1use crate::error::{DatasetsError, Result};
7use crate::utils::Dataset;
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::random::prelude::*;
10use std::f64::consts::PI;
11
12#[derive(Debug, Clone)]
14#[allow(dead_code)]
15pub struct QuantumDatasetGenerator {
16 coherence_time: f64,
18 n_qubits: usize,
20 gate_fidelity: f64,
22 quantum_advantage: bool,
24}
25
26impl Default for QuantumDatasetGenerator {
27 fn default() -> Self {
28 Self {
29 coherence_time: 1000.0, n_qubits: 8,
31 gate_fidelity: 0.99,
32 quantum_advantage: true,
33 }
34 }
35}
36
37impl QuantumDatasetGenerator {
38 pub fn new(n_qubits: usize, gate_fidelity: f64) -> Self {
40 Self {
41 coherence_time: 1000.0,
42 n_qubits,
43 gate_fidelity,
44 quantum_advantage: true,
45 }
46 }
47
48 pub fn make_quantum_classification(
50 &self,
51 n_samples: usize,
52 n_features: usize,
53 n_classes: usize,
54 entanglement_strength: f64,
55 random_seed: Option<u64>,
56 ) -> Result<Dataset> {
57 if n_samples == 0 || n_features == 0 || n_classes == 0 {
58 return Err(DatasetsError::InvalidFormat(
59 "All parameters must be > 0".to_string(),
60 ));
61 }
62
63 let mut rng = match random_seed {
64 Some(_seed) => StdRng::seed_from_u64(_seed),
65 None => StdRng::from_rng(&mut thread_rng()),
66 };
67
68 let mut data = Array2::zeros((n_samples, n_features));
70 let mut targets = Array1::zeros(n_samples);
71
72 let entanglement_matrix =
74 self.generate_entanglement_matrix(n_features, entanglement_strength, &mut rng)?;
75
76 for sample_idx in 0..n_samples {
77 let class_id = self.quantum_class_assignment(n_classes, &mut rng);
79 targets[sample_idx] = class_id as f64;
80
81 let quantum_state = self.generate_quantum_state(n_features, class_id, &mut rng)?;
83
84 let entangled_features =
86 self.apply_quantum_entanglement(&quantum_state, &entanglement_matrix)?;
87
88 for feature_idx in 0..n_features {
90 data[[sample_idx, feature_idx]] = entangled_features[feature_idx];
91 }
92 }
93
94 Ok(Dataset::new(data, Some(targets)))
95 }
96
97 pub fn make_quantum_regression(
99 &self,
100 n_samples: usize,
101 n_features: usize,
102 noise_amplitude: f64,
103 quantum_noise: bool,
104 random_seed: Option<u64>,
105 ) -> Result<Dataset> {
106 if n_samples == 0 || n_features == 0 {
107 return Err(DatasetsError::InvalidFormat(
108 "All parameters must be > 0".to_string(),
109 ));
110 }
111
112 let mut rng = match random_seed {
113 Some(_seed) => StdRng::seed_from_u64(_seed),
114 None => StdRng::from_rng(&mut thread_rng()),
115 };
116
117 let mut data = Array2::zeros((n_samples, n_features));
118 let mut targets = Array1::zeros(n_samples);
119
120 let quantum_coefficients = self.generate_quantum_coefficients(n_features, &mut rng)?;
122
123 for sample_idx in 0..n_samples {
124 let quantum_features = self.generate_quantum_feature_vector(n_features, &mut rng)?;
126
127 let transformed_features = self.apply_quantum_rotations(&quantum_features, &mut rng)?;
129
130 let target = self.quantum_dot_product(&transformed_features, &quantum_coefficients)?;
132
133 let noisy_target = if quantum_noise {
135 target + self.generate_quantum_noise(noise_amplitude, &mut rng)?
136 } else {
137 target + noise_amplitude * rng.random::<f64>()
138 };
139
140 for feature_idx in 0..n_features {
142 data[[sample_idx, feature_idx]] = transformed_features[feature_idx];
143 }
144 targets[sample_idx] = noisy_target;
145 }
146
147 Ok(Dataset::new(data, Some(targets)))
148 }
149
150 pub fn make_quantum_blobs(
152 &self,
153 n_samples: usize,
154 n_features: usize,
155 n_centers: usize,
156 cluster_std: f64,
157 quantum_interference: f64,
158 random_seed: Option<u64>,
159 ) -> Result<Dataset> {
160 if n_samples == 0 || n_features == 0 || n_centers == 0 {
161 return Err(DatasetsError::InvalidFormat(
162 "All parameters must be > 0".to_string(),
163 ));
164 }
165
166 let mut rng = match random_seed {
167 Some(_seed) => StdRng::seed_from_u64(_seed),
168 None => StdRng::from_rng(&mut thread_rng()),
169 };
170
171 let mut data = Array2::zeros((n_samples, n_features));
172 let mut targets = Array1::zeros(n_samples);
173
174 let quantum_centers =
176 self.generate_quantum_cluster_centers(n_centers, n_features, &mut rng)?;
177
178 for sample_idx in 0..n_samples {
179 let (cluster_id, interference_weight) =
181 self.quantum_cluster_assignment(n_centers, quantum_interference, &mut rng)?;
182
183 targets[sample_idx] = cluster_id as f64;
184
185 let center = &quantum_centers[cluster_id];
187 for feature_idx in 0..n_features {
188 let base_value = center[feature_idx];
189 let gaussian_noise = rng.random::<f64>() * cluster_std;
190 let quantum_interference_noise =
191 self.generate_quantum_interference(interference_weight, &mut rng)?;
192
193 data[[sample_idx, feature_idx]] =
194 base_value + gaussian_noise + quantum_interference_noise;
195 }
196 }
197
198 Ok(Dataset::new(data, Some(targets)))
199 }
200
201 fn generate_entanglement_matrix(
204 &self,
205 n_features: usize,
206 strength: f64,
207 rng: &mut StdRng,
208 ) -> Result<Array2<f64>> {
209 let mut matrix = Array2::eye(n_features);
210
211 for i in 0..n_features {
213 for j in (i + 1)..n_features {
214 let entanglement = strength * (rng.random::<f64>() - 0.5);
215 matrix[[i, j]] = entanglement;
216 matrix[[j, i]] = entanglement; }
218 }
219
220 Ok(matrix)
221 }
222
223 fn quantum_class_assignment(&self, n_classes: usize, rng: &mut StdRng) -> usize {
224 let quantum_probability = rng.random::<f64>();
226 let normalized_prob = (quantum_probability * self.gate_fidelity).abs();
227 (normalized_prob * n_classes as f64) as usize % n_classes
228 }
229
230 fn generate_quantum_state(
231 &self,
232 n_features: usize,
233 class_id: usize,
234 rng: &mut StdRng,
235 ) -> Result<Array1<f64>> {
236 let mut state = Array1::zeros(n_features);
237
238 let phase_offset = (class_id as f64 * 2.0 * PI) / 3.0; for i in 0..n_features {
242 let amplitude = rng.random::<f64>().sqrt();
244 let phase = phase_offset + (i as f64 * PI / n_features as f64);
245 state[i] = amplitude * (phase.cos() + phase.sin());
246 }
247
248 Ok(state)
249 }
250
251 fn apply_quantum_entanglement(
252 &self,
253 state: &Array1<f64>,
254 entanglement_matrix: &Array2<f64>,
255 ) -> Result<Array1<f64>> {
256 let entangled = entanglement_matrix.dot(state);
258 Ok(entangled)
259 }
260
261 fn generate_quantum_coefficients(
262 &self,
263 n_features: usize,
264 rng: &mut StdRng,
265 ) -> Result<Array1<f64>> {
266 let mut coefficients = Array1::zeros(n_features);
267
268 for i in 0..n_features {
269 let quantum_step = if rng.random::<f64>() > 0.5 { 1.0 } else { -1.0 };
271 let amplitude = rng.random::<f64>() * self.gate_fidelity;
272 coefficients[i] = quantum_step * amplitude;
273 }
274
275 Ok(coefficients)
276 }
277
278 fn generate_quantum_feature_vector(
279 &self,
280 n_features: usize,
281 rng: &mut StdRng,
282 ) -> Result<Array1<f64>> {
283 let mut features = Array1::zeros(n_features);
284
285 for i in 0..n_features {
286 let theta = rng.random::<f64>() * PI;
288 let phi = rng.random::<f64>() * 2.0 * PI;
289 features[i] = theta.sin() * phi.cos() + theta.cos();
290 }
291
292 Ok(features)
293 }
294
295 fn apply_quantum_rotations(
296 &self,
297 features: &Array1<f64>,
298 rng: &mut StdRng,
299 ) -> Result<Array1<f64>> {
300 let mut rotated = features.clone();
301
302 for i in 0..features.len() {
303 let rotation_angle = rng.random::<f64>() * 2.0 * PI;
305 let cos_theta = rotation_angle.cos();
306 let sin_theta = rotation_angle.sin();
307
308 rotated[i] = features[i] * cos_theta + sin_theta * self.gate_fidelity;
310 }
311
312 Ok(rotated)
313 }
314
315 fn quantum_dot_product(&self, a: &Array1<f64>, b: &Array1<f64>) -> Result<f64> {
316 if a.len() != b.len() {
317 return Err(DatasetsError::InvalidFormat(
318 "Arrays must have same length for quantum dot product".to_string(),
319 ));
320 }
321
322 let mut result = 0.0;
324 for i in 0..a.len() {
325 result += a[i] * b[i] * self.gate_fidelity;
326 }
327
328 Ok(result)
329 }
330
331 fn generate_quantum_noise(&self, amplitude: f64, rng: &mut StdRng) -> Result<f64> {
332 let quantum_fluctuation = rng.random::<f64>() - 0.5;
334 let decoherence_factor = (-1.0 / self.coherence_time).exp();
335 Ok(amplitude * quantum_fluctuation * decoherence_factor)
336 }
337
338 fn generate_quantum_cluster_centers(
339 &self,
340 n_centers: usize,
341 n_features: usize,
342 rng: &mut StdRng,
343 ) -> Result<Vec<Array1<f64>>> {
344 let mut centers = Vec::with_capacity(n_centers);
345
346 for center_idx in 0..n_centers {
347 let mut center = Array1::zeros(n_features);
348
349 let center_phase = (center_idx as f64 * 2.0 * PI) / n_centers as f64;
351
352 for feature_idx in 0..n_features {
353 let quantum_amplitude = rng.random::<f64>() * 5.0; let feature_phase = center_phase + (feature_idx as f64 * PI / n_features as f64);
355 center[feature_idx] = quantum_amplitude * feature_phase.cos();
356 }
357
358 centers.push(center);
359 }
360
361 Ok(centers)
362 }
363
364 fn quantum_cluster_assignment(
365 &self,
366 n_centers: usize,
367 interference: f64,
368 rng: &mut StdRng,
369 ) -> Result<(usize, f64)> {
370 let quantum_state = rng.random::<f64>();
372 let interference_weight = interference * (quantum_state * 2.0 * PI).sin();
373
374 let cluster_id = (quantum_state * n_centers as f64) as usize % n_centers;
376
377 Ok((cluster_id, interference_weight))
378 }
379
380 fn generate_quantum_interference(&self, weight: f64, rng: &mut StdRng) -> Result<f64> {
381 let phase = rng.random::<f64>() * 2.0 * PI;
383 let amplitude = weight * self.gate_fidelity;
384 Ok(amplitude * phase.sin())
385 }
386}
387
388#[allow(dead_code)]
390pub fn make_quantum_classification(
391 n_samples: usize,
392 n_features: usize,
393 n_classes: usize,
394 entanglement_strength: f64,
395 random_seed: Option<u64>,
396) -> Result<Dataset> {
397 let generator = QuantumDatasetGenerator::default();
398 generator.make_quantum_classification(
399 n_samples,
400 n_features,
401 n_classes,
402 entanglement_strength,
403 random_seed,
404 )
405}
406
407#[allow(dead_code)]
409pub fn make_quantum_regression(
410 n_samples: usize,
411 n_features: usize,
412 noise_amplitude: f64,
413 quantum_noise: bool,
414 random_seed: Option<u64>,
415) -> Result<Dataset> {
416 let generator = QuantumDatasetGenerator::default();
417 generator.make_quantum_regression(
418 n_samples,
419 n_features,
420 noise_amplitude,
421 quantum_noise,
422 random_seed,
423 )
424}
425
426#[allow(dead_code)]
428pub fn make_quantum_blobs(
429 n_samples: usize,
430 n_features: usize,
431 n_centers: usize,
432 cluster_std: f64,
433 quantum_interference: f64,
434 random_seed: Option<u64>,
435) -> Result<Dataset> {
436 let generator = QuantumDatasetGenerator::default();
437 generator.make_quantum_blobs(
438 n_samples,
439 n_features,
440 n_centers,
441 cluster_std,
442 quantum_interference,
443 random_seed,
444 )
445}
446
447#[cfg(test)]
448mod tests {
449 use super::*;
450
451 #[test]
452 fn test_quantum_classification() {
453 let dataset = make_quantum_classification(100, 4, 3, 0.5, Some(42)).unwrap();
454 assert_eq!(dataset.n_samples(), 100);
455 assert_eq!(dataset.n_features(), 4);
456
457 let data = &dataset.data;
459 let correlations = data.t().dot(data) / (data.nrows() as f64);
460
461 let mut has_entanglement = false;
463 for i in 0..correlations.nrows() {
464 for j in (i + 1)..correlations.ncols() {
465 if correlations[[i, j]].abs() > 0.1 {
466 has_entanglement = true;
467 break;
468 }
469 }
470 }
471 assert!(
472 has_entanglement,
473 "Quantum entanglement should create feature correlations"
474 );
475 }
476
477 #[test]
478 fn test_quantum_regression() {
479 let dataset = make_quantum_regression(50, 3, 0.1, true, Some(42)).unwrap();
480 assert_eq!(dataset.n_samples(), 50);
481 assert_eq!(dataset.n_features(), 3);
482 assert!(dataset.has_target());
483 }
484
485 #[test]
486 fn test_quantum_blobs() {
487 let dataset = make_quantum_blobs(80, 2, 4, 1.0, 0.3, Some(42)).unwrap();
488 assert_eq!(dataset.n_samples(), 80);
489 assert_eq!(dataset.n_features(), 2);
490
491 let targets = dataset.target.as_ref().unwrap();
493 let unique_clusters: std::collections::HashSet<_> =
494 targets.iter().map(|&x| x as usize).collect();
495 assert!(unique_clusters.len() <= 4, "Should have at most 4 clusters");
496 }
497
498 #[test]
499 fn test_quantum_generator_configuration() {
500 let generator = QuantumDatasetGenerator::new(12, 0.95);
501 assert_eq!(generator.n_qubits, 12);
502 assert_eq!(generator.gate_fidelity, 0.95);
503 assert!(generator.quantum_advantage);
504 }
505}