scirs2_datasets/
quantum_neuromorphic_fusion.rs

1//! Quantum-Neuromorphic Fusion Engine
2//!
3//! This module represents the cutting-edge fusion of quantum computing and neuromorphic
4//! processing, creating hybrid bio-quantum systems for advanced dataset processing.
5//! It combines quantum entanglement, superposition, and interference with spiking neural
6//! networks, synaptic plasticity, and biological learning mechanisms.
7
8use crate::error::{DatasetsError, Result};
9use crate::neuromorphic_data_processor::NeuromorphicProcessor;
10use crate::quantum_enhanced_generators::QuantumDatasetGenerator;
11use crate::utils::Dataset;
12use scirs2_core::ndarray::{s, Array1, Array2, Array3};
13use scirs2_core::random::prelude::*;
14use scirs2_core::random::rand_distributions::Uniform;
15use statrs::statistics::Statistics;
16use std::f64::consts::PI;
17use std::time::{Duration, Instant};
18
19/// Quantum-Neuromorphic Fusion Processor
20/// The ultimate synthesis of quantum computing and biological neural networks
21#[derive(Debug, Clone)]
22#[allow(dead_code)]
23pub struct QuantumNeuromorphicFusion {
24    /// Quantum subsystem for quantum computational advantages
25    quantum_engine: QuantumDatasetGenerator,
26    /// Neuromorphic subsystem for bio-inspired processing
27    neuromorphic_engine: NeuromorphicProcessor,
28    /// Quantum-biological coupling strength (0.0 to 1.0)
29    quantum_bio_coupling: f64,
30    /// Coherence-plasticity entanglement factor
31    coherence_plasticity_factor: f64,
32    /// Quantum decoherence time affecting synaptic dynamics
33    quantum_decoherence_time: Duration,
34    /// Bio-quantum learning rate adaptation
35    adaptive_learning_rate: f64,
36    /// Enable quantum advantage in neural processing
37    quantum_neural_advantage: bool,
38}
39
40/// Quantum-enhanced synaptic state
41#[derive(Debug, Clone)]
42#[allow(dead_code)]
43struct QuantumSynapse {
44    /// Classical synaptic weight
45    classical_weight: f64,
46    /// Quantum superposition amplitudes (real, imaginary)
47    quantum_amplitudes: (f64, f64),
48    /// Quantum phase for interference effects
49    quantum_phase: f64,
50    /// Entanglement partner synapse index
51    entangled_partner: Option<usize>,
52    /// Quantum coherence time remaining
53    coherence_time: Duration,
54    /// Bio-quantum coupling strength
55    coupling_strength: f64,
56}
57
58/// Quantum-biological neuron with quantum-enhanced dynamics
59#[derive(Debug, Clone)]
60struct QuantumNeuron {
61    /// Classical membrane potential
62    membrane_potential: f64,
63    /// Quantum state amplitudes |0⟩ and |1⟩
64    quantum_state: (f64, f64),
65    /// Quantum phase evolution
66    phase_evolution: f64,
67    /// Biological spike threshold (adaptive)
68    spike_threshold: f64,
69    /// Last spike time for STDP
70    last_spike_time: Option<Instant>,
71    /// Quantum decoherence rate
72    decoherence_rate: f64,
73    /// Entanglement connections to other neurons
74    entanglement_map: Vec<usize>,
75}
76
77/// Fusion processing results combining quantum and biological intelligence
78#[derive(Debug, Clone)]
79pub struct QuantumBioFusionResult {
80    /// Classical dataset output
81    pub classical_dataset: Dataset,
82    /// Quantum state evolution over time
83    pub quantum_evolution: Array3<f64>, // (time, qubits, samples)
84    /// Biological spike patterns
85    pub spike_patterns: Array3<f64>, // (time, neurons, samples)
86    /// Quantum-biological entanglement matrix
87    pub entanglement_matrix: Array2<f64>,
88    /// Fusion learning dynamics
89    pub fusion_learning_curve: Vec<f64>,
90    /// Emergent quantum-bio features
91    pub emergent_features: Array2<f64>,
92    /// Quantum coherence preservation over time
93    pub coherence_preservation: Vec<f64>,
94}
95
96/// Quantum interference patterns in biological networks
97#[derive(Debug, Clone)]
98pub struct QuantumInterference {
99    /// Constructive interference strength
100    pub constructive_strength: f64,
101    /// Destructive interference strength  
102    pub destructive_strength: f64,
103    /// Interference phase shift
104    pub phase_shift: f64,
105    /// Spatial interference pattern
106    pub spatial_pattern: Array2<f64>,
107}
108
109impl Default for QuantumNeuromorphicFusion {
110    fn default() -> Self {
111        Self {
112            quantum_engine: QuantumDatasetGenerator::default(),
113            neuromorphic_engine: NeuromorphicProcessor::default(),
114            quantum_bio_coupling: 0.7,
115            coherence_plasticity_factor: 0.5,
116            quantum_decoherence_time: Duration::from_millis(1000),
117            adaptive_learning_rate: 0.001,
118            quantum_neural_advantage: true,
119        }
120    }
121}
122
123impl QuantumNeuromorphicFusion {
124    /// Create a new quantum-neuromorphic fusion processor
125    pub fn new(_quantum_coupling: f64, coherence_time: Duration, adaptivelearning: bool) -> Self {
126        Self {
127            quantum_engine: QuantumDatasetGenerator::default(),
128            neuromorphic_engine: NeuromorphicProcessor::default(),
129            quantum_bio_coupling: _quantum_coupling.clamp(0.0, 1.0),
130            coherence_plasticity_factor: 0.5,
131            quantum_decoherence_time: coherence_time,
132            adaptive_learning_rate: if adaptivelearning { 0.001 } else { 0.0 },
133            quantum_neural_advantage: true,
134        }
135    }
136
137    /// Configure the fusion with custom quantum and neuromorphic engines
138    pub fn with_engines(
139        mut self,
140        quantum_engine: QuantumDatasetGenerator,
141        neuromorphic_engine: NeuromorphicProcessor,
142    ) -> Self {
143        self.quantum_engine = quantum_engine;
144        self.neuromorphic_engine = neuromorphic_engine;
145        self
146    }
147
148    /// Enable or disable quantum neural advantage
149    pub fn with_quantum_advantage(mut self, enabled: bool) -> Self {
150        self.quantum_neural_advantage = enabled;
151        self
152    }
153
154    /// Generate dataset using quantum-neuromorphic fusion
155    pub fn generate_fusion_dataset(
156        &self,
157        n_samples: usize,
158        n_features: usize,
159        fusion_complexity: f64,
160        random_seed: Option<u64>,
161    ) -> Result<QuantumBioFusionResult> {
162        if n_samples == 0 || n_features == 0 {
163            return Err(DatasetsError::InvalidFormat(
164                "Samples and _features must be > 0".to_string(),
165            ));
166        }
167
168        let mut rng = match random_seed {
169            Some(_seed) => StdRng::seed_from_u64(_seed),
170            None => StdRng::from_rng(&mut thread_rng()),
171        };
172
173        // Initialize quantum-biological hybrid network
174        let mut quantum_neurons = self.initialize_quantum_neurons(n_features, &mut rng)?;
175        let mut quantum_synapses = self.initialize_quantum_synapses(&quantum_neurons, &mut rng)?;
176
177        // Process through quantum-biological fusion
178        let simulation_steps = 100;
179        let mut classical_data = Array2::zeros((n_samples, n_features));
180        let mut classical_targets = Array1::zeros(n_samples);
181        let mut quantum_evolution = Array3::zeros((simulation_steps, n_features, n_samples));
182        let mut spike_patterns = Array3::zeros((simulation_steps, n_features, n_samples));
183        let mut fusion_learning_curve = Vec::with_capacity(n_samples);
184        let mut coherence_preservation = Vec::with_capacity(simulation_steps);
185
186        // Generate each sample through quantum-biological co-evolution
187        for sample_idx in 0..n_samples {
188            let mut sample_learning = 0.0;
189
190            // Quantum-biological simulation over time
191            for time_step in 0..simulation_steps {
192                // Quantum state evolution with decoherence
193                self.evolve_quantum_states(
194                    &mut quantum_neurons,
195                    &quantum_synapses,
196                    time_step as f64 * 0.01, // Convert step to time
197                    time_step,
198                    &mut rng,
199                )?;
200
201                // Biological spike dynamics with quantum influence
202                let spike_response = self.quantum_influenced_spiking(
203                    &mut quantum_neurons,
204                    fusion_complexity,
205                    &mut rng,
206                )?;
207
208                // Quantum-biological learning and adaptation
209                let learning_delta =
210                    self.quantum_bio_learning(&mut quantum_synapses, &spike_response, time_step)?;
211
212                sample_learning += learning_delta;
213
214                // Record quantum and biological states
215                for neuron_idx in 0..n_features {
216                    if neuron_idx < quantum_neurons.len() {
217                        // Record quantum state probability
218                        let quantum_prob = quantum_neurons[neuron_idx].quantum_state.0.powi(2)
219                            + quantum_neurons[neuron_idx].quantum_state.1.powi(2);
220                        quantum_evolution[[time_step, neuron_idx, sample_idx]] = quantum_prob;
221
222                        // Record spike response
223                        spike_patterns[[time_step, neuron_idx, sample_idx]] =
224                            spike_response[neuron_idx];
225                    }
226                }
227
228                // Measure coherence preservation
229                let coherence = self.measure_quantum_coherence(&quantum_neurons)?;
230                if sample_idx == 0 {
231                    coherence_preservation.push(coherence);
232                }
233            }
234
235            // Extract final classical _features from quantum-biological evolution
236            for feature_idx in 0..n_features {
237                if feature_idx < quantum_neurons.len() {
238                    // Fusion of quantum and biological information
239                    let quantum_component = quantum_neurons[feature_idx].quantum_state.0.tanh();
240                    let biological_component =
241                        quantum_neurons[feature_idx].membrane_potential.tanh();
242
243                    classical_data[[sample_idx, feature_idx]] = self.quantum_bio_coupling
244                        * quantum_component
245                        + (1.0 - self.quantum_bio_coupling) * biological_component;
246                }
247            }
248
249            // Quantum-biological target assignment
250            classical_targets[sample_idx] =
251                self.fusion_target_assignment(&quantum_neurons, fusion_complexity, &mut rng)?;
252
253            fusion_learning_curve.push(sample_learning / simulation_steps as f64);
254        }
255
256        // Create fusion dataset
257        let classical_dataset = Dataset::new(classical_data, Some(classical_targets));
258
259        // Extract entanglement matrix
260        let entanglement_matrix = self.extract_entanglement_matrix(&quantum_synapses)?;
261
262        // Generate emergent _features from fusion dynamics
263        let emergent_features =
264            self.extract_fusion_features(&quantum_evolution, &spike_patterns)?;
265
266        Ok(QuantumBioFusionResult {
267            classical_dataset,
268            quantum_evolution,
269            spike_patterns,
270            entanglement_matrix,
271            fusion_learning_curve,
272            emergent_features,
273            coherence_preservation,
274        })
275    }
276
277    /// Transform existing dataset through quantum-neuromorphic fusion
278    pub fn transform_with_fusion(
279        &self,
280        dataset: &Dataset,
281        fusion_depth: usize,
282        quantum_interference: bool,
283        random_seed: Option<u64>,
284    ) -> Result<QuantumBioFusionResult> {
285        let data = &dataset.data;
286        let n_samples = data.nrows();
287        let n_features = data.ncols();
288
289        if n_samples == 0 || n_features == 0 {
290            return Err(DatasetsError::InvalidFormat(
291                "Dataset must have samples and features".to_string(),
292            ));
293        }
294
295        let mut rng = match random_seed {
296            Some(_seed) => StdRng::seed_from_u64(_seed),
297            None => StdRng::from_rng(&mut thread_rng()),
298        };
299
300        // Initialize quantum-biological network for transformation
301        let mut quantum_neurons = self.initialize_quantum_neurons(n_features, &mut rng)?;
302        let mut quantum_synapses = self.initialize_quantum_synapses(&quantum_neurons, &mut rng)?;
303
304        let mut transformed_data = Array2::zeros((n_samples, n_features));
305        let mut transformed_targets = Array1::zeros(n_samples);
306        let mut quantum_evolution = Array3::zeros((fusion_depth, n_features, n_samples));
307        let mut spike_patterns = Array3::zeros((fusion_depth, n_features, n_samples));
308        let mut fusion_learning_curve = Vec::with_capacity(n_samples);
309        let mut coherence_preservation = Vec::with_capacity(fusion_depth);
310
311        // Transform each sample through quantum-biological fusion layers
312        for sample_idx in 0..n_samples {
313            let input_sample = data.row(sample_idx);
314            let mut sample_learning = 0.0;
315
316            // Initialize quantum neurons with input data
317            self.encode_classical_to_quantum(&input_sample, &mut quantum_neurons)?;
318
319            // Apply fusion transformation layers
320            for fusion_layer in 0..fusion_depth {
321                // Quantum layer: apply quantum operations
322                if quantum_interference {
323                    self.apply_quantum_interference(&mut quantum_neurons, &mut rng)?;
324                }
325
326                // Biological layer: neuromorphic processing
327                let spike_response = self.quantum_influenced_spiking(
328                    &mut quantum_neurons,
329                    0.5, // base complexity
330                    &mut rng,
331                )?;
332
333                // Quantum-biological entanglement updates
334                let learning_delta = self.update_quantum_bio_entanglement(
335                    &mut quantum_synapses,
336                    &spike_response,
337                    fusion_layer,
338                )?;
339
340                sample_learning += learning_delta;
341
342                // Record states for this layer
343                for neuron_idx in 0..n_features {
344                    if neuron_idx < quantum_neurons.len() {
345                        let quantum_amplitude =
346                            (quantum_neurons[neuron_idx].quantum_state.0.powi(2)
347                                + quantum_neurons[neuron_idx].quantum_state.1.powi(2))
348                            .sqrt();
349                        quantum_evolution[[fusion_layer, neuron_idx, sample_idx]] =
350                            quantum_amplitude;
351                        spike_patterns[[fusion_layer, neuron_idx, sample_idx]] =
352                            spike_response[neuron_idx];
353                    }
354                }
355
356                // Measure coherence preservation through fusion layers
357                if sample_idx == 0 {
358                    let coherence = self.measure_quantum_coherence(&quantum_neurons)?;
359                    if fusion_layer < coherence_preservation.len() {
360                        coherence_preservation[fusion_layer] = coherence;
361                    } else {
362                        coherence_preservation.push(coherence);
363                    }
364                }
365            }
366
367            // Extract transformed features from final quantum-biological state
368            for feature_idx in 0..n_features {
369                if feature_idx < quantum_neurons.len() {
370                    let quantum_real = quantum_neurons[feature_idx].quantum_state.0;
371                    let quantum_imag = quantum_neurons[feature_idx].quantum_state.1;
372                    let biological_membrane = quantum_neurons[feature_idx].membrane_potential;
373
374                    // Fusion transformation combining quantum and biological information
375                    transformed_data[[sample_idx, feature_idx]] = quantum_real
376                        * biological_membrane.cos()
377                        + quantum_imag * biological_membrane.sin();
378                }
379            }
380
381            // Assign transformed target
382            transformed_targets[sample_idx] = dataset
383                .target
384                .as_ref()
385                .map(|targets| targets[sample_idx])
386                .unwrap_or(sample_learning.tanh());
387
388            fusion_learning_curve.push(sample_learning / fusion_depth as f64);
389        }
390
391        let transformed_dataset = Dataset::new(transformed_data, Some(transformed_targets));
392        let entanglement_matrix = self.extract_entanglement_matrix(&quantum_synapses)?;
393        let emergent_features =
394            self.extract_fusion_features(&quantum_evolution, &spike_patterns)?;
395
396        Ok(QuantumBioFusionResult {
397            classical_dataset: transformed_dataset,
398            quantum_evolution,
399            spike_patterns,
400            entanglement_matrix,
401            fusion_learning_curve,
402            emergent_features,
403            coherence_preservation,
404        })
405    }
406
407    /// Analyze quantum-biological interference patterns
408    pub fn analyze_interference_patterns(
409        &self,
410        fusion_result: &QuantumBioFusionResult,
411    ) -> Result<QuantumInterference> {
412        let quantum_data = &fusion_result.quantum_evolution;
413        let biological_data = &fusion_result.spike_patterns;
414
415        let (time_steps, n_qubits, n_samples) = quantum_data.dim();
416        let mut constructive_strength = 0.0;
417        let mut destructive_strength = 0.0;
418        let mut phase_shift = 0.0;
419        let mut pattern_count = 0;
420
421        // Analyze interference between quantum and biological signals
422        for sample_idx in 0..n_samples {
423            for qubit_idx in 0..n_qubits {
424                for time_idx in 0..(time_steps - 1) {
425                    let quantum_amplitude = quantum_data[[time_idx, qubit_idx, sample_idx]];
426                    let biological_spike = biological_data[[time_idx, qubit_idx, sample_idx]];
427
428                    let quantum_next = quantum_data[[time_idx + 1, qubit_idx, sample_idx]];
429                    let biological_next = biological_data[[time_idx + 1, qubit_idx, sample_idx]];
430
431                    // Calculate interference
432                    let quantum_phase = quantum_amplitude.atan2(quantum_next);
433                    let biological_phase = biological_spike.atan2(biological_next);
434                    let phase_difference = (quantum_phase - biological_phase).abs();
435
436                    // Classify interference type
437                    if phase_difference < PI / 4.0 {
438                        // Constructive interference (phases aligned)
439                        constructive_strength += quantum_amplitude * biological_spike;
440                    } else if phase_difference > 3.0 * PI / 4.0 {
441                        // Destructive interference (phases opposed)
442                        destructive_strength += quantum_amplitude * biological_spike;
443                    }
444
445                    phase_shift += phase_difference;
446                    pattern_count += 1;
447                }
448            }
449        }
450
451        // Normalize results
452        constructive_strength /= pattern_count as f64;
453        destructive_strength /= pattern_count as f64;
454        phase_shift /= pattern_count as f64;
455
456        // Create spatial interference pattern
457        let spatial_pattern = self.generate_spatial_interference_pattern(
458            constructive_strength,
459            destructive_strength,
460            n_qubits,
461        )?;
462
463        Ok(QuantumInterference {
464            constructive_strength,
465            destructive_strength,
466            phase_shift,
467            spatial_pattern,
468        })
469    }
470
471    // Private helper methods for quantum-neuromorphic fusion
472
473    fn initialize_quantum_neurons(
474        &self,
475        n_neurons: usize,
476        rng: &mut StdRng,
477    ) -> Result<Vec<QuantumNeuron>> {
478        let mut _neurons = Vec::with_capacity(n_neurons);
479
480        for neuron_idx in 0..n_neurons {
481            // Initialize quantum state in superposition
482            let theta = rng.random::<f64>() * PI;
483            let phi = rng.random::<f64>() * 2.0 * PI;
484
485            let quantum_state = (theta.cos() * phi.cos(), theta.sin() * phi.sin());
486
487            // Generate entanglement connections
488            let entanglement_map: Vec<usize> = (0..n_neurons)
489                .filter(|&i| i != neuron_idx && rng.random::<f64>() < 0.1)
490                .collect();
491
492            _neurons.push(QuantumNeuron {
493                membrane_potential: rng.random::<f64>() - 0.5,
494                quantum_state,
495                phase_evolution: 0.0,
496                spike_threshold: 1.0,
497                last_spike_time: None,
498                decoherence_rate: 1.0 / self.quantum_decoherence_time.as_secs_f64(),
499                entanglement_map,
500            });
501        }
502
503        Ok(_neurons)
504    }
505
506    fn initialize_quantum_synapses(
507        &self,
508        neurons: &[QuantumNeuron],
509        rng: &mut StdRng,
510    ) -> Result<Vec<QuantumSynapse>> {
511        let n_neurons = neurons.len();
512        let n_synapses = (n_neurons * n_neurons) / 4; // Sparse connectivity
513        let mut synapses = Vec::with_capacity(n_synapses);
514
515        for _ in 0..n_synapses {
516            let quantum_phase = rng.random::<f64>() * 2.0 * PI;
517            let amplitude_real = rng.random::<f64>() - 0.5;
518            let amplitude_imag = rng.random::<f64>() - 0.5;
519
520            synapses.push(QuantumSynapse {
521                classical_weight: rng.random::<f64>() - 0.5,
522                quantum_amplitudes: (amplitude_real, amplitude_imag),
523                quantum_phase,
524                entangled_partner: if rng.random::<f64>() < 0.3 {
525                    Some(rng.sample(Uniform::new(0, n_synapses).unwrap()))
526                } else {
527                    None
528                },
529                coherence_time: self.quantum_decoherence_time,
530                coupling_strength: self.quantum_bio_coupling,
531            });
532        }
533
534        Ok(synapses)
535    }
536
537    fn evolve_quantum_states(
538        &self,
539        neurons: &mut [QuantumNeuron],
540        _synapses: &[QuantumSynapse],
541        _time: f64,
542        _step: usize,
543        rng: &mut StdRng,
544    ) -> Result<()> {
545        for neuron in neurons.iter_mut() {
546            // Quantum state evolution under Hamiltonian
547            let dt = 0.01; // Time _step
548            let omega = 1.0; // Base frequency
549
550            // Schrödinger evolution: |ψ(t+dt)⟩ = e^(-iHdt)|ψ(t)⟩
551            let phase_increment = omega * dt + neuron.phase_evolution;
552            let cos_phase = phase_increment.cos();
553            let sin_phase = phase_increment.sin();
554
555            let new_real = neuron.quantum_state.0 * cos_phase - neuron.quantum_state.1 * sin_phase;
556            let new_imag = neuron.quantum_state.0 * sin_phase + neuron.quantum_state.1 * cos_phase;
557
558            neuron.quantum_state = (new_real, new_imag);
559            neuron.phase_evolution += phase_increment;
560
561            // Apply decoherence
562            let decoherence_factor = (-neuron.decoherence_rate * dt).exp();
563            neuron.quantum_state.0 *= decoherence_factor;
564            neuron.quantum_state.1 *= decoherence_factor;
565
566            // Renormalize quantum state
567            let norm = (neuron.quantum_state.0.powi(2) + neuron.quantum_state.1.powi(2)).sqrt();
568            if norm > 1e-10 {
569                neuron.quantum_state.0 /= norm;
570                neuron.quantum_state.1 /= norm;
571            }
572
573            // Add quantum noise
574            if self.quantum_neural_advantage {
575                let noise_strength = 0.01;
576                neuron.quantum_state.0 += noise_strength * (rng.random::<f64>() - 0.5);
577                neuron.quantum_state.1 += noise_strength * (rng.random::<f64>() - 0.5);
578            }
579        }
580
581        Ok(())
582    }
583
584    fn quantum_influenced_spiking(
585        &self,
586        neurons: &mut [QuantumNeuron],
587        complexity: f64,
588        rng: &mut StdRng,
589    ) -> Result<Array1<f64>> {
590        let n_neurons = neurons.len();
591        let mut spike_response = Array1::zeros(n_neurons);
592
593        for (neuron_idx, neuron) in neurons.iter_mut().enumerate() {
594            // Quantum influence on membrane potential
595            let quantum_probability =
596                neuron.quantum_state.0.powi(2) + neuron.quantum_state.1.powi(2);
597            let quantum_influence = self.quantum_bio_coupling * quantum_probability * complexity;
598
599            // Update membrane potential with quantum influence
600            neuron.membrane_potential += quantum_influence;
601
602            // Add biological noise
603            neuron.membrane_potential += 0.05 * (rng.random::<f64>() - 0.5);
604
605            // Check for spike generation
606            let dynamic_threshold = neuron.spike_threshold * (1.0 + 0.1 * quantum_influence);
607
608            if neuron.membrane_potential > dynamic_threshold {
609                spike_response[neuron_idx] = 1.0;
610                neuron.membrane_potential = 0.0; // Reset after spike
611                neuron.last_spike_time = Some(Instant::now());
612
613                // Quantum state collapse upon spike
614                if self.quantum_neural_advantage {
615                    let collapse_probability = rng.random::<f64>();
616                    if collapse_probability > 0.5 {
617                        neuron.quantum_state = (1.0, 0.0); // Collapse to |0⟩
618                    } else {
619                        neuron.quantum_state = (0.0, 1.0); // Collapse to |1⟩
620                    }
621                }
622            }
623
624            // Membrane potential decay
625            neuron.membrane_potential *= 0.95;
626        }
627
628        Ok(spike_response)
629    }
630
631    fn quantum_bio_learning(
632        &self,
633        synapses: &mut [QuantumSynapse],
634        _spike_response: &Array1<f64>,
635        time_step: usize,
636    ) -> Result<f64> {
637        let mut total_learning = 0.0;
638
639        for synapse in synapses.iter_mut() {
640            // Quantum-enhanced Hebbian learning
641            let learning_rate = self.adaptive_learning_rate * (1.0 + time_step as f64 * 0.001);
642
643            // Combine quantum and classical information for learning
644            let quantum_strength = (synapse.quantum_amplitudes.0.powi(2)
645                + synapse.quantum_amplitudes.1.powi(2))
646            .sqrt();
647
648            let classical_change = learning_rate * quantum_strength * synapse.coupling_strength;
649
650            // Update classical weight
651            synapse.classical_weight += classical_change;
652            synapse.classical_weight = synapse.classical_weight.clamp(-2.0, 2.0);
653
654            // Update quantum amplitudes with phase evolution
655            let phase_evolution = synapse.quantum_phase + 0.01 * time_step as f64;
656            synapse.quantum_amplitudes.0 *= phase_evolution.cos();
657            synapse.quantum_amplitudes.1 *= phase_evolution.sin();
658
659            total_learning += classical_change.abs();
660        }
661
662        Ok(total_learning / synapses.len() as f64)
663    }
664
665    fn measure_quantum_coherence(&self, neurons: &[QuantumNeuron]) -> Result<f64> {
666        let mut total_coherence = 0.0;
667
668        for neuron in neurons {
669            // Measure quantum coherence as |⟨ψ|ψ⟩|²
670            let coherence = neuron.quantum_state.0.powi(2) + neuron.quantum_state.1.powi(2);
671            total_coherence += coherence;
672        }
673
674        Ok(total_coherence / neurons.len() as f64)
675    }
676
677    fn fusion_target_assignment(
678        &self,
679        neurons: &[QuantumNeuron],
680        complexity: f64,
681        rng: &mut StdRng,
682    ) -> Result<f64> {
683        // Quantum-biological target assignment using both quantum and classical information
684        let mut quantum_contribution = 0.0;
685        let mut biological_contribution = 0.0;
686
687        for neuron in neurons {
688            quantum_contribution += neuron.quantum_state.0 * neuron.quantum_state.1;
689            biological_contribution += neuron.membrane_potential.tanh();
690        }
691
692        let fusion_target = self.quantum_bio_coupling * quantum_contribution
693            + (1.0 - self.quantum_bio_coupling) * biological_contribution;
694
695        // Add complexity-dependent noise
696        let noise = complexity * (rng.random::<f64>() - 0.5) * 0.1;
697
698        Ok((fusion_target + noise).tanh())
699    }
700
701    fn extract_entanglement_matrix(&self, synapses: &[QuantumSynapse]) -> Result<Array2<f64>> {
702        let n_synapses = synapses.len();
703        let matrix_size = (n_synapses as f64).sqrt().ceil() as usize;
704        let mut entanglement_matrix = Array2::zeros((matrix_size, matrix_size));
705
706        for (synapse_idx, synapse) in synapses.iter().enumerate() {
707            let row = synapse_idx / matrix_size;
708            let col = synapse_idx % matrix_size;
709
710            if row < matrix_size && col < matrix_size {
711                // Entanglement strength based on quantum amplitudes and coupling
712                let entanglement_strength = (synapse.quantum_amplitudes.0.powi(2)
713                    + synapse.quantum_amplitudes.1.powi(2))
714                    * synapse.coupling_strength;
715                entanglement_matrix[[row, col]] = entanglement_strength;
716            }
717        }
718
719        Ok(entanglement_matrix)
720    }
721
722    fn extract_fusion_features(
723        &self,
724        quantum_evolution: &Array3<f64>,
725        spike_patterns: &Array3<f64>,
726    ) -> Result<Array2<f64>> {
727        let (time_steps, n_features, n_samples) = quantum_evolution.dim();
728        let mut fusion_features = Array2::zeros((n_samples, n_features));
729
730        // Extract features that capture quantum-biological dynamics
731        for sample_idx in 0..n_samples {
732            for feature_idx in 0..n_features {
733                let quantum_slice = quantum_evolution.slice(s![.., feature_idx, sample_idx]);
734                let spike_slice = spike_patterns.slice(s![.., feature_idx, sample_idx]);
735
736                // Quantum feature: temporal coherence
737                let quantum_coherence = quantum_slice.variance();
738
739                // Biological feature: spike rate and timing
740                let spike_rate = spike_slice.sum() / time_steps as f64;
741
742                // Fusion feature: quantum-biological correlation
743                let correlation = self.calculate_correlation(&quantum_slice, &spike_slice)?;
744
745                fusion_features[[sample_idx, feature_idx]] =
746                    0.4 * quantum_coherence + 0.4 * spike_rate + 0.2 * correlation;
747            }
748        }
749
750        Ok(fusion_features)
751    }
752
753    fn encode_classical_to_quantum(
754        &self,
755        classical_data: &scirs2_core::ndarray::ArrayView1<f64>,
756        quantum_neurons: &mut [QuantumNeuron],
757    ) -> Result<()> {
758        for (idx, &value) in classical_data.iter().enumerate() {
759            if idx < quantum_neurons.len() {
760                // Encode classical value into quantum superposition
761                let theta = value.abs().min(PI);
762                let phi = value.signum() * PI / 2.0;
763
764                quantum_neurons[idx].quantum_state =
765                    (theta.cos() * phi.cos(), theta.sin() * phi.sin());
766
767                // Initialize membrane potential
768                quantum_neurons[idx].membrane_potential = value * 0.5;
769            }
770        }
771
772        Ok(())
773    }
774
775    fn apply_quantum_interference(
776        &self,
777        neurons: &mut [QuantumNeuron],
778        rng: &mut StdRng,
779    ) -> Result<()> {
780        // Apply quantum interference between entangled neurons
781        for neuron_idx in 0..neurons.len() {
782            let entangled_indices = neurons[neuron_idx].entanglement_map.clone();
783
784            for &partner_idx in &entangled_indices {
785                if partner_idx < neurons.len() && partner_idx != neuron_idx {
786                    // Apply interference between entangled neurons
787                    let interference_phase = rng.random::<f64>() * 2.0 * PI;
788                    let interference_strength = 0.1;
789
790                    let real_interference = interference_strength * interference_phase.cos();
791                    let imag_interference = interference_strength * interference_phase.sin();
792
793                    neurons[neuron_idx].quantum_state.0 += real_interference;
794                    neurons[neuron_idx].quantum_state.1 += imag_interference;
795
796                    neurons[partner_idx].quantum_state.0 -= real_interference;
797                    neurons[partner_idx].quantum_state.1 -= imag_interference;
798                }
799            }
800        }
801
802        Ok(())
803    }
804
805    fn update_quantum_bio_entanglement(
806        &self,
807        synapses: &mut [QuantumSynapse],
808        spike_response: &Array1<f64>,
809        layer: usize,
810    ) -> Result<f64> {
811        let mut entanglement_update = 0.0;
812
813        for synapse in synapses.iter_mut() {
814            // Update entanglement based on spike activity and quantum state
815            let layer_factor = 1.0 / (1.0 + layer as f64 * 0.1);
816            let spike_influence = spike_response.sum() / spike_response.len() as f64;
817
818            // Quantum amplitude evolution with biological feedback
819            let amplitude_update = self.adaptive_learning_rate * layer_factor * spike_influence;
820
821            synapse.quantum_amplitudes.0 += amplitude_update;
822            synapse.quantum_amplitudes.1 += amplitude_update * 0.5;
823
824            // Update coupling strength
825            synapse.coupling_strength += 0.001 * amplitude_update;
826            synapse.coupling_strength = synapse.coupling_strength.clamp(0.0, 1.0);
827
828            entanglement_update += amplitude_update.abs();
829        }
830
831        Ok(entanglement_update / synapses.len() as f64)
832    }
833
834    fn generate_spatial_interference_pattern(
835        &self,
836        constructive: f64,
837        destructive: f64,
838        size: usize,
839    ) -> Result<Array2<f64>> {
840        let mut pattern = Array2::zeros((size, size));
841
842        for i in 0..size {
843            for j in 0..size {
844                let x = i as f64 / size as f64;
845                let y = j as f64 / size as f64;
846
847                // Create interference pattern using wave equations
848                let constructive_wave = constructive * (2.0 * PI * x).sin() * (2.0 * PI * y).cos();
849                let destructive_wave = destructive * (PI * x).cos() * (PI * y).sin();
850
851                pattern[[i, j]] = constructive_wave - destructive_wave;
852            }
853        }
854
855        Ok(pattern)
856    }
857
858    fn calculate_correlation(
859        &self,
860        quantum_data: &scirs2_core::ndarray::ArrayView1<f64>,
861        biological_data: &scirs2_core::ndarray::ArrayView1<f64>,
862    ) -> Result<f64> {
863        if quantum_data.len() != biological_data.len() {
864            return Ok(0.0);
865        }
866
867        let n = quantum_data.len() as f64;
868        let quantum_mean = quantum_data.sum() / n;
869        let biological_mean = biological_data.sum() / n;
870
871        let mut numerator = 0.0;
872        let mut quantum_var = 0.0;
873        let mut biological_var = 0.0;
874
875        for i in 0..quantum_data.len() {
876            let quantum_dev = quantum_data[i] - quantum_mean;
877            let biological_dev = biological_data[i] - biological_mean;
878
879            numerator += quantum_dev * biological_dev;
880            quantum_var += quantum_dev.powi(2);
881            biological_var += biological_dev.powi(2);
882        }
883
884        let denominator = (quantum_var * biological_var).sqrt();
885        if denominator > 1e-10 {
886            Ok(numerator / denominator)
887        } else {
888            Ok(0.0)
889        }
890    }
891}
892
893/// Convenience function to create quantum-neuromorphic fusion processor
894#[allow(dead_code)]
895pub fn create_quantum_neuromorphic_fusion() -> QuantumNeuromorphicFusion {
896    QuantumNeuromorphicFusion::default()
897}
898
899/// Convenience function to create quantum-neuromorphic fusion with custom parameters
900#[allow(dead_code)]
901pub fn create_fusion_with_params(
902    quantum_coupling: f64,
903    coherence_time_ms: u64,
904    adaptive_learning: bool,
905) -> QuantumNeuromorphicFusion {
906    QuantumNeuromorphicFusion::new(
907        quantum_coupling,
908        Duration::from_millis(coherence_time_ms),
909        adaptive_learning,
910    )
911}
912
913#[cfg(test)]
914mod tests {
915    use super::*;
916    use scirs2_core::ndarray::Array2;
917    use scirs2_core::random::Uniform;
918
919    #[test]
920    fn test_quantum_neuromorphic_fusion_creation() {
921        let fusion = QuantumNeuromorphicFusion::default();
922        assert!(fusion.quantum_bio_coupling > 0.0);
923        assert!(fusion.quantum_neural_advantage);
924        assert_eq!(fusion.adaptive_learning_rate, 0.001);
925    }
926
927    #[test]
928    fn test_fusion_dataset_generation() {
929        let fusion = QuantumNeuromorphicFusion::default();
930        let result = fusion
931            .generate_fusion_dataset(20, 5, 0.5, Some(42))
932            .unwrap();
933
934        assert_eq!(result.classical_dataset.n_samples(), 20);
935        assert_eq!(result.classical_dataset.n_features(), 5);
936        assert_eq!(result.quantum_evolution.dim(), (100, 5, 20));
937        assert_eq!(result.spike_patterns.dim(), (100, 5, 20));
938        assert_eq!(result.fusion_learning_curve.len(), 20);
939        assert!(!result.coherence_preservation.is_empty());
940    }
941
942    #[test]
943    fn test_dataset_transformation_with_fusion() {
944        let data =
945            Array2::from_shape_vec((10, 4), (0..40).map(|x| x as f64 * 0.1).collect()).unwrap();
946        let targets = Array1::from((0..10).map(|x| (x % 3) as f64).collect::<Vec<_>>());
947        let dataset = Dataset::new(data, Some(targets));
948
949        let fusion = QuantumNeuromorphicFusion::default();
950        let result = fusion
951            .transform_with_fusion(&dataset, 5, true, Some(42))
952            .unwrap();
953
954        assert_eq!(result.classical_dataset.n_samples(), 10);
955        assert_eq!(result.classical_dataset.n_features(), 4);
956        assert_eq!(result.quantum_evolution.dim(), (5, 4, 10)); // fusion_depth, features, samples
957        assert_eq!(result.spike_patterns.dim(), (5, 4, 10));
958    }
959
960    #[test]
961    fn test_interference_pattern_analysis() {
962        let fusion = QuantumNeuromorphicFusion::default();
963        let result = fusion.generate_fusion_dataset(5, 3, 0.3, Some(42)).unwrap();
964
965        let interference = fusion.analyze_interference_patterns(&result).unwrap();
966
967        assert!(interference.constructive_strength.is_finite());
968        assert!(interference.destructive_strength.is_finite());
969        assert!(interference.phase_shift >= 0.0);
970        assert_eq!(interference.spatial_pattern.dim(), (3, 3)); // Size based on n_features
971    }
972
973    #[test]
974    fn test_quantum_advantage_configuration() {
975        let fusion = QuantumNeuromorphicFusion::default().with_quantum_advantage(false);
976
977        assert!(!fusion.quantum_neural_advantage);
978    }
979
980    #[test]
981    fn test_fusion_with_custom_parameters() {
982        let fusion = create_fusion_with_params(0.8, 500, true);
983
984        assert_eq!(fusion.quantum_bio_coupling, 0.8);
985        assert_eq!(fusion.quantum_decoherence_time, Duration::from_millis(500));
986        assert!(fusion.adaptive_learning_rate > 0.0);
987    }
988}