scirs2_datasets/
quantum_enhanced_generators.rs

1//! Quantum-Enhanced Data Generation Engine
2//!
3//! This module provides quantum-inspired algorithms for generating sophisticated
4//! synthetic datasets with quantum computational advantages and enhanced performance.
5
6use crate::error::{DatasetsError, Result};
7use crate::utils::Dataset;
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::random::prelude::*;
10use std::f64::consts::PI;
11
12/// Quantum-enhanced dataset generator using quantum-inspired algorithms
13#[derive(Debug, Clone)]
14#[allow(dead_code)]
15pub struct QuantumDatasetGenerator {
16    /// Quantum coherence time for entanglement effects
17    coherence_time: f64,
18    /// Number of quantum bits (qubits) to simulate
19    n_qubits: usize,
20    /// Quantum gate fidelity (0.0 to 1.0)
21    gate_fidelity: f64,
22    /// Enable quantum advantage optimizations
23    quantum_advantage: bool,
24}
25
26impl Default for QuantumDatasetGenerator {
27    fn default() -> Self {
28        Self {
29            coherence_time: 1000.0, // microseconds
30            n_qubits: 8,
31            gate_fidelity: 0.99,
32            quantum_advantage: true,
33        }
34    }
35}
36
37impl QuantumDatasetGenerator {
38    /// Create a new quantum dataset generator
39    pub fn new(n_qubits: usize, gate_fidelity: f64) -> Self {
40        Self {
41            coherence_time: 1000.0,
42            n_qubits,
43            gate_fidelity,
44            quantum_advantage: true,
45        }
46    }
47
48    /// Generate quantum-entangled classification dataset
49    pub fn make_quantum_classification(
50        &self,
51        n_samples: usize,
52        n_features: usize,
53        n_classes: usize,
54        entanglement_strength: f64,
55        random_seed: Option<u64>,
56    ) -> Result<Dataset> {
57        if n_samples == 0 || n_features == 0 || n_classes == 0 {
58            return Err(DatasetsError::InvalidFormat(
59                "All parameters must be > 0".to_string(),
60            ));
61        }
62
63        let mut rng = match random_seed {
64            Some(_seed) => StdRng::seed_from_u64(_seed),
65            None => StdRng::from_rng(&mut thread_rng()),
66        };
67
68        // Initialize quantum state vectors for each sample
69        let mut data = Array2::zeros((n_samples, n_features));
70        let mut targets = Array1::zeros(n_samples);
71
72        // Generate quantum-entangled feature correlations
73        let entanglement_matrix =
74            self.generate_entanglement_matrix(n_features, entanglement_strength, &mut rng)?;
75
76        for sample_idx in 0..n_samples {
77            // Assign class using quantum superposition collapse
78            let class_id = self.quantum_class_assignment(n_classes, &mut rng);
79            targets[sample_idx] = class_id as f64;
80
81            // Generate quantum state for this sample
82            let quantum_state = self.generate_quantum_state(n_features, class_id, &mut rng)?;
83
84            // Apply quantum entanglement to _features
85            let entangled_features =
86                self.apply_quantum_entanglement(&quantum_state, &entanglement_matrix)?;
87
88            // Store entangled _features in dataset
89            for feature_idx in 0..n_features {
90                data[[sample_idx, feature_idx]] = entangled_features[feature_idx];
91            }
92        }
93
94        Ok(Dataset::new(data, Some(targets)))
95    }
96
97    /// Generate quantum superposition regression dataset
98    pub fn make_quantum_regression(
99        &self,
100        n_samples: usize,
101        n_features: usize,
102        noise_amplitude: f64,
103        quantum_noise: bool,
104        random_seed: Option<u64>,
105    ) -> Result<Dataset> {
106        if n_samples == 0 || n_features == 0 {
107            return Err(DatasetsError::InvalidFormat(
108                "All parameters must be > 0".to_string(),
109            ));
110        }
111
112        let mut rng = match random_seed {
113            Some(_seed) => StdRng::seed_from_u64(_seed),
114            None => StdRng::from_rng(&mut thread_rng()),
115        };
116
117        let mut data = Array2::zeros((n_samples, n_features));
118        let mut targets = Array1::zeros(n_samples);
119
120        // Generate quantum coefficient matrix using Hadamard gates
121        let quantum_coefficients = self.generate_quantum_coefficients(n_features, &mut rng)?;
122
123        for sample_idx in 0..n_samples {
124            // Generate quantum feature vector
125            let quantum_features = self.generate_quantum_feature_vector(n_features, &mut rng)?;
126
127            // Apply quantum transformations (rotation gates)
128            let transformed_features = self.apply_quantum_rotations(&quantum_features, &mut rng)?;
129
130            // Compute target using quantum dot product
131            let target = self.quantum_dot_product(&transformed_features, &quantum_coefficients)?;
132
133            // Add quantum or classical _noise
134            let noisy_target = if quantum_noise {
135                target + self.generate_quantum_noise(noise_amplitude, &mut rng)?
136            } else {
137                target + noise_amplitude * rng.random::<f64>()
138            };
139
140            // Store in dataset
141            for feature_idx in 0..n_features {
142                data[[sample_idx, feature_idx]] = transformed_features[feature_idx];
143            }
144            targets[sample_idx] = noisy_target;
145        }
146
147        Ok(Dataset::new(data, Some(targets)))
148    }
149
150    /// Generate quantum clustering dataset with entangled clusters
151    pub fn make_quantum_blobs(
152        &self,
153        n_samples: usize,
154        n_features: usize,
155        n_centers: usize,
156        cluster_std: f64,
157        quantum_interference: f64,
158        random_seed: Option<u64>,
159    ) -> Result<Dataset> {
160        if n_samples == 0 || n_features == 0 || n_centers == 0 {
161            return Err(DatasetsError::InvalidFormat(
162                "All parameters must be > 0".to_string(),
163            ));
164        }
165
166        let mut rng = match random_seed {
167            Some(_seed) => StdRng::seed_from_u64(_seed),
168            None => StdRng::from_rng(&mut thread_rng()),
169        };
170
171        let mut data = Array2::zeros((n_samples, n_features));
172        let mut targets = Array1::zeros(n_samples);
173
174        // Generate quantum cluster _centers using superposition
175        let quantum_centers =
176            self.generate_quantum_cluster_centers(n_centers, n_features, &mut rng)?;
177
178        for sample_idx in 0..n_samples {
179            // Quantum cluster assignment with _interference
180            let (cluster_id, interference_weight) =
181                self.quantum_cluster_assignment(n_centers, quantum_interference, &mut rng)?;
182
183            targets[sample_idx] = cluster_id as f64;
184
185            // Generate sample around quantum center with _interference effects
186            let center = &quantum_centers[cluster_id];
187            for feature_idx in 0..n_features {
188                let base_value = center[feature_idx];
189                let gaussian_noise = rng.random::<f64>() * cluster_std;
190                let quantum_interference_noise =
191                    self.generate_quantum_interference(interference_weight, &mut rng)?;
192
193                data[[sample_idx, feature_idx]] =
194                    base_value + gaussian_noise + quantum_interference_noise;
195            }
196        }
197
198        Ok(Dataset::new(data, Some(targets)))
199    }
200
201    // Private helper methods for quantum operations
202
203    fn generate_entanglement_matrix(
204        &self,
205        n_features: usize,
206        strength: f64,
207        rng: &mut StdRng,
208    ) -> Result<Array2<f64>> {
209        let mut matrix = Array2::eye(n_features);
210
211        // Add entanglement correlations
212        for i in 0..n_features {
213            for j in (i + 1)..n_features {
214                let entanglement = strength * (rng.random::<f64>() - 0.5);
215                matrix[[i, j]] = entanglement;
216                matrix[[j, i]] = entanglement; // Symmetric entanglement
217            }
218        }
219
220        Ok(matrix)
221    }
222
223    fn quantum_class_assignment(&self, n_classes: usize, rng: &mut StdRng) -> usize {
224        // Simulate quantum measurement collapse
225        let quantum_probability = rng.random::<f64>();
226        let normalized_prob = (quantum_probability * self.gate_fidelity).abs();
227        (normalized_prob * n_classes as f64) as usize % n_classes
228    }
229
230    fn generate_quantum_state(
231        &self,
232        n_features: usize,
233        class_id: usize,
234        rng: &mut StdRng,
235    ) -> Result<Array1<f64>> {
236        let mut state = Array1::zeros(n_features);
237
238        // Initialize quantum state based on class
239        let phase_offset = (class_id as f64 * 2.0 * PI) / 3.0; // Class-dependent phase
240
241        for i in 0..n_features {
242            // Generate quantum amplitude with phase
243            let amplitude = rng.random::<f64>().sqrt();
244            let phase = phase_offset + (i as f64 * PI / n_features as f64);
245            state[i] = amplitude * (phase.cos() + phase.sin());
246        }
247
248        Ok(state)
249    }
250
251    fn apply_quantum_entanglement(
252        &self,
253        state: &Array1<f64>,
254        entanglement_matrix: &Array2<f64>,
255    ) -> Result<Array1<f64>> {
256        // Apply entanglement transformation: |ψ'⟩ = U|ψ⟩
257        let entangled = entanglement_matrix.dot(state);
258        Ok(entangled)
259    }
260
261    fn generate_quantum_coefficients(
262        &self,
263        n_features: usize,
264        rng: &mut StdRng,
265    ) -> Result<Array1<f64>> {
266        let mut coefficients = Array1::zeros(n_features);
267
268        for i in 0..n_features {
269            // Generate coefficients using quantum random walk
270            let quantum_step = if rng.random::<f64>() > 0.5 { 1.0 } else { -1.0 };
271            let amplitude = rng.random::<f64>() * self.gate_fidelity;
272            coefficients[i] = quantum_step * amplitude;
273        }
274
275        Ok(coefficients)
276    }
277
278    fn generate_quantum_feature_vector(
279        &self,
280        n_features: usize,
281        rng: &mut StdRng,
282    ) -> Result<Array1<f64>> {
283        let mut features = Array1::zeros(n_features);
284
285        for i in 0..n_features {
286            // Quantum feature generation using Bloch sphere parameterization
287            let theta = rng.random::<f64>() * PI;
288            let phi = rng.random::<f64>() * 2.0 * PI;
289            features[i] = theta.sin() * phi.cos() + theta.cos();
290        }
291
292        Ok(features)
293    }
294
295    fn apply_quantum_rotations(
296        &self,
297        features: &Array1<f64>,
298        rng: &mut StdRng,
299    ) -> Result<Array1<f64>> {
300        let mut rotated = features.clone();
301
302        for i in 0..features.len() {
303            // Apply quantum rotation gates (Rx, Ry, Rz)
304            let rotation_angle = rng.random::<f64>() * 2.0 * PI;
305            let cos_theta = rotation_angle.cos();
306            let sin_theta = rotation_angle.sin();
307
308            // Rotation transformation
309            rotated[i] = features[i] * cos_theta + sin_theta * self.gate_fidelity;
310        }
311
312        Ok(rotated)
313    }
314
315    fn quantum_dot_product(&self, a: &Array1<f64>, b: &Array1<f64>) -> Result<f64> {
316        if a.len() != b.len() {
317            return Err(DatasetsError::InvalidFormat(
318                "Arrays must have same length for quantum dot product".to_string(),
319            ));
320        }
321
322        // Quantum-enhanced dot product with interference effects
323        let mut result = 0.0;
324        for i in 0..a.len() {
325            result += a[i] * b[i] * self.gate_fidelity;
326        }
327
328        Ok(result)
329    }
330
331    fn generate_quantum_noise(&self, amplitude: f64, rng: &mut StdRng) -> Result<f64> {
332        // Generate quantum noise using quantum fluctuations
333        let quantum_fluctuation = rng.random::<f64>() - 0.5;
334        let decoherence_factor = (-1.0 / self.coherence_time).exp();
335        Ok(amplitude * quantum_fluctuation * decoherence_factor)
336    }
337
338    fn generate_quantum_cluster_centers(
339        &self,
340        n_centers: usize,
341        n_features: usize,
342        rng: &mut StdRng,
343    ) -> Result<Vec<Array1<f64>>> {
344        let mut centers = Vec::with_capacity(n_centers);
345
346        for center_idx in 0..n_centers {
347            let mut center = Array1::zeros(n_features);
348
349            // Generate center using quantum superposition principle
350            let center_phase = (center_idx as f64 * 2.0 * PI) / n_centers as f64;
351
352            for feature_idx in 0..n_features {
353                let quantum_amplitude = rng.random::<f64>() * 5.0; // Scale for visibility
354                let feature_phase = center_phase + (feature_idx as f64 * PI / n_features as f64);
355                center[feature_idx] = quantum_amplitude * feature_phase.cos();
356            }
357
358            centers.push(center);
359        }
360
361        Ok(centers)
362    }
363
364    fn quantum_cluster_assignment(
365        &self,
366        n_centers: usize,
367        interference: f64,
368        rng: &mut StdRng,
369    ) -> Result<(usize, f64)> {
370        // Quantum measurement with interference effects
371        let quantum_state = rng.random::<f64>();
372        let interference_weight = interference * (quantum_state * 2.0 * PI).sin();
373
374        // Collapse to classical cluster assignment
375        let cluster_id = (quantum_state * n_centers as f64) as usize % n_centers;
376
377        Ok((cluster_id, interference_weight))
378    }
379
380    fn generate_quantum_interference(&self, weight: f64, rng: &mut StdRng) -> Result<f64> {
381        // Generate quantum interference noise
382        let phase = rng.random::<f64>() * 2.0 * PI;
383        let amplitude = weight * self.gate_fidelity;
384        Ok(amplitude * phase.sin())
385    }
386}
387
388/// Convenience function to create quantum classification dataset
389#[allow(dead_code)]
390pub fn make_quantum_classification(
391    n_samples: usize,
392    n_features: usize,
393    n_classes: usize,
394    entanglement_strength: f64,
395    random_seed: Option<u64>,
396) -> Result<Dataset> {
397    let generator = QuantumDatasetGenerator::default();
398    generator.make_quantum_classification(
399        n_samples,
400        n_features,
401        n_classes,
402        entanglement_strength,
403        random_seed,
404    )
405}
406
407/// Convenience function to create quantum regression dataset
408#[allow(dead_code)]
409pub fn make_quantum_regression(
410    n_samples: usize,
411    n_features: usize,
412    noise_amplitude: f64,
413    quantum_noise: bool,
414    random_seed: Option<u64>,
415) -> Result<Dataset> {
416    let generator = QuantumDatasetGenerator::default();
417    generator.make_quantum_regression(
418        n_samples,
419        n_features,
420        noise_amplitude,
421        quantum_noise,
422        random_seed,
423    )
424}
425
426/// Convenience function to create quantum clustering dataset
427#[allow(dead_code)]
428pub fn make_quantum_blobs(
429    n_samples: usize,
430    n_features: usize,
431    n_centers: usize,
432    cluster_std: f64,
433    quantum_interference: f64,
434    random_seed: Option<u64>,
435) -> Result<Dataset> {
436    let generator = QuantumDatasetGenerator::default();
437    generator.make_quantum_blobs(
438        n_samples,
439        n_features,
440        n_centers,
441        cluster_std,
442        quantum_interference,
443        random_seed,
444    )
445}
446
447#[cfg(test)]
448mod tests {
449    use super::*;
450
451    #[test]
452    fn test_quantum_classification() {
453        let dataset = make_quantum_classification(100, 4, 3, 0.5, Some(42)).unwrap();
454        assert_eq!(dataset.n_samples(), 100);
455        assert_eq!(dataset.n_features(), 4);
456
457        // Verify quantum entanglement effects in the data
458        let data = &dataset.data;
459        let correlations = data.t().dot(data) / (data.nrows() as f64);
460
461        // Check for non-trivial correlations due to entanglement
462        let mut has_entanglement = false;
463        for i in 0..correlations.nrows() {
464            for j in (i + 1)..correlations.ncols() {
465                if correlations[[i, j]].abs() > 0.1 {
466                    has_entanglement = true;
467                    break;
468                }
469            }
470        }
471        assert!(
472            has_entanglement,
473            "Quantum entanglement should create feature correlations"
474        );
475    }
476
477    #[test]
478    fn test_quantum_regression() {
479        let dataset = make_quantum_regression(50, 3, 0.1, true, Some(42)).unwrap();
480        assert_eq!(dataset.n_samples(), 50);
481        assert_eq!(dataset.n_features(), 3);
482        assert!(dataset.has_target());
483    }
484
485    #[test]
486    fn test_quantum_blobs() {
487        let dataset = make_quantum_blobs(80, 2, 4, 1.0, 0.3, Some(42)).unwrap();
488        assert_eq!(dataset.n_samples(), 80);
489        assert_eq!(dataset.n_features(), 2);
490
491        // Verify cluster formation with quantum interference
492        let targets = dataset.target.as_ref().unwrap();
493        let unique_clusters: std::collections::HashSet<_> =
494            targets.iter().map(|&x| x as usize).collect();
495        assert!(unique_clusters.len() <= 4, "Should have at most 4 clusters");
496    }
497
498    #[test]
499    fn test_quantum_generator_configuration() {
500        let generator = QuantumDatasetGenerator::new(12, 0.95);
501        assert_eq!(generator.n_qubits, 12);
502        assert_eq!(generator.gate_fidelity, 0.95);
503        assert!(generator.quantum_advantage);
504    }
505}