1use scirs2_core::ndarray::{Array1, Array2};
7use scirs2_datasets::{
8 create_balanced_dataset, generate_synthetic_samples, load_iris, random_oversample,
9 random_undersample, BalancingStrategy,
10};
11
12#[allow(dead_code)]
13fn main() {
14 println!("=== Data Balancing Utilities Demonstration ===\n");
15
16 let data = Array2::from_shape_vec(
18 (10, 2),
19 vec![
20 1.0, 1.0, 1.2, 1.1, 5.0, 5.0, 5.1, 5.2, 4.9, 4.8, 5.3, 5.1, 4.8, 5.3, 5.0, 4.9,
23 10.0, 10.0, 10.1, 9.9,
25 ],
26 )
27 .unwrap();
28
29 let targets = Array1::from(vec![0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0]);
30
31 println!("Original imbalanced dataset:");
32 print_class_distribution(&targets);
33 println!("Total samples: {}\n", data.nrows());
34
35 println!("=== Random Oversampling =======================");
37 let (oversampleddata, oversampled_targets) =
38 random_oversample(&data, &targets, Some(42)).unwrap();
39
40 println!("After random oversampling:");
41 print_class_distribution(&oversampled_targets);
42 println!("Total samples: {}\n", oversampleddata.nrows());
43
44 println!("=== Random Undersampling ======================");
46 let (undersampleddata, undersampled_targets) =
47 random_undersample(&data, &targets, Some(42)).unwrap();
48
49 println!("After random undersampling:");
50 print_class_distribution(&undersampled_targets);
51 println!("Total samples: {}\n", undersampleddata.nrows());
52
53 println!("=== Synthetic Sample Generation (SMOTE-like) ==");
55
56 let (syntheticdata, synthetic_targets) =
58 generate_synthetic_samples(&data, &targets, 0.0, 4, 1, Some(42)).unwrap();
59
60 println!(
61 "Generated {} synthetic samples for class 0",
62 syntheticdata.nrows()
63 );
64 println!("Synthetic samples (first 3 features of each):");
65 for i in 0..syntheticdata.nrows() {
66 println!(
67 " Sample {}: [{:.3}, {:.3}] -> class {}",
68 i,
69 syntheticdata[[i, 0]],
70 syntheticdata[[i, 1]],
71 synthetic_targets[i]
72 );
73 }
74 println!();
75
76 println!("=== Unified Balancing Strategies ==============");
78
79 let (balanced_over, targets_over) = create_balanced_dataset(
81 &data,
82 &targets,
83 BalancingStrategy::RandomOversample,
84 Some(42),
85 )
86 .unwrap();
87
88 println!("Strategy: Random Oversampling");
89 print_class_distribution(&targets_over);
90 println!("Total samples: {}", balanced_over.nrows());
91
92 let (balanced_under, targets_under) = create_balanced_dataset(
94 &data,
95 &targets,
96 BalancingStrategy::RandomUndersample,
97 Some(42),
98 )
99 .unwrap();
100
101 println!("\nStrategy: Random Undersampling");
102 print_class_distribution(&targets_under);
103 println!("Total samples: {}", balanced_under.nrows());
104
105 let (balanced_smote, targets_smote) = create_balanced_dataset(
107 &data,
108 &targets,
109 BalancingStrategy::SMOTE { k_neighbors: 1 },
110 Some(42),
111 )
112 .unwrap();
113
114 println!("\nStrategy: SMOTE (k_neighbors=1)");
115 print_class_distribution(&targets_smote);
116 println!("Total samples: {}", balanced_smote.nrows());
117
118 println!("\n=== Real-world Example: Iris Dataset ==========");
120
121 let iris = load_iris().unwrap();
122 if let Some(iris_targets) = &iris.target {
123 println!("Original Iris dataset:");
124 print_class_distribution(iris_targets);
125
126 let (iris_balanced, iris_balanced_targets) =
128 random_oversample(&iris.data, iris_targets, Some(42)).unwrap();
129
130 println!("\nIris after oversampling (should remain the same):");
131 print_class_distribution(&iris_balanced_targets);
132 println!("Total samples: {}", iris_balanced.nrows());
133
134 let indices_to_keep: Vec<usize> = (0..150)
136 .filter(|&i| {
137 let class = iris_targets[i].round() as i64;
138 match class {
140 0 => true, 1 => i < 80, 2 => i < 110, _ => false,
144 }
145 })
146 .collect();
147
148 let imbalanceddata = iris
149 .data
150 .select(scirs2_core::ndarray::Axis(0), &indices_to_keep);
151 let imbalanced_targets =
152 iris_targets.select(scirs2_core::ndarray::Axis(0), &indices_to_keep);
153
154 println!("\nArtificially imbalanced Iris:");
155 print_class_distribution(&imbalanced_targets);
156
157 let (rebalanceddata, rebalanced_targets) = create_balanced_dataset(
159 &imbalanceddata,
160 &imbalanced_targets,
161 BalancingStrategy::SMOTE { k_neighbors: 3 },
162 Some(42),
163 )
164 .unwrap();
165
166 println!("\nAfter SMOTE rebalancing:");
167 print_class_distribution(&rebalanced_targets);
168 println!("Total samples: {}", rebalanceddata.nrows());
169 }
170
171 println!("\n=== Performance Comparison ====================");
172
173 println!("Strategy Comparison Summary:");
175 println!("┌─────────────────────┬──────────────┬─────────────────────────────────┐");
176 println!("│ Strategy │ Final Size │ Characteristics │");
177 println!("├─────────────────────┼──────────────┼─────────────────────────────────┤");
178 println!(
179 "│ Random Oversample │ {} samples │ Increases data size, duplicates │",
180 balanced_over.nrows()
181 );
182 println!(
183 "│ Random Undersample │ {} samples │ Reduces data size, loses info │",
184 balanced_under.nrows()
185 );
186 println!(
187 "│ SMOTE │ {} samples │ Increases size, synthetic data │",
188 balanced_smote.nrows()
189 );
190 println!("└─────────────────────┴──────────────┴─────────────────────────────────┘");
191
192 println!("\n=== Balancing Demo Complete ====================");
193}
194
195#[allow(dead_code)]
197fn print_class_distribution(targets: &Array1<f64>) {
198 let mut class_counts = std::collections::HashMap::new();
199 for &target in targets.iter() {
200 let class = target.round() as i64;
201 *class_counts.entry(class).or_insert(0) += 1;
202 }
203
204 let mut classes: Vec<_> = class_counts.keys().cloned().collect();
205 classes.sort();
206
207 print!("Class distribution: ");
208 for (i, &class) in classes.iter().enumerate() {
209 let count = class_counts[&class];
210 if i > 0 {
211 print!(", ");
212 }
213 print!("Class {class} ({count} samples)");
214 }
215 println!();
216}