1use crate::error::{DatasetsError, Result};
9use crate::neuromorphic_data_processor::NeuromorphicProcessor;
10use crate::quantum_enhanced_generators::QuantumDatasetGenerator;
11use crate::utils::Dataset;
12use scirs2_core::ndarray::{s, Array1, Array2, Array3};
13use scirs2_core::random::prelude::*;
14use scirs2_core::random::rand_distributions::Uniform;
15use statrs::statistics::Statistics;
16use std::f64::consts::PI;
17use std::time::{Duration, Instant};
18
19#[derive(Debug, Clone)]
22#[allow(dead_code)]
23pub struct QuantumNeuromorphicFusion {
24 quantum_engine: QuantumDatasetGenerator,
26 neuromorphic_engine: NeuromorphicProcessor,
28 quantum_bio_coupling: f64,
30 coherence_plasticity_factor: f64,
32 quantum_decoherence_time: Duration,
34 adaptive_learning_rate: f64,
36 quantum_neural_advantage: bool,
38}
39
40#[derive(Debug, Clone)]
42#[allow(dead_code)]
43struct QuantumSynapse {
44 classical_weight: f64,
46 quantum_amplitudes: (f64, f64),
48 quantum_phase: f64,
50 entangled_partner: Option<usize>,
52 coherence_time: Duration,
54 coupling_strength: f64,
56}
57
58#[derive(Debug, Clone)]
60struct QuantumNeuron {
61 membrane_potential: f64,
63 quantum_state: (f64, f64),
65 phase_evolution: f64,
67 spike_threshold: f64,
69 last_spike_time: Option<Instant>,
71 decoherence_rate: f64,
73 entanglement_map: Vec<usize>,
75}
76
77#[derive(Debug, Clone)]
79pub struct QuantumBioFusionResult {
80 pub classical_dataset: Dataset,
82 pub quantum_evolution: Array3<f64>, pub spike_patterns: Array3<f64>, pub entanglement_matrix: Array2<f64>,
88 pub fusion_learning_curve: Vec<f64>,
90 pub emergent_features: Array2<f64>,
92 pub coherence_preservation: Vec<f64>,
94}
95
96#[derive(Debug, Clone)]
98pub struct QuantumInterference {
99 pub constructive_strength: f64,
101 pub destructive_strength: f64,
103 pub phase_shift: f64,
105 pub spatial_pattern: Array2<f64>,
107}
108
109impl Default for QuantumNeuromorphicFusion {
110 fn default() -> Self {
111 Self {
112 quantum_engine: QuantumDatasetGenerator::default(),
113 neuromorphic_engine: NeuromorphicProcessor::default(),
114 quantum_bio_coupling: 0.7,
115 coherence_plasticity_factor: 0.5,
116 quantum_decoherence_time: Duration::from_millis(1000),
117 adaptive_learning_rate: 0.001,
118 quantum_neural_advantage: true,
119 }
120 }
121}
122
123impl QuantumNeuromorphicFusion {
124 pub fn new(_quantum_coupling: f64, coherence_time: Duration, adaptivelearning: bool) -> Self {
126 Self {
127 quantum_engine: QuantumDatasetGenerator::default(),
128 neuromorphic_engine: NeuromorphicProcessor::default(),
129 quantum_bio_coupling: _quantum_coupling.clamp(0.0, 1.0),
130 coherence_plasticity_factor: 0.5,
131 quantum_decoherence_time: coherence_time,
132 adaptive_learning_rate: if adaptivelearning { 0.001 } else { 0.0 },
133 quantum_neural_advantage: true,
134 }
135 }
136
137 pub fn with_engines(
139 mut self,
140 quantum_engine: QuantumDatasetGenerator,
141 neuromorphic_engine: NeuromorphicProcessor,
142 ) -> Self {
143 self.quantum_engine = quantum_engine;
144 self.neuromorphic_engine = neuromorphic_engine;
145 self
146 }
147
148 pub fn with_quantum_advantage(mut self, enabled: bool) -> Self {
150 self.quantum_neural_advantage = enabled;
151 self
152 }
153
154 pub fn generate_fusion_dataset(
156 &self,
157 n_samples: usize,
158 n_features: usize,
159 fusion_complexity: f64,
160 random_seed: Option<u64>,
161 ) -> Result<QuantumBioFusionResult> {
162 if n_samples == 0 || n_features == 0 {
163 return Err(DatasetsError::InvalidFormat(
164 "Samples and _features must be > 0".to_string(),
165 ));
166 }
167
168 let mut rng = match random_seed {
169 Some(_seed) => StdRng::seed_from_u64(_seed),
170 None => StdRng::from_rng(&mut thread_rng()),
171 };
172
173 let mut quantum_neurons = self.initialize_quantum_neurons(n_features, &mut rng)?;
175 let mut quantum_synapses = self.initialize_quantum_synapses(&quantum_neurons, &mut rng)?;
176
177 let simulation_steps = 100;
179 let mut classical_data = Array2::zeros((n_samples, n_features));
180 let mut classical_targets = Array1::zeros(n_samples);
181 let mut quantum_evolution = Array3::zeros((simulation_steps, n_features, n_samples));
182 let mut spike_patterns = Array3::zeros((simulation_steps, n_features, n_samples));
183 let mut fusion_learning_curve = Vec::with_capacity(n_samples);
184 let mut coherence_preservation = Vec::with_capacity(simulation_steps);
185
186 for sample_idx in 0..n_samples {
188 let mut sample_learning = 0.0;
189
190 for time_step in 0..simulation_steps {
192 self.evolve_quantum_states(
194 &mut quantum_neurons,
195 &quantum_synapses,
196 time_step as f64 * 0.01, time_step,
198 &mut rng,
199 )?;
200
201 let spike_response = self.quantum_influenced_spiking(
203 &mut quantum_neurons,
204 fusion_complexity,
205 &mut rng,
206 )?;
207
208 let learning_delta =
210 self.quantum_bio_learning(&mut quantum_synapses, &spike_response, time_step)?;
211
212 sample_learning += learning_delta;
213
214 for neuron_idx in 0..n_features {
216 if neuron_idx < quantum_neurons.len() {
217 let quantum_prob = quantum_neurons[neuron_idx].quantum_state.0.powi(2)
219 + quantum_neurons[neuron_idx].quantum_state.1.powi(2);
220 quantum_evolution[[time_step, neuron_idx, sample_idx]] = quantum_prob;
221
222 spike_patterns[[time_step, neuron_idx, sample_idx]] =
224 spike_response[neuron_idx];
225 }
226 }
227
228 let coherence = self.measure_quantum_coherence(&quantum_neurons)?;
230 if sample_idx == 0 {
231 coherence_preservation.push(coherence);
232 }
233 }
234
235 for feature_idx in 0..n_features {
237 if feature_idx < quantum_neurons.len() {
238 let quantum_component = quantum_neurons[feature_idx].quantum_state.0.tanh();
240 let biological_component =
241 quantum_neurons[feature_idx].membrane_potential.tanh();
242
243 classical_data[[sample_idx, feature_idx]] = self.quantum_bio_coupling
244 * quantum_component
245 + (1.0 - self.quantum_bio_coupling) * biological_component;
246 }
247 }
248
249 classical_targets[sample_idx] =
251 self.fusion_target_assignment(&quantum_neurons, fusion_complexity, &mut rng)?;
252
253 fusion_learning_curve.push(sample_learning / simulation_steps as f64);
254 }
255
256 let classical_dataset = Dataset::new(classical_data, Some(classical_targets));
258
259 let entanglement_matrix = self.extract_entanglement_matrix(&quantum_synapses)?;
261
262 let emergent_features =
264 self.extract_fusion_features(&quantum_evolution, &spike_patterns)?;
265
266 Ok(QuantumBioFusionResult {
267 classical_dataset,
268 quantum_evolution,
269 spike_patterns,
270 entanglement_matrix,
271 fusion_learning_curve,
272 emergent_features,
273 coherence_preservation,
274 })
275 }
276
277 pub fn transform_with_fusion(
279 &self,
280 dataset: &Dataset,
281 fusion_depth: usize,
282 quantum_interference: bool,
283 random_seed: Option<u64>,
284 ) -> Result<QuantumBioFusionResult> {
285 let data = &dataset.data;
286 let n_samples = data.nrows();
287 let n_features = data.ncols();
288
289 if n_samples == 0 || n_features == 0 {
290 return Err(DatasetsError::InvalidFormat(
291 "Dataset must have samples and features".to_string(),
292 ));
293 }
294
295 let mut rng = match random_seed {
296 Some(_seed) => StdRng::seed_from_u64(_seed),
297 None => StdRng::from_rng(&mut thread_rng()),
298 };
299
300 let mut quantum_neurons = self.initialize_quantum_neurons(n_features, &mut rng)?;
302 let mut quantum_synapses = self.initialize_quantum_synapses(&quantum_neurons, &mut rng)?;
303
304 let mut transformed_data = Array2::zeros((n_samples, n_features));
305 let mut transformed_targets = Array1::zeros(n_samples);
306 let mut quantum_evolution = Array3::zeros((fusion_depth, n_features, n_samples));
307 let mut spike_patterns = Array3::zeros((fusion_depth, n_features, n_samples));
308 let mut fusion_learning_curve = Vec::with_capacity(n_samples);
309 let mut coherence_preservation = Vec::with_capacity(fusion_depth);
310
311 for sample_idx in 0..n_samples {
313 let input_sample = data.row(sample_idx);
314 let mut sample_learning = 0.0;
315
316 self.encode_classical_to_quantum(&input_sample, &mut quantum_neurons)?;
318
319 for fusion_layer in 0..fusion_depth {
321 if quantum_interference {
323 self.apply_quantum_interference(&mut quantum_neurons, &mut rng)?;
324 }
325
326 let spike_response = self.quantum_influenced_spiking(
328 &mut quantum_neurons,
329 0.5, &mut rng,
331 )?;
332
333 let learning_delta = self.update_quantum_bio_entanglement(
335 &mut quantum_synapses,
336 &spike_response,
337 fusion_layer,
338 )?;
339
340 sample_learning += learning_delta;
341
342 for neuron_idx in 0..n_features {
344 if neuron_idx < quantum_neurons.len() {
345 let quantum_amplitude =
346 (quantum_neurons[neuron_idx].quantum_state.0.powi(2)
347 + quantum_neurons[neuron_idx].quantum_state.1.powi(2))
348 .sqrt();
349 quantum_evolution[[fusion_layer, neuron_idx, sample_idx]] =
350 quantum_amplitude;
351 spike_patterns[[fusion_layer, neuron_idx, sample_idx]] =
352 spike_response[neuron_idx];
353 }
354 }
355
356 if sample_idx == 0 {
358 let coherence = self.measure_quantum_coherence(&quantum_neurons)?;
359 if fusion_layer < coherence_preservation.len() {
360 coherence_preservation[fusion_layer] = coherence;
361 } else {
362 coherence_preservation.push(coherence);
363 }
364 }
365 }
366
367 for feature_idx in 0..n_features {
369 if feature_idx < quantum_neurons.len() {
370 let quantum_real = quantum_neurons[feature_idx].quantum_state.0;
371 let quantum_imag = quantum_neurons[feature_idx].quantum_state.1;
372 let biological_membrane = quantum_neurons[feature_idx].membrane_potential;
373
374 transformed_data[[sample_idx, feature_idx]] = quantum_real
376 * biological_membrane.cos()
377 + quantum_imag * biological_membrane.sin();
378 }
379 }
380
381 transformed_targets[sample_idx] = dataset
383 .target
384 .as_ref()
385 .map(|targets| targets[sample_idx])
386 .unwrap_or(sample_learning.tanh());
387
388 fusion_learning_curve.push(sample_learning / fusion_depth as f64);
389 }
390
391 let transformed_dataset = Dataset::new(transformed_data, Some(transformed_targets));
392 let entanglement_matrix = self.extract_entanglement_matrix(&quantum_synapses)?;
393 let emergent_features =
394 self.extract_fusion_features(&quantum_evolution, &spike_patterns)?;
395
396 Ok(QuantumBioFusionResult {
397 classical_dataset: transformed_dataset,
398 quantum_evolution,
399 spike_patterns,
400 entanglement_matrix,
401 fusion_learning_curve,
402 emergent_features,
403 coherence_preservation,
404 })
405 }
406
407 pub fn analyze_interference_patterns(
409 &self,
410 fusion_result: &QuantumBioFusionResult,
411 ) -> Result<QuantumInterference> {
412 let quantum_data = &fusion_result.quantum_evolution;
413 let biological_data = &fusion_result.spike_patterns;
414
415 let (time_steps, n_qubits, n_samples) = quantum_data.dim();
416 let mut constructive_strength = 0.0;
417 let mut destructive_strength = 0.0;
418 let mut phase_shift = 0.0;
419 let mut pattern_count = 0;
420
421 for sample_idx in 0..n_samples {
423 for qubit_idx in 0..n_qubits {
424 for time_idx in 0..(time_steps - 1) {
425 let quantum_amplitude = quantum_data[[time_idx, qubit_idx, sample_idx]];
426 let biological_spike = biological_data[[time_idx, qubit_idx, sample_idx]];
427
428 let quantum_next = quantum_data[[time_idx + 1, qubit_idx, sample_idx]];
429 let biological_next = biological_data[[time_idx + 1, qubit_idx, sample_idx]];
430
431 let quantum_phase = quantum_amplitude.atan2(quantum_next);
433 let biological_phase = biological_spike.atan2(biological_next);
434 let phase_difference = (quantum_phase - biological_phase).abs();
435
436 if phase_difference < PI / 4.0 {
438 constructive_strength += quantum_amplitude * biological_spike;
440 } else if phase_difference > 3.0 * PI / 4.0 {
441 destructive_strength += quantum_amplitude * biological_spike;
443 }
444
445 phase_shift += phase_difference;
446 pattern_count += 1;
447 }
448 }
449 }
450
451 constructive_strength /= pattern_count as f64;
453 destructive_strength /= pattern_count as f64;
454 phase_shift /= pattern_count as f64;
455
456 let spatial_pattern = self.generate_spatial_interference_pattern(
458 constructive_strength,
459 destructive_strength,
460 n_qubits,
461 )?;
462
463 Ok(QuantumInterference {
464 constructive_strength,
465 destructive_strength,
466 phase_shift,
467 spatial_pattern,
468 })
469 }
470
471 fn initialize_quantum_neurons(
474 &self,
475 n_neurons: usize,
476 rng: &mut StdRng,
477 ) -> Result<Vec<QuantumNeuron>> {
478 let mut _neurons = Vec::with_capacity(n_neurons);
479
480 for neuron_idx in 0..n_neurons {
481 let theta = rng.random::<f64>() * PI;
483 let phi = rng.random::<f64>() * 2.0 * PI;
484
485 let quantum_state = (theta.cos() * phi.cos(), theta.sin() * phi.sin());
486
487 let entanglement_map: Vec<usize> = (0..n_neurons)
489 .filter(|&i| i != neuron_idx && rng.random::<f64>() < 0.1)
490 .collect();
491
492 _neurons.push(QuantumNeuron {
493 membrane_potential: rng.random::<f64>() - 0.5,
494 quantum_state,
495 phase_evolution: 0.0,
496 spike_threshold: 1.0,
497 last_spike_time: None,
498 decoherence_rate: 1.0 / self.quantum_decoherence_time.as_secs_f64(),
499 entanglement_map,
500 });
501 }
502
503 Ok(_neurons)
504 }
505
506 fn initialize_quantum_synapses(
507 &self,
508 neurons: &[QuantumNeuron],
509 rng: &mut StdRng,
510 ) -> Result<Vec<QuantumSynapse>> {
511 let n_neurons = neurons.len();
512 let n_synapses = (n_neurons * n_neurons) / 4; let mut synapses = Vec::with_capacity(n_synapses);
514
515 for _ in 0..n_synapses {
516 let quantum_phase = rng.random::<f64>() * 2.0 * PI;
517 let amplitude_real = rng.random::<f64>() - 0.5;
518 let amplitude_imag = rng.random::<f64>() - 0.5;
519
520 synapses.push(QuantumSynapse {
521 classical_weight: rng.random::<f64>() - 0.5,
522 quantum_amplitudes: (amplitude_real, amplitude_imag),
523 quantum_phase,
524 entangled_partner: if rng.random::<f64>() < 0.3 {
525 Some(rng.sample(Uniform::new(0, n_synapses).unwrap()))
526 } else {
527 None
528 },
529 coherence_time: self.quantum_decoherence_time,
530 coupling_strength: self.quantum_bio_coupling,
531 });
532 }
533
534 Ok(synapses)
535 }
536
537 fn evolve_quantum_states(
538 &self,
539 neurons: &mut [QuantumNeuron],
540 _synapses: &[QuantumSynapse],
541 _time: f64,
542 _step: usize,
543 rng: &mut StdRng,
544 ) -> Result<()> {
545 for neuron in neurons.iter_mut() {
546 let dt = 0.01; let omega = 1.0; let phase_increment = omega * dt + neuron.phase_evolution;
552 let cos_phase = phase_increment.cos();
553 let sin_phase = phase_increment.sin();
554
555 let new_real = neuron.quantum_state.0 * cos_phase - neuron.quantum_state.1 * sin_phase;
556 let new_imag = neuron.quantum_state.0 * sin_phase + neuron.quantum_state.1 * cos_phase;
557
558 neuron.quantum_state = (new_real, new_imag);
559 neuron.phase_evolution += phase_increment;
560
561 let decoherence_factor = (-neuron.decoherence_rate * dt).exp();
563 neuron.quantum_state.0 *= decoherence_factor;
564 neuron.quantum_state.1 *= decoherence_factor;
565
566 let norm = (neuron.quantum_state.0.powi(2) + neuron.quantum_state.1.powi(2)).sqrt();
568 if norm > 1e-10 {
569 neuron.quantum_state.0 /= norm;
570 neuron.quantum_state.1 /= norm;
571 }
572
573 if self.quantum_neural_advantage {
575 let noise_strength = 0.01;
576 neuron.quantum_state.0 += noise_strength * (rng.random::<f64>() - 0.5);
577 neuron.quantum_state.1 += noise_strength * (rng.random::<f64>() - 0.5);
578 }
579 }
580
581 Ok(())
582 }
583
584 fn quantum_influenced_spiking(
585 &self,
586 neurons: &mut [QuantumNeuron],
587 complexity: f64,
588 rng: &mut StdRng,
589 ) -> Result<Array1<f64>> {
590 let n_neurons = neurons.len();
591 let mut spike_response = Array1::zeros(n_neurons);
592
593 for (neuron_idx, neuron) in neurons.iter_mut().enumerate() {
594 let quantum_probability =
596 neuron.quantum_state.0.powi(2) + neuron.quantum_state.1.powi(2);
597 let quantum_influence = self.quantum_bio_coupling * quantum_probability * complexity;
598
599 neuron.membrane_potential += quantum_influence;
601
602 neuron.membrane_potential += 0.05 * (rng.random::<f64>() - 0.5);
604
605 let dynamic_threshold = neuron.spike_threshold * (1.0 + 0.1 * quantum_influence);
607
608 if neuron.membrane_potential > dynamic_threshold {
609 spike_response[neuron_idx] = 1.0;
610 neuron.membrane_potential = 0.0; neuron.last_spike_time = Some(Instant::now());
612
613 if self.quantum_neural_advantage {
615 let collapse_probability = rng.random::<f64>();
616 if collapse_probability > 0.5 {
617 neuron.quantum_state = (1.0, 0.0); } else {
619 neuron.quantum_state = (0.0, 1.0); }
621 }
622 }
623
624 neuron.membrane_potential *= 0.95;
626 }
627
628 Ok(spike_response)
629 }
630
631 fn quantum_bio_learning(
632 &self,
633 synapses: &mut [QuantumSynapse],
634 _spike_response: &Array1<f64>,
635 time_step: usize,
636 ) -> Result<f64> {
637 let mut total_learning = 0.0;
638
639 for synapse in synapses.iter_mut() {
640 let learning_rate = self.adaptive_learning_rate * (1.0 + time_step as f64 * 0.001);
642
643 let quantum_strength = (synapse.quantum_amplitudes.0.powi(2)
645 + synapse.quantum_amplitudes.1.powi(2))
646 .sqrt();
647
648 let classical_change = learning_rate * quantum_strength * synapse.coupling_strength;
649
650 synapse.classical_weight += classical_change;
652 synapse.classical_weight = synapse.classical_weight.clamp(-2.0, 2.0);
653
654 let phase_evolution = synapse.quantum_phase + 0.01 * time_step as f64;
656 synapse.quantum_amplitudes.0 *= phase_evolution.cos();
657 synapse.quantum_amplitudes.1 *= phase_evolution.sin();
658
659 total_learning += classical_change.abs();
660 }
661
662 Ok(total_learning / synapses.len() as f64)
663 }
664
665 fn measure_quantum_coherence(&self, neurons: &[QuantumNeuron]) -> Result<f64> {
666 let mut total_coherence = 0.0;
667
668 for neuron in neurons {
669 let coherence = neuron.quantum_state.0.powi(2) + neuron.quantum_state.1.powi(2);
671 total_coherence += coherence;
672 }
673
674 Ok(total_coherence / neurons.len() as f64)
675 }
676
677 fn fusion_target_assignment(
678 &self,
679 neurons: &[QuantumNeuron],
680 complexity: f64,
681 rng: &mut StdRng,
682 ) -> Result<f64> {
683 let mut quantum_contribution = 0.0;
685 let mut biological_contribution = 0.0;
686
687 for neuron in neurons {
688 quantum_contribution += neuron.quantum_state.0 * neuron.quantum_state.1;
689 biological_contribution += neuron.membrane_potential.tanh();
690 }
691
692 let fusion_target = self.quantum_bio_coupling * quantum_contribution
693 + (1.0 - self.quantum_bio_coupling) * biological_contribution;
694
695 let noise = complexity * (rng.random::<f64>() - 0.5) * 0.1;
697
698 Ok((fusion_target + noise).tanh())
699 }
700
701 fn extract_entanglement_matrix(&self, synapses: &[QuantumSynapse]) -> Result<Array2<f64>> {
702 let n_synapses = synapses.len();
703 let matrix_size = (n_synapses as f64).sqrt().ceil() as usize;
704 let mut entanglement_matrix = Array2::zeros((matrix_size, matrix_size));
705
706 for (synapse_idx, synapse) in synapses.iter().enumerate() {
707 let row = synapse_idx / matrix_size;
708 let col = synapse_idx % matrix_size;
709
710 if row < matrix_size && col < matrix_size {
711 let entanglement_strength = (synapse.quantum_amplitudes.0.powi(2)
713 + synapse.quantum_amplitudes.1.powi(2))
714 * synapse.coupling_strength;
715 entanglement_matrix[[row, col]] = entanglement_strength;
716 }
717 }
718
719 Ok(entanglement_matrix)
720 }
721
722 fn extract_fusion_features(
723 &self,
724 quantum_evolution: &Array3<f64>,
725 spike_patterns: &Array3<f64>,
726 ) -> Result<Array2<f64>> {
727 let (time_steps, n_features, n_samples) = quantum_evolution.dim();
728 let mut fusion_features = Array2::zeros((n_samples, n_features));
729
730 for sample_idx in 0..n_samples {
732 for feature_idx in 0..n_features {
733 let quantum_slice = quantum_evolution.slice(s![.., feature_idx, sample_idx]);
734 let spike_slice = spike_patterns.slice(s![.., feature_idx, sample_idx]);
735
736 let quantum_coherence = quantum_slice.variance();
738
739 let spike_rate = spike_slice.sum() / time_steps as f64;
741
742 let correlation = self.calculate_correlation(&quantum_slice, &spike_slice)?;
744
745 fusion_features[[sample_idx, feature_idx]] =
746 0.4 * quantum_coherence + 0.4 * spike_rate + 0.2 * correlation;
747 }
748 }
749
750 Ok(fusion_features)
751 }
752
753 fn encode_classical_to_quantum(
754 &self,
755 classical_data: &scirs2_core::ndarray::ArrayView1<f64>,
756 quantum_neurons: &mut [QuantumNeuron],
757 ) -> Result<()> {
758 for (idx, &value) in classical_data.iter().enumerate() {
759 if idx < quantum_neurons.len() {
760 let theta = value.abs().min(PI);
762 let phi = value.signum() * PI / 2.0;
763
764 quantum_neurons[idx].quantum_state =
765 (theta.cos() * phi.cos(), theta.sin() * phi.sin());
766
767 quantum_neurons[idx].membrane_potential = value * 0.5;
769 }
770 }
771
772 Ok(())
773 }
774
775 fn apply_quantum_interference(
776 &self,
777 neurons: &mut [QuantumNeuron],
778 rng: &mut StdRng,
779 ) -> Result<()> {
780 for neuron_idx in 0..neurons.len() {
782 let entangled_indices = neurons[neuron_idx].entanglement_map.clone();
783
784 for &partner_idx in &entangled_indices {
785 if partner_idx < neurons.len() && partner_idx != neuron_idx {
786 let interference_phase = rng.random::<f64>() * 2.0 * PI;
788 let interference_strength = 0.1;
789
790 let real_interference = interference_strength * interference_phase.cos();
791 let imag_interference = interference_strength * interference_phase.sin();
792
793 neurons[neuron_idx].quantum_state.0 += real_interference;
794 neurons[neuron_idx].quantum_state.1 += imag_interference;
795
796 neurons[partner_idx].quantum_state.0 -= real_interference;
797 neurons[partner_idx].quantum_state.1 -= imag_interference;
798 }
799 }
800 }
801
802 Ok(())
803 }
804
805 fn update_quantum_bio_entanglement(
806 &self,
807 synapses: &mut [QuantumSynapse],
808 spike_response: &Array1<f64>,
809 layer: usize,
810 ) -> Result<f64> {
811 let mut entanglement_update = 0.0;
812
813 for synapse in synapses.iter_mut() {
814 let layer_factor = 1.0 / (1.0 + layer as f64 * 0.1);
816 let spike_influence = spike_response.sum() / spike_response.len() as f64;
817
818 let amplitude_update = self.adaptive_learning_rate * layer_factor * spike_influence;
820
821 synapse.quantum_amplitudes.0 += amplitude_update;
822 synapse.quantum_amplitudes.1 += amplitude_update * 0.5;
823
824 synapse.coupling_strength += 0.001 * amplitude_update;
826 synapse.coupling_strength = synapse.coupling_strength.clamp(0.0, 1.0);
827
828 entanglement_update += amplitude_update.abs();
829 }
830
831 Ok(entanglement_update / synapses.len() as f64)
832 }
833
834 fn generate_spatial_interference_pattern(
835 &self,
836 constructive: f64,
837 destructive: f64,
838 size: usize,
839 ) -> Result<Array2<f64>> {
840 let mut pattern = Array2::zeros((size, size));
841
842 for i in 0..size {
843 for j in 0..size {
844 let x = i as f64 / size as f64;
845 let y = j as f64 / size as f64;
846
847 let constructive_wave = constructive * (2.0 * PI * x).sin() * (2.0 * PI * y).cos();
849 let destructive_wave = destructive * (PI * x).cos() * (PI * y).sin();
850
851 pattern[[i, j]] = constructive_wave - destructive_wave;
852 }
853 }
854
855 Ok(pattern)
856 }
857
858 fn calculate_correlation(
859 &self,
860 quantum_data: &scirs2_core::ndarray::ArrayView1<f64>,
861 biological_data: &scirs2_core::ndarray::ArrayView1<f64>,
862 ) -> Result<f64> {
863 if quantum_data.len() != biological_data.len() {
864 return Ok(0.0);
865 }
866
867 let n = quantum_data.len() as f64;
868 let quantum_mean = quantum_data.sum() / n;
869 let biological_mean = biological_data.sum() / n;
870
871 let mut numerator = 0.0;
872 let mut quantum_var = 0.0;
873 let mut biological_var = 0.0;
874
875 for i in 0..quantum_data.len() {
876 let quantum_dev = quantum_data[i] - quantum_mean;
877 let biological_dev = biological_data[i] - biological_mean;
878
879 numerator += quantum_dev * biological_dev;
880 quantum_var += quantum_dev.powi(2);
881 biological_var += biological_dev.powi(2);
882 }
883
884 let denominator = (quantum_var * biological_var).sqrt();
885 if denominator > 1e-10 {
886 Ok(numerator / denominator)
887 } else {
888 Ok(0.0)
889 }
890 }
891}
892
893#[allow(dead_code)]
895pub fn create_quantum_neuromorphic_fusion() -> QuantumNeuromorphicFusion {
896 QuantumNeuromorphicFusion::default()
897}
898
899#[allow(dead_code)]
901pub fn create_fusion_with_params(
902 quantum_coupling: f64,
903 coherence_time_ms: u64,
904 adaptive_learning: bool,
905) -> QuantumNeuromorphicFusion {
906 QuantumNeuromorphicFusion::new(
907 quantum_coupling,
908 Duration::from_millis(coherence_time_ms),
909 adaptive_learning,
910 )
911}
912
913#[cfg(test)]
914mod tests {
915 use super::*;
916 use scirs2_core::ndarray::Array2;
917 use scirs2_core::random::Uniform;
918
919 #[test]
920 fn test_quantum_neuromorphic_fusion_creation() {
921 let fusion = QuantumNeuromorphicFusion::default();
922 assert!(fusion.quantum_bio_coupling > 0.0);
923 assert!(fusion.quantum_neural_advantage);
924 assert_eq!(fusion.adaptive_learning_rate, 0.001);
925 }
926
927 #[test]
928 fn test_fusion_dataset_generation() {
929 let fusion = QuantumNeuromorphicFusion::default();
930 let result = fusion
931 .generate_fusion_dataset(20, 5, 0.5, Some(42))
932 .unwrap();
933
934 assert_eq!(result.classical_dataset.n_samples(), 20);
935 assert_eq!(result.classical_dataset.n_features(), 5);
936 assert_eq!(result.quantum_evolution.dim(), (100, 5, 20));
937 assert_eq!(result.spike_patterns.dim(), (100, 5, 20));
938 assert_eq!(result.fusion_learning_curve.len(), 20);
939 assert!(!result.coherence_preservation.is_empty());
940 }
941
942 #[test]
943 fn test_dataset_transformation_with_fusion() {
944 let data =
945 Array2::from_shape_vec((10, 4), (0..40).map(|x| x as f64 * 0.1).collect()).unwrap();
946 let targets = Array1::from((0..10).map(|x| (x % 3) as f64).collect::<Vec<_>>());
947 let dataset = Dataset::new(data, Some(targets));
948
949 let fusion = QuantumNeuromorphicFusion::default();
950 let result = fusion
951 .transform_with_fusion(&dataset, 5, true, Some(42))
952 .unwrap();
953
954 assert_eq!(result.classical_dataset.n_samples(), 10);
955 assert_eq!(result.classical_dataset.n_features(), 4);
956 assert_eq!(result.quantum_evolution.dim(), (5, 4, 10)); assert_eq!(result.spike_patterns.dim(), (5, 4, 10));
958 }
959
960 #[test]
961 fn test_interference_pattern_analysis() {
962 let fusion = QuantumNeuromorphicFusion::default();
963 let result = fusion.generate_fusion_dataset(5, 3, 0.3, Some(42)).unwrap();
964
965 let interference = fusion.analyze_interference_patterns(&result).unwrap();
966
967 assert!(interference.constructive_strength.is_finite());
968 assert!(interference.destructive_strength.is_finite());
969 assert!(interference.phase_shift >= 0.0);
970 assert_eq!(interference.spatial_pattern.dim(), (3, 3)); }
972
973 #[test]
974 fn test_quantum_advantage_configuration() {
975 let fusion = QuantumNeuromorphicFusion::default().with_quantum_advantage(false);
976
977 assert!(!fusion.quantum_neural_advantage);
978 }
979
980 #[test]
981 fn test_fusion_with_custom_parameters() {
982 let fusion = create_fusion_with_params(0.8, 500, true);
983
984 assert_eq!(fusion.quantum_bio_coupling, 0.8);
985 assert_eq!(fusion.quantum_decoherence_time, Duration::from_millis(500));
986 assert!(fusion.adaptive_learning_rate > 0.0);
987 }
988}