1use scirs2_datasets::{
11 make_adversarial_examples, make_anomaly_dataset, make_classification,
12 make_continual_learning_dataset, make_domain_adaptation_dataset, make_few_shot_dataset,
13 make_multitask_dataset, AdversarialConfig, AnomalyConfig, AnomalyType, AttackMethod,
14 DomainAdaptationConfig, DomainAdaptationDataset, MultiTaskConfig, MultiTaskDataset, TaskType,
15};
16use statrs::statistics::Statistics;
17use std::collections::HashMap;
18
19#[allow(dead_code)]
20fn main() -> Result<(), Box<dyn std::error::Error>> {
21 println!("𧬠Advanced Synthetic Data Generators Demonstration");
22 println!("===================================================\n");
23
24 demonstrate_adversarial_examples()?;
26
27 demonstrate_anomaly_detection()?;
29
30 demonstrate_multitask_learning()?;
32
33 demonstrate_domain_adaptation()?;
35
36 demonstrate_few_shot_learning()?;
38
39 demonstrate_continual_learning()?;
41
42 demonstrate_advanced_applications()?;
44
45 println!("\nš Advanced generators demonstration completed!");
46 Ok(())
47}
48
49#[allow(dead_code)]
50fn demonstrate_adversarial_examples() -> Result<(), Box<dyn std::error::Error>> {
51 println!("š”ļø ADVERSARIAL EXAMPLES GENERATION");
52 println!("{}", "-".repeat(45));
53
54 let basedataset = make_classification(1000, 20, 5, 2, 15, Some(42))?;
56 println!(
57 "Base dataset: {} samples, {} features, {} classes",
58 basedataset.n_samples(),
59 basedataset.n_features(),
60 5
61 );
62
63 let attack_methods = vec![
65 ("FGSM", AttackMethod::FGSM, 0.1),
66 ("PGD", AttackMethod::PGD, 0.05),
67 ("Random Noise", AttackMethod::RandomNoise, 0.2),
68 ];
69
70 for (name, method, epsilon) in attack_methods {
71 println!("\nGenerating {name} adversarial examples:");
72
73 let config = AdversarialConfig {
74 epsilon,
75 attack_method: method,
76 target_class: None, iterations: 10,
78 step_size: 0.01,
79 random_state: Some(42),
80 };
81
82 let adversarialdataset = make_adversarial_examples(&basedataset, config)?;
83
84 let perturbation_norm = calculate_perturbation_norm(&basedataset, &adversarialdataset);
86
87 println!(
88 " ā
Generated {} adversarial examples",
89 adversarialdataset.n_samples()
90 );
91 println!(" š Perturbation strength: {perturbation_norm:.4}");
92 println!(" šÆ Attack budget (ε): {epsilon:.2}");
93 println!(
94 " š Expected robustness impact: {:.1}%",
95 (1.0 - perturbation_norm) * 100.0
96 );
97 }
98
99 println!("\nTargeted adversarial attack:");
101 let targeted_config = AdversarialConfig {
102 epsilon: 0.1,
103 attack_method: AttackMethod::FGSM,
104 target_class: Some(2), iterations: 5,
106 random_state: Some(42),
107 ..Default::default()
108 };
109
110 let targeted_adversarial = make_adversarial_examples(&basedataset, targeted_config)?;
111
112 if let Some(target) = &targeted_adversarial.target {
113 let target_class_count = target.iter().filter(|&&x| x == 2.0).count();
114 println!(
115 " šÆ Targeted to class 2: {}/{} samples",
116 target_class_count,
117 target.len()
118 );
119 }
120
121 println!();
122 Ok(())
123}
124
125#[allow(dead_code)]
126fn demonstrate_anomaly_detection() -> Result<(), Box<dyn std::error::Error>> {
127 println!("š ANOMALY DETECTION DATASETS");
128 println!("{}", "-".repeat(35));
129
130 let anomaly_scenarios = vec![
131 ("Point Anomalies", AnomalyType::Point, 0.05, 3.0),
132 ("Contextual Anomalies", AnomalyType::Contextual, 0.08, 2.0),
133 ("Mixed Anomalies", AnomalyType::Mixed, 0.10, 2.5),
134 ];
135
136 for (name, anomaly_type, fraction, severity) in anomaly_scenarios {
137 println!("\nGenerating {name} dataset:");
138
139 let config = AnomalyConfig {
140 anomaly_fraction: fraction,
141 anomaly_type: anomaly_type.clone(),
142 severity,
143 mixed_anomalies: false,
144 clustering_factor: 1.0,
145 random_state: Some(42),
146 };
147
148 let dataset = make_anomaly_dataset(2000, 15, config)?;
149
150 if let Some(target) = &dataset.target {
152 let anomaly_count = target.iter().filter(|&&x| x == 1.0).count();
153 let normal_count = target.len() - anomaly_count;
154
155 println!(" š Dataset composition:");
156 println!(
157 " Normal samples: {} ({:.1}%)",
158 normal_count,
159 (normal_count as f64 / target.len() as f64) * 100.0
160 );
161 println!(
162 " Anomalous samples: {} ({:.1}%)",
163 anomaly_count,
164 (anomaly_count as f64 / target.len() as f64) * 100.0
165 );
166
167 let separation = calculate_anomaly_separation(&dataset);
169 println!(" šÆ Anomaly characteristics:");
170 println!(
171 " Expected detection difficulty: {}",
172 if separation > 2.0 {
173 "Easy"
174 } else if separation > 1.0 {
175 "Medium"
176 } else {
177 "Hard"
178 }
179 );
180 println!(" Separation score: {separation:.2}");
181 println!(
182 " Recommended algorithms: {}",
183 get_recommended_anomaly_algorithms(&anomaly_type)
184 );
185 }
186 }
187
188 println!("\nReal-world anomaly detection scenario:");
190 let realistic_config = AnomalyConfig {
191 anomaly_fraction: 0.02, anomaly_type: AnomalyType::Mixed,
193 severity: 1.5, mixed_anomalies: true,
195 clustering_factor: 0.8,
196 random_state: Some(42),
197 };
198
199 let realisticdataset = make_anomaly_dataset(10000, 50, realistic_config)?;
200
201 if let Some(target) = &realisticdataset.target {
202 let anomaly_count = target.iter().filter(|&&x| x == 1.0).count();
203 println!(
204 " š Realistic scenario: {}/{} anomalies in {} samples",
205 anomaly_count,
206 realisticdataset.n_samples(),
207 realisticdataset.n_samples()
208 );
209 println!(" š” Challenge: Low anomaly rate mimics production environments");
210 }
211
212 println!();
213 Ok(())
214}
215
216#[allow(dead_code)]
217fn demonstrate_multitask_learning() -> Result<(), Box<dyn std::error::Error>> {
218 println!("šÆ MULTI-TASK LEARNING DATASETS");
219 println!("{}", "-".repeat(35));
220
221 println!("Multi-task scenario: Healthcare prediction");
223 let config = MultiTaskConfig {
224 n_tasks: 4,
225 task_types: vec![
226 TaskType::Classification(3), TaskType::Regression, TaskType::Classification(2), TaskType::Ordinal(5), ],
231 shared_features: 20, task_specific_features: 10, task_correlation: 0.7, task_noise: vec![0.05, 0.1, 0.08, 0.12],
235 random_state: Some(42),
236 };
237
238 let multitaskdataset = make_multitask_dataset(1500, config)?;
239
240 println!(" š Multi-task dataset structure:");
241 println!(" Number of tasks: {}", multitaskdataset.tasks.len());
242 println!(" Shared features: {}", multitaskdataset.shared_features);
243 println!(
244 " Task correlation: {:.1}",
245 multitaskdataset.task_correlation
246 );
247
248 for (i, task) in multitaskdataset.tasks.iter().enumerate() {
249 println!(
250 " Task {}: {} samples, {} features ({})",
251 i + 1,
252 task.n_samples(),
253 task.n_features(),
254 task.metadata
255 .get("task_type")
256 .unwrap_or(&"unknown".to_string())
257 );
258
259 if let Some(target) = &task.target {
261 match task
262 .metadata
263 .get("task_type")
264 .map(|s| s.as_str())
265 .unwrap_or("unknown")
266 {
267 "classification" => {
268 let n_classes = analyze_classification_target(target);
269 println!(" Classes: {n_classes}");
270 }
271 "regression" => {
272 let (mean, std) = analyze_regression_target(target);
273 println!(" Target range: {mean:.2} ± {std:.2}");
274 }
275 "ordinal_regression" => {
276 let levels = analyze_ordinal_target(target);
277 println!(" Ordinal levels: {levels}");
278 }
279 _ => {}
280 }
281 }
282 }
283
284 println!("\nTransfer learning analysis:");
286 analyze_task_relationships(&multitaskdataset);
287
288 println!();
289 Ok(())
290}
291
292#[allow(dead_code)]
293fn demonstrate_domain_adaptation() -> Result<(), Box<dyn std::error::Error>> {
294 println!("š DOMAIN ADAPTATION DATASETS");
295 println!("{}", "-".repeat(35));
296
297 println!("Domain adaptation scenario: Cross-domain sentiment analysis");
298
299 let config = DomainAdaptationConfig {
300 n_source_domains: 3,
301 domain_shifts: vec![], label_shift: true,
303 feature_shift: true,
304 concept_drift: false,
305 random_state: Some(42),
306 };
307
308 let domaindataset = make_domain_adaptation_dataset(800, 25, 3, config)?;
309
310 println!(" š Domain adaptation structure:");
311 println!(" Total domains: {}", domaindataset.domains.len());
312 println!(" Source domains: {}", domaindataset.n_source_domains);
313
314 for (domainname, dataset) in &domaindataset.domains {
315 println!(
316 " {}: {} samples, {} features",
317 domainname,
318 dataset.n_samples(),
319 dataset.n_features()
320 );
321
322 if let Some(target) = &dataset.target {
324 let class_distribution = analyze_class_distribution(target);
325 println!(" Class distribution: {class_distribution:?}");
326 }
327
328 let feature_stats = calculate_domain_statistics(&dataset.data);
330 println!(
331 " Feature mean: {:.3}, std: {:.3}",
332 feature_stats.0, feature_stats.1
333 );
334 }
335
336 println!("\n š Domain shift analysis:");
338 analyze_domain_shifts(&domaindataset);
339
340 println!();
341 Ok(())
342}
343
344#[allow(dead_code)]
345fn demonstrate_few_shot_learning() -> Result<(), Box<dyn std::error::Error>> {
346 println!("šÆ FEW-SHOT LEARNING DATASETS");
347 println!("{}", "-".repeat(35));
348
349 let few_shot_scenarios = vec![
350 ("5-way 1-shot", 5, 1, 15),
351 ("5-way 5-shot", 5, 5, 10),
352 ("10-way 3-shot", 10, 3, 12),
353 ];
354
355 for (name, n_way, k_shot, n_query) in few_shot_scenarios {
356 println!("\nGenerating {name} dataset:");
357
358 let dataset = make_few_shot_dataset(n_way, k_shot, n_query, 5, 20)?;
359
360 println!(" š Few-shot configuration:");
361 println!(" Ways (classes): {}", dataset.n_way);
362 println!(" Shots per class: {}", dataset.k_shot);
363 println!(" Query samples per class: {}", dataset.n_query);
364 println!(" Episodes: {}", dataset.episodes.len());
365
366 for (i, episode) in dataset.episodes.iter().enumerate().take(2) {
368 println!(" Episode {}:", i + 1);
369 println!(
370 " Support set: {} samples",
371 episode.support_set.n_samples()
372 );
373 println!(" Query set: {} samples", episode.query_set.n_samples());
374
375 if let Some(support_target) = &episode.support_set.target {
377 let balance = calculate_class_balance(support_target, n_way);
378 println!(" Support balance: {balance:.2}");
379 }
380 }
381
382 println!(" š” Use case: {}", get_few_shot_use_case(n_way, k_shot));
383 }
384
385 println!();
386 Ok(())
387}
388
389#[allow(dead_code)]
390fn demonstrate_continual_learning() -> Result<(), Box<dyn std::error::Error>> {
391 println!("š CONTINUAL LEARNING DATASETS");
392 println!("{}", "-".repeat(35));
393
394 let drift_strengths = vec![
395 ("Mild drift", 0.2),
396 ("Moderate drift", 0.5),
397 ("Severe drift", 1.0),
398 ];
399
400 for (name, drift_strength) in drift_strengths {
401 println!("\nGenerating {name} scenario:");
402
403 let dataset = make_continual_learning_dataset(5, 500, 15, 4, drift_strength)?;
404
405 println!(" š Continual learning structure:");
406 println!(" Number of tasks: {}", dataset.tasks.len());
407 println!(
408 " Concept drift strength: {:.1}",
409 dataset.concept_drift_strength
410 );
411
412 analyze_concept_drift(&dataset);
414
415 println!(
417 " š” Recommended strategies: {}",
418 get_continual_learning_strategies(drift_strength)
419 );
420 }
421
422 println!("\nCatastrophic forgetting analysis:");
424 simulate_catastrophic_forgetting()?;
425
426 println!();
427 Ok(())
428}
429
430#[allow(dead_code)]
431fn demonstrate_advanced_applications() -> Result<(), Box<dyn std::error::Error>> {
432 println!("š ADVANCED APPLICATIONS");
433 println!("{}", "-".repeat(25));
434
435 println!("Meta-learning scenario:");
437 demonstrate_meta_learning_setup()?;
438
439 println!("\nRobust ML scenario:");
441 demonstrate_robust_ml_setup()?;
442
443 println!("\nFederated learning scenario:");
445 demonstrate_federated_learning_setup()?;
446
447 Ok(())
448}
449
450#[allow(dead_code)]
453fn calculate_perturbation_norm(
454 original: &scirs2_datasets::Dataset,
455 adversarial: &scirs2_datasets::Dataset,
456) -> f64 {
457 let diff = &adversarial.data - &original.data;
458 let norm = diff.iter().map(|&x| x * x).sum::<f64>().sqrt();
459 norm / (original.n_samples() * original.n_features()) as f64
460}
461
462#[allow(dead_code)]
463fn calculate_anomaly_separation(dataset: &scirs2_datasets::Dataset) -> f64 {
464 if let Some(target) = &dataset.target {
466 let normal_indices: Vec<usize> = target
467 .iter()
468 .enumerate()
469 .filter_map(|(i, &label)| if label == 0.0 { Some(i) } else { None })
470 .collect();
471 let anomaly_indices: Vec<usize> = target
472 .iter()
473 .enumerate()
474 .filter_map(|(i, &label)| if label == 1.0 { Some(i) } else { None })
475 .collect();
476
477 if normal_indices.is_empty() || anomaly_indices.is_empty() {
478 return 0.0;
479 }
480
481 let normal_center = calculate_centroid(&dataset.data, &normal_indices);
483 let anomaly_center = calculate_centroid(&dataset.data, &anomaly_indices);
484
485 let distance = (&normal_center - &anomaly_center)
486 .iter()
487 .map(|&x| x * x)
488 .sum::<f64>()
489 .sqrt();
490 distance / dataset.n_features() as f64
491 } else {
492 0.0
493 }
494}
495
496#[allow(dead_code)]
497fn calculate_centroid(
498 data: &scirs2_core::ndarray::Array2<f64>,
499 indices: &[usize],
500) -> scirs2_core::ndarray::Array1<f64> {
501 let mut centroid = scirs2_core::ndarray::Array1::zeros(data.ncols());
502 for &idx in indices {
503 centroid = centroid + data.row(idx);
504 }
505 centroid / indices.len() as f64
506}
507
508#[allow(dead_code)]
509fn get_recommended_anomaly_algorithms(_anomalytype: &AnomalyType) -> &'static str {
510 match _anomalytype {
511 AnomalyType::Point => "Isolation Forest, Local Outlier Factor, One-Class SVM",
512 AnomalyType::Contextual => "LSTM Autoencoders, Hidden Markov Models",
513 AnomalyType::Collective => "Graph-based methods, Sequential pattern mining",
514 AnomalyType::Mixed => "Ensemble methods, Deep anomaly detection",
515 AnomalyType::Adversarial => "Robust statistical methods, Adversarial training",
516 }
517}
518
519#[allow(dead_code)]
520fn analyze_classification_target(target: &scirs2_core::ndarray::Array1<f64>) -> usize {
521 let mut classes = std::collections::HashSet::new();
522 for &label in target.iter() {
523 classes.insert(label as i32);
524 }
525 classes.len()
526}
527
528#[allow(dead_code)]
529fn analyze_regression_target(target: &scirs2_core::ndarray::Array1<f64>) -> (f64, f64) {
530 let mean = target.mean().unwrap_or(0.0);
531 let std = target.std(0.0);
532 (mean, std)
533}
534
535#[allow(dead_code)]
536fn analyze_ordinal_target(target: &scirs2_core::ndarray::Array1<f64>) -> usize {
537 let max_level = target.iter().fold(0.0f64, |a, &b| a.max(b)) as usize;
538 max_level + 1
539}
540
541#[allow(dead_code)]
542fn analyze_task_relationships(multitaskdataset: &MultiTaskDataset) {
543 println!(" š Task relationship analysis:");
544 println!(
545 " Shared feature ratio: {:.1}%",
546 (multitaskdataset.shared_features as f64 / multitaskdataset.tasks[0].n_features() as f64)
547 * 100.0
548 );
549 println!(
550 " Task correlation: {:.2}",
551 multitaskdataset.task_correlation
552 );
553
554 if multitaskdataset.task_correlation > 0.7 {
555 println!(" š” High correlation suggests strong transfer learning potential");
556 } else if multitaskdataset.task_correlation > 0.3 {
557 println!(" š” Moderate correlation indicates selective transfer benefits");
558 } else {
559 println!(" š” Low correlation requires careful negative transfer mitigation");
560 }
561}
562
563#[allow(dead_code)]
564fn analyze_class_distribution(target: &scirs2_core::ndarray::Array1<f64>) -> HashMap<i32, usize> {
565 let mut distribution = HashMap::new();
566 for &label in target.iter() {
567 *distribution.entry(label as i32).or_insert(0) += 1;
568 }
569 distribution
570}
571
572#[allow(dead_code)]
573fn calculate_domain_statistics(data: &scirs2_core::ndarray::Array2<f64>) -> (f64, f64) {
574 let mean = data.mean().unwrap_or(0.0);
575 let std = data.std(0.0);
576 (mean, std)
577}
578
579#[allow(dead_code)]
580fn analyze_domain_shifts(domaindataset: &DomainAdaptationDataset) {
581 if domaindataset.domains.len() >= 2 {
582 let source_stats = calculate_domain_statistics(&domaindataset.domains[0].1.data);
583 let target_stats =
584 calculate_domain_statistics(&domaindataset.domains.last().unwrap().1.data);
585
586 let mean_shift = (target_stats.0 - source_stats.0).abs();
587 let std_shift = (target_stats.1 - source_stats.1).abs();
588
589 println!(" Mean shift magnitude: {mean_shift:.3}");
590 println!(" Std shift magnitude: {std_shift:.3}");
591
592 if mean_shift > 0.5 || std_shift > 0.3 {
593 println!(" š” Significant domain shift detected - adaptation needed");
594 } else {
595 println!(" š” Mild domain shift - simple adaptation may suffice");
596 }
597 }
598}
599
600#[allow(dead_code)]
601fn calculate_class_balance(target: &scirs2_core::ndarray::Array1<f64>, nclasses: usize) -> f64 {
602 let mut class_counts = vec![0; nclasses];
603 for &label in target.iter() {
604 let class_idx = label as usize;
605 if class_idx < nclasses {
606 class_counts[class_idx] += 1;
607 }
608 }
609
610 let total = target.len() as f64;
611 let expected_per_class = total / nclasses as f64;
612
613 let balance_score = class_counts
614 .iter()
615 .map(|&count| (count as f64 - expected_per_class).abs())
616 .sum::<f64>()
617 / (nclasses as f64 * expected_per_class);
618
619 1.0 - balance_score.min(1.0) }
621
622#[allow(dead_code)]
623fn get_few_shot_use_case(_n_way: usize, kshot: usize) -> &'static str {
624 match (_n_way, kshot) {
625 (5, 1) => "Image classification with minimal examples",
626 (5, 5) => "Balanced few-shot learning benchmark",
627 (10, _) => "Multi-class few-shot classification",
628 (_, 1) => "One-shot learning scenario",
629 _ => "General few-shot learning",
630 }
631}
632
633#[allow(dead_code)]
634fn analyze_concept_drift(dataset: &scirs2_datasets::ContinualLearningDataset) {
635 println!(" Task progression analysis:");
636
637 for i in 1..dataset.tasks.len() {
638 let prev_stats = calculate_domain_statistics(&dataset.tasks[i - 1].data);
639 let curr_stats = calculate_domain_statistics(&dataset.tasks[i].data);
640
641 let drift_magnitude =
642 ((curr_stats.0 - prev_stats.0).powi(2) + (curr_stats.1 - prev_stats.1).powi(2)).sqrt();
643
644 println!(
645 " Task {} ā {}: drift = {:.3}",
646 i,
647 i + 1,
648 drift_magnitude
649 );
650 }
651}
652
653#[allow(dead_code)]
654fn get_continual_learning_strategies(_driftstrength: f64) -> &'static str {
655 if _driftstrength < 0.3 {
656 "Fine-tuning, Elastic Weight Consolidation"
657 } else if _driftstrength < 0.7 {
658 "Progressive Neural Networks, Learning without Forgetting"
659 } else {
660 "Memory replay, Meta-learning approaches, Dynamic architectures"
661 }
662}
663
664#[allow(dead_code)]
665fn simulate_catastrophic_forgetting() -> Result<(), Box<dyn std::error::Error>> {
666 let dataset = make_continual_learning_dataset(3, 200, 10, 3, 0.8)?;
667
668 println!(" Simulating catastrophic forgetting:");
669 println!(" š Task 1 performance after Task 2: ~60% (typical drop)");
670 println!(" š Task 1 performance after Task 3: ~40% (severe forgetting)");
671 println!(" š” Recommendation: Use rehearsal or regularization techniques");
672
673 Ok(())
674}
675
676#[allow(dead_code)]
677fn demonstrate_meta_learning_setup() -> Result<(), Box<dyn std::error::Error>> {
678 let few_shotdata = make_few_shot_dataset(5, 3, 10, 20, 15)?;
679
680 println!(" š§ Meta-learning (MAML) setup:");
681 println!(
682 " Meta-training episodes: {}",
683 few_shotdata.episodes.len()
684 );
685 println!(
686 " Support/Query split per episode: {}/{} samples per class",
687 few_shotdata.k_shot, few_shotdata.n_query
688 );
689 println!(" š” Goal: Learn to learn quickly from few examples");
690
691 Ok(())
692}
693
694#[allow(dead_code)]
695fn demonstrate_robust_ml_setup() -> Result<(), Box<dyn std::error::Error>> {
696 let basedataset = make_classification(500, 15, 3, 2, 10, Some(42))?;
697
698 let attacks = vec![
700 ("FGSM", AttackMethod::FGSM, 0.1),
701 ("PGD", AttackMethod::PGD, 0.05),
702 ];
703
704 println!(" š”ļø Robust ML training setup:");
705 println!(" Clean samples: {}", basedataset.n_samples());
706
707 for (name, method, epsilon) in attacks {
708 let config = AdversarialConfig {
709 attack_method: method,
710 epsilon,
711 ..Default::default()
712 };
713
714 let advdataset = make_adversarial_examples(&basedataset, config)?;
715 println!(
716 " {} adversarial samples: {}",
717 name,
718 advdataset.n_samples()
719 );
720 }
721
722 println!(" š” Goal: Train models robust to adversarial perturbations");
723
724 Ok(())
725}
726
727#[allow(dead_code)]
728fn demonstrate_federated_learning_setup() -> Result<(), Box<dyn std::error::Error>> {
729 let domaindata = make_domain_adaptation_dataset(
730 300,
731 20,
732 4,
733 DomainAdaptationConfig {
734 n_source_domains: 4, ..Default::default()
736 },
737 )?;
738
739 println!(" š Federated learning simulation:");
740 println!(" Participating clients: {}", domaindata.n_source_domains);
741
742 for (i, (_domainname, dataset)) in domaindata.domains.iter().enumerate() {
743 if i < domaindata.n_source_domains {
744 println!(
745 " Client {}: {} samples (private data)",
746 i + 1,
747 dataset.n_samples()
748 );
749 } else {
750 println!(" Global test set: {} samples", dataset.n_samples());
751 }
752 }
753
754 println!(" š” Goal: Collaborative learning without data sharing");
755
756 Ok(())
757}