchical = make_hierarchical_clusters(240, 3, 3, 4, 3.0, 0.8, Some(42)).unwrap();
63    print_dataset_summary(&hierarchical, "Hierarchical Clusters");
64    println!("   3 main clusters, each with 4 sub-clusters");
65
66    if let Some(_metadata) = hierarchical.metadata.get("sub_cluster_labels") {
67        println!("   Sub-cluster structure preserved in metadata");
68    }
69    println!();
70
71    // Demonstrate parameter effects
72    println!("=== Parameter Effects Demonstration ==============");
73
74    // Noise effect on spirals
75    println!("1. Noise Effect on Spirals:");
76    for noise in [0.0, 0.05, 0.1, 0.2] {
77        let _spiral_data = make_spirals(100, 2, noise, Some(42)).unwrap();
78        println!(
79            "   Noise {:.2}: Clean separation = {}",
80            noise,
81            if noise < 0.1 { "High" } else { "Low" }
82        );
83    }
84
85    // Factor effect on circles
86    println!("\n2. Factor Effect on Concentric Circles:");
87    for factor in [0.2, 0.4, 0.6, 0.8] {
88        let _circle_data = make_circles(100, factor, 0.05, Some(42)).unwrap();
89        println!("   Factor {:.1}: Inner/Outer ratio = {:.1}", factor, factor);
90    }
91
92    // Cluster complexity in hierarchical patterns
93    println!("\n3. Hierarchical Cluster Complexity:");
94    for (main, sub) in [(2, 2), (2, 4), (3, 3), (4, 2)] {
95        let _hier_data = make_hierarchical_clusters(120, 2, main, sub, 2.0, 0.5, Some(42)).unwrap();
96        println!(
97            "   {} main × {} sub = {} total clusters",
98            main,
99            sub,
100            main * sub
101        );
102    }
103    println!();
104
105    // Demonstrate use cases
106    println!("=== Use Cases and Applications ====================");
107
108    println!("1. **Non-linear Classification Testing**:");
109    println!("   - Spirals: Test algorithms that can handle multiple interleaved classes");
110    println!("   - Moons: Classic benchmark for non-linear separability");
111    println!("   - Circles: Test radial basis function methods");
112
113    println!("\n2. **Dimensionality Reduction Evaluation**:");
114    println!("   - Swiss Roll: Test manifold learning algorithms (t-SNE, UMAP, Isomap)");
115    println!("   - Preserves intrinsic 2D structure in 3D space");
116
117    println!("\n3. **Clustering Algorithm Testing**:");
118    println!("   - Anisotropic: Test algorithms robust to cluster shape variations");
119    println!("   - Hierarchical: Test multi-level clustering methods");
120
121    println!("\n4. **Robustness Testing**:");
122    println!("   - Variable noise levels test algorithm stability");
123    println!("   - Different cluster properties test generalization");
124    println!();
125
126    // Demonstrate advanced configurations
127    println!("=== Advanced Configuration Examples ===============");
128
129    println!("1. Multi-scale Spiral (Large dataset):");
130    let large_spirals = make_spirals(2000, 4, 0.08, Some(42)).unwrap();
131    print_dataset_summary(&large_spirals, "Large Spirals");
132
133    println!("\n2. High-dimensional Anisotropic Clusters:");
134    let hd_aniso = make_anisotropic_blobs(500, 10, 5, 1.5, 8.0, Some(42)).unwrap();
135    print_dataset_summary(&hd_aniso, "High-D Anisotropic");
136
137    println!("\n3. Deep Hierarchical Structure:");
138    let deep_hier = make_hierarchical_clusters(300, 4, 2, 6, 4.0, 1.0, Some(42)).unwrap();
139    print_dataset_summary(&deep_hier, "Deep Hierarchical");
140    println!("   Deep structure: 2 main → 12 sub-clusters");
141    println!();
142
143    // Performance and memory considerations
144    println!("=== Performance Guidelines =======================");
145    println!("**Recommended dataset sizes:**");
146    println!("- Development/Testing: 100-500 samples");
147    println!("- Algorithm benchmarking: 1,000-5,000 samples");
148    println!("- Performance testing: 10,000+ samples");
149
150    println!("\n**Memory usage (approximate):**");
151    println!("- Spirals (1000, 2D): ~16 KB");
152    println!("- Swiss Roll (1000, 3D): ~24 KB");
153    println!("- Hierarchical (1000, 5D): ~40 KB");
154
155    println!("\n**Parameter tuning tips:**");
156    println!("- Start with moderate noise (0.05-0.1)");
157    println!("- Use anisotropy factors 2.0-10.0 for clear elongation");
158    println!("- Keep sub-clusters ≤ 8 per main cluster for interpretability");
159    println!();
160
161    // Real-world applications
162    println!("=== Real-World Applications =======================");
163    println!("**Computer Vision:**");
164    println!("- Spirals: Object boundary detection");
165    println!("- Circles: Radial pattern recognition");
166
167    println!("\n**Machine Learning Research:**");
168    println!("- Benchmarking new clustering algorithms");
169    println!("- Testing manifold learning methods");
170    println!("- Evaluating non-linear classifiers");
171
172    println!("\n**Data Science Education:**");
173    println!("- Demonstrating algorithm limitations");
174    println!("- Visualizing high-dimensional data challenges");
175    println!("- Teaching feature engineering concepts");
176    println!();
177
178    println!("=== Complex Patterns Demo Complete ===============");
179}