scirs2_datasets/utils/
advanced_analytics.rs

1//! Advanced analytics for dataset quality assessment
2//!
3//! This module provides sophisticated analytics capabilities for evaluating
4//! dataset quality, complexity, and characteristics.
5
6use super::Dataset;
7use ndarray::{Array1, Array2};
8use statrs::statistics::Statistics;
9use std::error::Error;
10
11/// Correlation insights from dataset analysis
12#[derive(Debug, Clone)]
13pub struct CorrelationInsights {
14    /// Feature importance scores
15    pub feature_importance: Array1<f64>,
16}
17
18/// Normality assessment results
19#[derive(Debug, Clone)]
20pub struct NormalityAssessment {
21    /// Overall normality score
22    pub overall_normality: f64,
23    /// Shapiro-Wilk test scores for each feature
24    pub shapiro_wilk_scores: Array1<f64>,
25}
26
27/// Advanced quality metrics for a dataset
28#[derive(Debug, Clone)]
29pub struct AdvancedQualityMetrics {
30    /// Dataset complexity score
31    pub complexity_score: f64,
32    /// Information entropy
33    pub entropy: f64,
34    /// Outlier detection score
35    pub outlier_score: f64,
36    /// Machine learning quality score
37    pub ml_quality_score: f64,
38    /// Normality assessment results
39    pub normality_assessment: NormalityAssessment,
40    /// Correlation insights
41    pub correlation_insights: CorrelationInsights,
42}
43
44/// Advanced dataset analyzer with configurable options
45#[derive(Debug, Clone)]
46pub struct AdvancedDatasetAnalyzer {
47    gpu_enabled: bool,
48    advanced_precision: bool,
49    significance_threshold: f64,
50}
51
52impl Default for AdvancedDatasetAnalyzer {
53    fn default() -> Self {
54        Self {
55            gpu_enabled: false,
56            advanced_precision: false,
57            significance_threshold: 0.05,
58        }
59    }
60}
61
62impl AdvancedDatasetAnalyzer {
63    /// Create a new analyzer with default settings
64    pub fn new() -> Self {
65        Self::default()
66    }
67
68    /// Enable GPU acceleration
69    pub fn with_gpu(mut self, enabled: bool) -> Self {
70        self.gpu_enabled = enabled;
71        self
72    }
73
74    /// Enable advanced precision calculations
75    pub fn with_advanced_precision(mut self, enabled: bool) -> Self {
76        self.advanced_precision = enabled;
77        self
78    }
79
80    /// Set significance threshold for statistical tests
81    pub fn with_significance_threshold(mut self, threshold: f64) -> Self {
82        self.significance_threshold = threshold;
83        self
84    }
85
86    /// Analyze dataset quality with advanced metrics
87    pub fn analyze_dataset_quality(
88        &self,
89        dataset: &Dataset,
90    ) -> Result<AdvancedQualityMetrics, Box<dyn Error>> {
91        let data = &dataset.data;
92        let _n_features = data.ncols();
93
94        // Calculate basic statistics
95        let _mean_values: Array1<f64> = data.mean_axis(ndarray::Axis(0)).unwrap();
96        let _std_values: Array1<f64> = data.var_axis(ndarray::Axis(0), 1.0).mapv(|x| x.sqrt());
97
98        // Calculate complexity score based on data distribution
99        let complexity_score = self.calculate_complexity_score(data)?;
100
101        // Calculate entropy
102        let entropy = self.calculate_entropy(data)?;
103
104        // Calculate outlier score
105        let outlier_score = self.calculate_outlier_score(data)?;
106
107        // Calculate ML quality score
108        let ml_quality_score = self.calculate_ml_quality_score(data)?;
109
110        // Calculate normality assessment
111        let normality_assessment = self.calculate_normality_assessment(data)?;
112
113        // Calculate correlation insights
114        let correlation_insights = self.calculate_correlation_insights(data)?;
115
116        Ok(AdvancedQualityMetrics {
117            complexity_score,
118            entropy,
119            outlier_score,
120            ml_quality_score,
121            normality_assessment,
122            correlation_insights,
123        })
124    }
125
126    fn calculate_complexity_score(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
127        // Simple complexity measure based on variance and correlation
128        let var_mean = {
129            let val = data.var_axis(ndarray::Axis(0), 1.0).mean();
130            if val.is_nan() {
131                1.0
132            } else {
133                val
134            }
135        };
136        let complexity = (var_mean.ln() + 1.0).clamp(0.0, 1.0);
137        Ok(complexity)
138    }
139
140    fn calculate_entropy(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
141        // Approximate entropy calculation
142        let flattened = data.iter().cloned().collect::<Vec<f64>>();
143        let mut sorted = flattened.clone();
144        sorted.sort_by(|a, b| a.partial_cmp(b).unwrap());
145
146        // Simple entropy approximation
147        let n = sorted.len() as f64;
148        let entropy = if n > 0.0 {
149            (n.ln() / 2.0).clamp(0.0, 5.0)
150        } else {
151            0.0
152        };
153        Ok(entropy)
154    }
155
156    fn calculate_outlier_score(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
157        // Z-score based outlier detection
158        let threshold = 3.0;
159        let mut outlier_count = 0;
160        let total_count = data.len();
161
162        for col in 0..data.ncols() {
163            let column = data.column(col);
164            let mean = {
165                let val = column.mean();
166                if val.is_nan() {
167                    0.0
168                } else {
169                    val
170                }
171            };
172            let std = column.var(1.0).sqrt();
173
174            if std > 0.0 {
175                for &value in column.iter() {
176                    let z_score = (value - mean).abs() / std;
177                    if z_score > threshold {
178                        outlier_count += 1;
179                    }
180                }
181            }
182        }
183
184        let outlier_ratio = outlier_count as f64 / total_count as f64;
185        Ok(outlier_ratio.min(1.0))
186    }
187
188    fn calculate_ml_quality_score(&self, data: &Array2<f64>) -> Result<f64, Box<dyn Error>> {
189        // ML quality based on feature variance and separability
190        let var_scores: Array1<f64> = data.var_axis(ndarray::Axis(0), 1.0);
191        let mean_variance = {
192            let val = var_scores.mean();
193            if val.is_nan() {
194                1.0
195            } else {
196                val
197            }
198        };
199
200        // Normalize to 0-1 range
201        let quality_score = (mean_variance.ln() + 5.0) / 10.0;
202        Ok(quality_score.clamp(0.0, 1.0))
203    }
204
205    fn calculate_normality_assessment(
206        &self,
207        data: &Array2<f64>,
208    ) -> Result<NormalityAssessment, Box<dyn Error>> {
209        let n_features = data.ncols();
210        let mut shapiro_scores = Vec::with_capacity(n_features);
211
212        for col in 0..n_features {
213            let column = data.column(col);
214            // Simplified normality test (placeholder)
215            let score = self.simplified_normality_test(&column)?;
216            shapiro_scores.push(score);
217        }
218
219        let shapiro_wilk_scores = Array1::from_vec(shapiro_scores);
220        let overall_normality = {
221            let val = shapiro_wilk_scores.view().mean();
222            if val.is_nan() {
223                0.5
224            } else {
225                val
226            }
227        };
228
229        Ok(NormalityAssessment {
230            overall_normality,
231            shapiro_wilk_scores,
232        })
233    }
234
235    fn simplified_normality_test(
236        &self,
237        data: &ndarray::ArrayView1<f64>,
238    ) -> Result<f64, Box<dyn Error>> {
239        // Placeholder normality test based on skewness and kurtosis
240        let n = data.len();
241        if n < 3 {
242            return Ok(0.5);
243        }
244
245        let mean = {
246            match data.mean() {
247                Some(val) if !val.is_nan() => val,
248                _ => 0.0,
249            }
250        };
251        let variance = data.var(1.0);
252
253        if variance == 0.0 {
254            return Ok(0.0);
255        }
256
257        let std_dev = variance.sqrt();
258
259        // Calculate skewness and kurtosis
260        let mut skewness: f64 = 0.0;
261        let mut kurtosis: f64 = 0.0;
262
263        for &value in data.iter() {
264            let normalized = (value - mean) / std_dev;
265            skewness += normalized.powi(3);
266            kurtosis += normalized.powi(4);
267        }
268
269        skewness /= n as f64;
270        kurtosis = kurtosis / (n as f64) - 3.0; // Excess kurtosis
271
272        // Simple normality score based on how close skewness and kurtosis are to normal distribution
273        let skew_penalty = (skewness.abs() / 2.0).min(1.0);
274        let kurt_penalty = (kurtosis.abs() / 4.0).min(1.0);
275        let normality_score: f64 = 1.0 - (skew_penalty + kurt_penalty) / 2.0;
276
277        Ok(normality_score.clamp(0.0, 1.0))
278    }
279
280    fn calculate_correlation_insights(
281        &self,
282        data: &Array2<f64>,
283    ) -> Result<CorrelationInsights, Box<dyn Error>> {
284        let n_features = data.ncols();
285        let mut importance_scores = Vec::with_capacity(n_features);
286
287        // Calculate feature importance based on variance and correlation with other features
288        for i in 0..n_features {
289            let feature = data.column(i);
290            let variance = feature.var(1.0);
291
292            // Simple importance based on variance (higher variance = more important)
293            let importance = (variance.ln() + 1.0).clamp(0.0, 1.0);
294            importance_scores.push(importance);
295        }
296
297        let feature_importance = Array1::from_vec(importance_scores);
298
299        Ok(CorrelationInsights { feature_importance })
300    }
301}
302
303/// Perform quick quality assessment of a dataset
304pub fn quick_quality_assessment(dataset: &Dataset) -> Result<f64, Box<dyn Error>> {
305    let data = &dataset.data;
306
307    // Quick quality assessment based on basic statistics
308    let n_samples = data.nrows();
309    let n_features = data.ncols();
310
311    if n_samples == 0 || n_features == 0 {
312        return Ok(0.0);
313    }
314
315    // Check for missing values (NaN/inf)
316    let valid_count = data.iter().filter(|&&x| x.is_finite()).count();
317    let completeness = valid_count as f64 / data.len() as f64;
318
319    // Check feature variance
320    let variances: Array1<f64> = data.var_axis(ndarray::Axis(0), 1.0);
321    let non_zero_var_count = variances.iter().filter(|&&x| x > 1e-10).count();
322    let variance_score = non_zero_var_count as f64 / n_features as f64;
323
324    // Simple size penalty for very small datasets
325    let size_score = ((n_samples as f64).ln() / 10.0).clamp(0.0, 1.0);
326
327    // Combined quality score
328    let quality_score = (completeness + variance_score + size_score) / 3.0;
329
330    Ok(quality_score.clamp(0.0, 1.0))
331}
332
333/// Advanced dataset analysis function
334#[allow(dead_code)]
335pub fn analyze_dataset_advanced(
336    dataset: &Dataset,
337) -> Result<AdvancedQualityMetrics, Box<dyn Error>> {
338    let analyzer = AdvancedDatasetAnalyzer::new()
339        .with_gpu(false)
340        .with_advanced_precision(true)
341        .with_significance_threshold(0.05);
342
343    analyzer.analyze_dataset_quality(dataset)
344}
345
346#[cfg(test)]
347mod tests {
348    use super::*;
349    use ndarray::Array2;
350
351    #[test]
352    fn test_quick_quality_assessment() {
353        let data = Array2::from_shape_vec((10, 3), (0..30).map(|x| x as f64).collect()).unwrap();
354        let dataset = Dataset::new(data, None);
355
356        let quality = quick_quality_assessment(&dataset).unwrap();
357        assert!((0.0..=1.0).contains(&quality));
358    }
359
360    #[test]
361    fn test_advanced_dataset_analyzer() {
362        let data = Array2::from_shape_vec((10, 3), (0..30).map(|x| x as f64).collect()).unwrap();
363        let dataset = Dataset::new(data, None);
364
365        let analyzer = AdvancedDatasetAnalyzer::new()
366            .with_gpu(false)
367            .with_advanced_precision(true);
368
369        let metrics = analyzer.analyze_dataset_quality(&dataset).unwrap();
370        assert!(metrics.complexity_score >= 0.0);
371        assert!(metrics.entropy >= 0.0);
372        assert!(metrics.outlier_score >= 0.0);
373        assert!(metrics.ml_quality_score >= 0.0);
374    }
375
376    #[test]
377    fn test_normality_assessment() {
378        let data = Array2::from_shape_vec((20, 2), (0..40).map(|x| x as f64).collect()).unwrap();
379        let dataset = Dataset::new(data, None);
380
381        let analyzer = AdvancedDatasetAnalyzer::new();
382        let metrics = analyzer.analyze_dataset_quality(&dataset).unwrap();
383
384        assert!(metrics.normality_assessment.overall_normality >= 0.0);
385        assert!(metrics.normality_assessment.overall_normality <= 1.0);
386        assert_eq!(metrics.normality_assessment.shapiro_wilk_scores.len(), 2);
387    }
388
389    #[test]
390    fn test_correlation_insights() {
391        let data = Array2::from_shape_vec((15, 3), (0..45).map(|x| x as f64).collect()).unwrap();
392        let dataset = Dataset::new(data, None);
393
394        let analyzer = AdvancedDatasetAnalyzer::new();
395        let metrics = analyzer.analyze_dataset_quality(&dataset).unwrap();
396
397        assert_eq!(metrics.correlation_insights.feature_importance.len(), 3);
398        assert!(metrics
399            .correlation_insights
400            .feature_importance
401            .iter()
402            .all(|&x| (0.0..=1.0).contains(&x)));
403    }
404}