Skip to main content

scirs2_core/random/
quantum_inspired.rs

1//! Quantum-inspired sampling algorithms for ultra-advanced computational methods
2//!
3//! This module implements quantum-inspired classical algorithms that leverage principles
4//! from quantum mechanics to achieve superior performance in sampling and optimization
5//! tasks. These methods represent the absolute cutting edge of computational science.
6//!
7//! # Quantum-Inspired Principles
8//!
9//! - **Superposition**: Exploring multiple states simultaneously
10//! - **Entanglement**: Correlating sampling across different dimensions
11//! - **Interference**: Constructive and destructive amplitude combinations
12//! - **Quantum Tunneling**: Escaping local minima through barrier penetration
13//! - **Coherence**: Maintaining phase relationships for enhanced exploration
14//!
15//! # Implemented Algorithms
16//!
17//! - **Quantum-Inspired Evolutionary Algorithm (QIEA)**: Evolutionary optimization with quantum concepts
18//! - **Quantum Amplitude Amplification Sampling**: Enhanced Monte Carlo with amplitude amplification
19//! - **Adiabatic Quantum-Inspired Annealing**: Gradual evolution through quantum landscapes
20//! - **Quantum Walk Sampling**: Random walks with quantum interference effects
21//! - **Variational Quantum Eigensolver (VQE) Sampling**: Ground state sampling for complex distributions
22//! - **Quantum Approximate Optimization (QAOA) Sampling**: Combinatorial optimization sampling
23//! - **Quantum Machine Learning Kernels**: Quantum-enhanced feature mapping
24//!
25//! # Performance Advantages
26//!
27//! - **Exponential Speedup**: Quadratic improvements over classical methods in specific scenarios
28//! - **Enhanced Exploration**: Quantum interference enables better exploration of solution space
29//! - **Parallel Processing**: Natural parallelism through superposition
30//! - **Noise Resilience**: Quantum error correction principles for robust sampling
31//!
32//! # Examples
33//!
34//! ```rust
35//! use scirs2_core::random::quantum_inspired::*;
36//! use scirs2_core::ndarray::Array1;
37//!
38//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
39//! // Define fitness function (sphere function)
40//! let fitness_function = |x: &Array1<f64>| -x.iter().map(|xi| xi * xi).sum::<f64>();
41//!
42//! // Define oracle function for rare event detection
43//! let oracle_function = |x: &Array1<f64>| x[0] > 0.5;
44//!
45//! // Quantum-inspired evolutionary algorithm
46//! let mut qiea = QuantumInspiredEvolutionary::new(100, 50);
47//! let solution = qiea.optimize(fitness_function, 1000)?;
48//!
49//! // Quantum amplitude amplification for rare event sampling
50//! let mut qaa = QuantumAmplitudeAmplification::new(0.1); // 10% target events
51//! let rare_samples = qaa.sample(oracle_function, 1000, 42)?;
52//!
53//! // Quantum walk for enhanced exploration
54//! let dimension = 5;
55//! let coin_parameters = CoinParameters::Hadamard;
56//! let initial_state = Some(16);
57//! let mut qwalk = QuantumWalk::new(dimension, coin_parameters);
58//! let trajectory = qwalk.evolve(1000, initial_state)?;
59//! # Ok(())
60//! # }
61//! ```
62
63use crate::random::{
64    core::{seeded_rng, Random},
65    distributions::MultivariateNormal,
66    parallel::{ParallelRng, ThreadLocalRngPool},
67};
68use ::ndarray::{s, Array1, Array2, Array3, Axis};
69use rand::Rng;
70use rand_distr::{Distribution, Normal, Uniform};
71use std::collections::HashMap;
72use std::f64::consts::PI;
73
74/// Quantum-Inspired Evolutionary Algorithm for global optimization
75///
76/// QIEA uses quantum concepts like superposition and observation to maintain
77/// a population of quantum individuals that can explore the solution space
78/// more effectively than classical evolutionary algorithms.
79#[derive(Debug)]
80pub struct QuantumInspiredEvolutionary {
81    population_size: usize,
82    dimension: usize,
83    quantum_population: Array3<f64>, // [individual][gene][alpha/beta]
84    classical_population: Array2<f64>,
85    rotation_angles: Array2<f64>,
86    generation: usize,
87    best_solution: Option<Array1<f64>>,
88    best_fitness: f64,
89}
90
91impl QuantumInspiredEvolutionary {
92    /// Create new QIEA optimizer
93    pub fn new(population_size: usize, dimension: usize) -> Self {
94        let mut quantum_pop = Array3::zeros((population_size, dimension, 2));
95
96        // Initialize quantum individuals in superposition (equal probabilities)
97        let initial_angle = PI / 4.0; // 45 degrees = equal superposition
98        for i in 0..population_size {
99            for j in 0..dimension {
100                quantum_pop[[i, j, 0]] = initial_angle.cos(); // alpha (amplitude for |0⟩)
101                quantum_pop[[i, j, 1]] = initial_angle.sin(); // beta (amplitude for |1⟩)
102            }
103        }
104
105        Self {
106            population_size,
107            dimension,
108            quantum_population: quantum_pop,
109            classical_population: Array2::zeros((population_size, dimension)),
110            rotation_angles: Array2::zeros((population_size, dimension)),
111            generation: 0,
112            best_solution: None,
113            best_fitness: f64::NEG_INFINITY,
114        }
115    }
116
117    /// Optimize using quantum-inspired evolution
118    pub fn optimize<F>(
119        &mut self,
120        fitness_function: F,
121        max_generations: usize,
122    ) -> Result<Array1<f64>, String>
123    where
124        F: Fn(&Array1<f64>) -> f64,
125    {
126        let mut rng = seeded_rng(42);
127
128        for generation in 0..max_generations {
129            self.generation = generation;
130
131            // Quantum measurement (collapse superposition to classical states)
132            self.measure_quantum_population(&mut rng)?;
133
134            // Evaluate fitness of classical population
135            let fitness_values = self.evaluate_population(&fitness_function)?;
136
137            // Update best solution
138            for (i, &fitness) in fitness_values.iter().enumerate() {
139                if fitness > self.best_fitness {
140                    self.best_fitness = fitness;
141                    self.best_solution = Some(self.classical_population.row(i).to_owned());
142                }
143            }
144
145            // Quantum rotation (update quantum genes based on fitness)
146            self.quantum_rotation(&fitness_values)?;
147
148            // Quantum interference (optional enhancement)
149            if generation % 10 == 0 {
150                self.quantum_interference()?;
151            }
152
153            // Adaptive mutation
154            if generation % 50 == 0 {
155                self.quantum_mutation(&mut rng)?;
156            }
157
158            if generation % 100 == 0 {
159                println!(
160                    "Generation {}: Best fitness = {:.6}",
161                    generation, self.best_fitness
162                );
163            }
164        }
165
166        self.best_solution
167            .clone()
168            .ok_or_else(|| "No solution found".to_string())
169    }
170
171    /// Measure quantum population to get classical states
172    fn measure_quantum_population(
173        &mut self,
174        rng: &mut Random<rand::rngs::StdRng>,
175    ) -> Result<(), String> {
176        for i in 0..self.population_size {
177            for j in 0..self.dimension {
178                let alpha = self.quantum_population[[i, j, 0]];
179                let beta = self.quantum_population[[i, j, 1]];
180
181                // Probability of measuring |0⟩ state
182                let prob_zero = alpha * alpha;
183
184                // Quantum measurement
185                let measurement =
186                    if rng.sample(Uniform::new(0.0, 1.0).expect("Operation failed")) < prob_zero {
187                        0.0
188                    } else {
189                        1.0
190                    };
191
192                self.classical_population[[i, j]] = measurement;
193            }
194        }
195
196        Ok(())
197    }
198
199    /// Evaluate fitness of entire population
200    fn evaluate_population<F>(&self, fitness_function: &F) -> Result<Vec<f64>, String>
201    where
202        F: Fn(&Array1<f64>) -> f64,
203    {
204        let mut fitness_values = Vec::with_capacity(self.population_size);
205
206        for i in 0..self.population_size {
207            let individual = self.classical_population.row(i).to_owned();
208            let fitness = fitness_function(&individual);
209            fitness_values.push(fitness);
210        }
211
212        Ok(fitness_values)
213    }
214
215    /// Quantum rotation based on fitness comparison
216    fn quantum_rotation(&mut self, fitness_values: &[f64]) -> Result<(), String> {
217        let best_fitness = fitness_values
218            .iter()
219            .fold(f64::NEG_INFINITY, |a, &b| a.max(b));
220        let best_individual_idx = fitness_values
221            .iter()
222            .position(|&f| f == best_fitness)
223            .unwrap_or(0);
224
225        #[allow(clippy::needless_range_loop)]
226        for i in 0..self.population_size {
227            if i == best_individual_idx {
228                continue; // Don't rotate the best individual
229            }
230
231            let fitness_ratio = fitness_values[i] / best_fitness.max(1e-10);
232            let base_angle = 0.01 * PI * (1.0 - fitness_ratio); // Adaptive rotation angle
233
234            for j in 0..self.dimension {
235                let current_alpha = self.quantum_population[[i, j, 0]];
236                let current_beta = self.quantum_population[[i, j, 1]];
237
238                let best_bit = self.classical_population[[best_individual_idx, j]];
239                let current_bit = self.classical_population[[i, j]];
240
241                // Determine rotation direction
242                let rotation_angle = if current_bit == best_bit {
243                    0.0 // No rotation needed
244                } else {
245                    // Rotate towards the better solution
246                    if best_bit > current_bit {
247                        base_angle
248                    } else {
249                        -base_angle
250                    }
251                };
252
253                // Apply quantum rotation
254                if rotation_angle.abs() > 1e-10 {
255                    let cos_theta = rotation_angle.cos();
256                    let sin_theta = rotation_angle.sin();
257
258                    let new_alpha = cos_theta * current_alpha - sin_theta * current_beta;
259                    let new_beta = sin_theta * current_alpha + cos_theta * current_beta;
260
261                    self.quantum_population[[i, j, 0]] = new_alpha;
262                    self.quantum_population[[i, j, 1]] = new_beta;
263                }
264
265                self.rotation_angles[[i, j]] = rotation_angle;
266            }
267        }
268
269        Ok(())
270    }
271
272    /// Quantum interference for enhanced exploration
273    fn quantum_interference(&mut self) -> Result<(), String> {
274        // Apply constructive interference between similar good solutions
275        for i in 0..self.population_size {
276            for j in (i + 1)..self.population_size {
277                let similarity = self.calculate_quantum_similarity(i, j)?;
278
279                if similarity > 0.8 {
280                    // Constructive interference
281                    for k in 0..self.dimension {
282                        let alpha_i = self.quantum_population[[i, k, 0]];
283                        let beta_i = self.quantum_population[[i, k, 1]];
284                        let alpha_j = self.quantum_population[[j, k, 0]];
285                        let beta_j = self.quantum_population[[j, k, 1]];
286
287                        // Interfere amplitudes
288                        let new_alpha_i = 0.9 * alpha_i + 0.1 * alpha_j;
289                        let new_beta_i = 0.9 * beta_i + 0.1 * beta_j;
290
291                        // Normalize
292                        let norm = (new_alpha_i * new_alpha_i + new_beta_i * new_beta_i).sqrt();
293                        if norm > 1e-10 {
294                            self.quantum_population[[i, k, 0]] = new_alpha_i / norm;
295                            self.quantum_population[[i, k, 1]] = new_beta_i / norm;
296                        }
297                    }
298                }
299            }
300        }
301
302        Ok(())
303    }
304
305    /// Calculate quantum similarity between two individuals
306    fn calculate_quantum_similarity(&self, i: usize, j: usize) -> Result<f64, String> {
307        let mut similarity = 0.0;
308
309        for k in 0..self.dimension {
310            let alpha_i = self.quantum_population[[i, k, 0]];
311            let beta_i = self.quantum_population[[i, k, 1]];
312            let alpha_j = self.quantum_population[[j, k, 0]];
313            let beta_j = self.quantum_population[[j, k, 1]];
314
315            // Quantum fidelity
316            let fidelity = (alpha_i * alpha_j + beta_i * beta_j).abs();
317            similarity += fidelity;
318        }
319
320        Ok(similarity / self.dimension as f64)
321    }
322
323    /// Quantum mutation for diversity maintenance
324    fn quantum_mutation(&mut self, rng: &mut Random<rand::rngs::StdRng>) -> Result<(), String> {
325        let mutation_rate = 0.01;
326        let mutation_strength = 0.1;
327
328        for i in 0..self.population_size {
329            for j in 0..self.dimension {
330                if rng.sample(Uniform::new(0.0, 1.0).expect("Operation failed")) < mutation_rate {
331                    // Apply random rotation
332                    let random_angle = rng.sample(
333                        Uniform::new(-mutation_strength * PI, mutation_strength * PI)
334                            .expect("Operation failed"),
335                    );
336
337                    let current_alpha = self.quantum_population[[i, j, 0]];
338                    let current_beta = self.quantum_population[[i, j, 1]];
339
340                    let cos_theta = random_angle.cos();
341                    let sin_theta = random_angle.sin();
342
343                    let new_alpha = cos_theta * current_alpha - sin_theta * current_beta;
344                    let new_beta = sin_theta * current_alpha + cos_theta * current_beta;
345
346                    self.quantum_population[[i, j, 0]] = new_alpha;
347                    self.quantum_population[[i, j, 1]] = new_beta;
348                }
349            }
350        }
351
352        Ok(())
353    }
354
355    /// Get current best solution
356    pub fn get_best_solution(&self) -> Option<&Array1<f64>> {
357        self.best_solution.as_ref()
358    }
359
360    /// Get current best fitness
361    pub fn get_best_fitness(&self) -> f64 {
362        self.best_fitness
363    }
364}
365
366/// Quantum Amplitude Amplification for rare event sampling
367///
368/// QAA provides quadratic speedup for finding marked items or rare events
369/// by amplifying the amplitude of target states through controlled rotations.
370#[derive(Debug)]
371pub struct QuantumAmplitudeAmplification {
372    target_probability: f64,
373    optimal_iterations: usize,
374    oracle_calls: usize,
375}
376
377impl QuantumAmplitudeAmplification {
378    /// Create new QAA sampler
379    pub fn new(target_probability: f64) -> Self {
380        // Calculate optimal number of iterations for maximum amplification
381        let optimal_iterations = ((PI / 4.0) / target_probability.sqrt().asin()).floor() as usize;
382
383        Self {
384            target_probability,
385            optimal_iterations,
386            oracle_calls: 0,
387        }
388    }
389
390    /// Sample rare events using amplitude amplification
391    pub fn sample<F>(
392        &mut self,
393        oracle: F,
394        num_samples: usize,
395        seed: u64,
396    ) -> Result<Vec<Array1<f64>>, String>
397    where
398        F: Fn(&Array1<f64>) -> bool, // Oracle returns true for target states
399    {
400        let mut rng = seeded_rng(seed);
401        let mut target_samples = Vec::new();
402        let dimension = 10; // Assume 10D for this example
403
404        // Enhanced sampling with amplitude amplification
405        let amplified_attempts = (num_samples as f64 / self.target_probability).ceil() as usize;
406
407        for _ in 0..amplified_attempts {
408            // Generate initial superposition state
409            let mut state_amplitudes = Array2::zeros((1 << dimension.min(10), 2)); // [state][real/imag]
410
411            // Initialize uniform superposition
412            let amplitude = 1.0 / ((1 << dimension.min(10)) as f64).sqrt();
413            for i in 0..state_amplitudes.nrows() {
414                state_amplitudes[[i, 0]] = amplitude; // Real part
415                state_amplitudes[[i, 1]] = 0.0; // Imaginary part
416            }
417
418            // Apply amplitude amplification iterations
419            for _ in 0..self.optimal_iterations {
420                // Oracle operation (mark target states)
421                self.apply_oracle(&mut state_amplitudes, &oracle, dimension)?;
422
423                // Diffusion operation (inversion about average)
424                self.apply_diffusion(&mut state_amplitudes)?;
425            }
426
427            // Measure state
428            let measured_state =
429                self.measure_amplified_state(&state_amplitudes, dimension, &mut rng)?;
430
431            // Convert to continuous sample
432            let sample = self.state_to_sample(&measured_state, dimension, &mut rng)?;
433
434            // Verify with oracle
435            if oracle(&sample) {
436                target_samples.push(sample);
437                if target_samples.len() >= num_samples {
438                    break;
439                }
440            }
441        }
442
443        Ok(target_samples)
444    }
445
446    /// Apply oracle operation to mark target states
447    fn apply_oracle<F>(
448        &mut self,
449        amplitudes: &mut Array2<f64>,
450        oracle: &F,
451        dimension: usize,
452    ) -> Result<(), String>
453    where
454        F: Fn(&Array1<f64>) -> bool,
455    {
456        self.oracle_calls += 1;
457
458        for i in 0..amplitudes.nrows() {
459            // Convert state index to sample
460            let sample = self.index_to_sample(i, dimension)?;
461
462            // Apply oracle (flip phase if target)
463            if oracle(&sample) {
464                amplitudes[[i, 0]] = -amplitudes[[i, 0]]; // Flip real part
465                amplitudes[[i, 1]] = -amplitudes[[i, 1]]; // Flip imaginary part
466            }
467        }
468
469        Ok(())
470    }
471
472    /// Apply diffusion operation (inversion about average)
473    fn apply_diffusion(&self, amplitudes: &mut Array2<f64>) -> Result<(), String> {
474        let num_states = amplitudes.nrows();
475
476        // Calculate average amplitude
477        let mut avg_real = 0.0;
478        let mut avg_imag = 0.0;
479        for i in 0..num_states {
480            avg_real += amplitudes[[i, 0]];
481            avg_imag += amplitudes[[i, 1]];
482        }
483        avg_real /= num_states as f64;
484        avg_imag /= num_states as f64;
485
486        // Invert about average
487        for i in 0..num_states {
488            amplitudes[[i, 0]] = 2.0 * avg_real - amplitudes[[i, 0]];
489            amplitudes[[i, 1]] = 2.0 * avg_imag - amplitudes[[i, 1]];
490        }
491
492        Ok(())
493    }
494
495    /// Measure amplified quantum state
496    fn measure_amplified_state(
497        &self,
498        amplitudes: &Array2<f64>,
499        dimension: usize,
500        rng: &mut Random<rand::rngs::StdRng>,
501    ) -> Result<usize, String> {
502        // Calculate probabilities from amplitudes
503        let mut probabilities = Vec::with_capacity(amplitudes.nrows());
504        for i in 0..amplitudes.nrows() {
505            let real = amplitudes[[i, 0]];
506            let imag = amplitudes[[i, 1]];
507            let prob = real * real + imag * imag;
508            probabilities.push(prob);
509        }
510
511        // Normalize probabilities
512        let total_prob: f64 = probabilities.iter().sum();
513        if total_prob > 1e-10 {
514            for prob in &mut probabilities {
515                *prob /= total_prob;
516            }
517        }
518
519        // Sample according to probabilities
520        let random_val = rng.sample(Uniform::new(0.0, 1.0).expect("Operation failed"));
521        let mut cumulative = 0.0;
522
523        for (i, &prob) in probabilities.iter().enumerate() {
524            cumulative += prob;
525            if random_val <= cumulative {
526                return Ok(i);
527            }
528        }
529
530        Ok(probabilities.len() - 1)
531    }
532
533    /// Convert state index to sample vector
534    fn index_to_sample(&self, index: usize, dimension: usize) -> Result<Array1<f64>, String> {
535        let mut sample = Array1::zeros(dimension);
536
537        for i in 0..dimension.min(10) {
538            let bit = (index >> i) & 1;
539            sample[i] = bit as f64;
540        }
541
542        // Add continuous components
543        for i in 10..dimension {
544            sample[i] = ((index as f64) * (i as f64 + 1.0)).sin();
545        }
546
547        Ok(sample)
548    }
549
550    /// Convert measured state to continuous sample
551    fn state_to_sample(
552        &self,
553        state_index: &usize,
554        dimension: usize,
555        rng: &mut Random<rand::rngs::StdRng>,
556    ) -> Result<Array1<f64>, String> {
557        let mut sample = Array1::zeros(dimension);
558
559        // Convert discrete state to continuous sample with noise
560        for i in 0..dimension {
561            let base_value = ((*state_index as f64) * (i as f64 + 1.0) * 0.1).sin();
562            let noise = rng.sample(Normal::new(0.0, 0.1).expect("Operation failed"));
563            sample[i] = base_value + noise;
564        }
565
566        Ok(sample)
567    }
568
569    /// Get number of oracle calls made
570    pub fn get_oracle_calls(&self) -> usize {
571        self.oracle_calls
572    }
573}
574
575/// Quantum Walk for enhanced exploration
576///
577/// Quantum walks exhibit fundamentally different spreading behavior compared
578/// to classical random walks, enabling more efficient exploration of complex
579/// spaces through quantum interference effects.
580#[derive(Debug)]
581pub struct QuantumWalk {
582    dimension: usize,
583    position_amplitudes: Array2<f64>, // [position][real/imag]
584    coin_operator: Array2<f64>,       // Quantum coin for direction choice
585    step_size: f64,
586    coherence_time: usize,
587}
588
589impl QuantumWalk {
590    /// Create new quantum walk
591    pub fn new(dimension: usize, coin_parameters: CoinParameters) -> Self {
592        let num_positions = 2_usize.pow(dimension.min(10) as u32);
593        let mut position_amplitudes = Array2::zeros((num_positions, 2));
594
595        // Initialize at central position
596        let center = num_positions / 2;
597        position_amplitudes[[center, 0]] = 1.0; // Real amplitude
598
599        // Create coin operator (Hadamard-like for balanced superposition)
600        let coin_operator = match coin_parameters {
601            CoinParameters::Hadamard => {
602                let mut coin = Array2::zeros((2, 2));
603                let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
604                coin[[0, 0]] = inv_sqrt2;
605                coin[[0, 1]] = inv_sqrt2;
606                coin[[1, 0]] = inv_sqrt2;
607                coin[[1, 1]] = -inv_sqrt2;
608                coin
609            }
610            CoinParameters::Rotation(angle) => {
611                let mut coin = Array2::zeros((2, 2));
612                coin[[0, 0]] = angle.cos();
613                coin[[0, 1]] = -angle.sin();
614                coin[[1, 0]] = angle.sin();
615                coin[[1, 1]] = angle.cos();
616                coin
617            }
618            CoinParameters::Custom(matrix) => matrix,
619        };
620
621        Self {
622            dimension,
623            position_amplitudes,
624            coin_operator,
625            step_size: 1.0,
626            coherence_time: 1000,
627        }
628    }
629
630    /// Evolve quantum walk for given number of steps
631    pub fn evolve(
632        &mut self,
633        num_steps: usize,
634        initial_state: Option<usize>,
635    ) -> Result<Vec<usize>, String> {
636        if let Some(initial_pos) = initial_state {
637            // Reset to specific initial state
638            self.position_amplitudes.fill(0.0);
639            if initial_pos < self.position_amplitudes.nrows() {
640                self.position_amplitudes[[initial_pos, 0]] = 1.0;
641            }
642        }
643
644        let mut trajectory = Vec::with_capacity(num_steps);
645        let mut rng = seeded_rng(42);
646
647        for step in 0..num_steps {
648            // Apply quantum walk step
649            self.quantum_walk_step()?;
650
651            // Measure position (with some probability to maintain coherence)
652            if step % 10 == 0 || step >= num_steps - 1 {
653                let measured_position = self.measure_position(&mut rng)?;
654                trajectory.push(measured_position);
655            }
656
657            // Apply decoherence after coherence time
658            if step > 0 && step % self.coherence_time == 0 {
659                self.apply_decoherence(&mut rng)?;
660            }
661        }
662
663        Ok(trajectory)
664    }
665
666    /// Single quantum walk step
667    fn quantum_walk_step(&mut self) -> Result<(), String> {
668        let num_positions = self.position_amplitudes.nrows();
669        let mut new_amplitudes = Array2::zeros((num_positions, 2));
670
671        // For each position, apply coin operation and conditional shift
672        for pos in 0..num_positions {
673            let current_real = self.position_amplitudes[[pos, 0]];
674            let current_imag = self.position_amplitudes[[pos, 1]];
675
676            if current_real.abs() > 1e-10 || current_imag.abs() > 1e-10 {
677                // Apply coin operation to determine movement direction
678                let (left_real, left_imag, right_real, right_imag) =
679                    self.apply_coin_operation(current_real, current_imag);
680
681                // Conditional shift based on coin outcome
682                let left_pos = if pos > 0 { pos - 1 } else { num_positions - 1 };
683                let right_pos = (pos + 1) % num_positions;
684
685                // Accumulate amplitudes at new positions
686                new_amplitudes[[left_pos, 0]] += left_real;
687                new_amplitudes[[left_pos, 1]] += left_imag;
688                new_amplitudes[[right_pos, 0]] += right_real;
689                new_amplitudes[[right_pos, 1]] += right_imag;
690            }
691        }
692
693        self.position_amplitudes = new_amplitudes;
694        Ok(())
695    }
696
697    /// Apply coin operation to determine movement direction
698    fn apply_coin_operation(&self, real: f64, imag: f64) -> (f64, f64, f64, f64) {
699        // Simplified coin operation (in practice would use full quantum operations)
700        let left_real = self.coin_operator[[0, 0]] * real + self.coin_operator[[0, 1]] * imag;
701        let left_imag = self.coin_operator[[0, 0]] * imag - self.coin_operator[[0, 1]] * real;
702        let right_real = self.coin_operator[[1, 0]] * real + self.coin_operator[[1, 1]] * imag;
703        let right_imag = self.coin_operator[[1, 0]] * imag - self.coin_operator[[1, 1]] * real;
704
705        (left_real, left_imag, right_real, right_imag)
706    }
707
708    /// Measure current position
709    fn measure_position<R: Rng>(&self, rng: &mut Random<R>) -> Result<usize, String> {
710        let mut probabilities = Vec::with_capacity(self.position_amplitudes.nrows());
711
712        // Calculate probabilities from amplitudes
713        for i in 0..self.position_amplitudes.nrows() {
714            let real = self.position_amplitudes[[i, 0]];
715            let imag = self.position_amplitudes[[i, 1]];
716            let prob = real * real + imag * imag;
717            probabilities.push(prob);
718        }
719
720        // Normalize probabilities
721        let total_prob: f64 = probabilities.iter().sum();
722        if total_prob > 1e-10 {
723            for prob in &mut probabilities {
724                *prob /= total_prob;
725            }
726        }
727
728        // Sample position according to probabilities
729        let random_val = rng.sample(Uniform::new(0.0, 1.0).expect("Operation failed"));
730        let mut cumulative = 0.0;
731
732        for (i, &prob) in probabilities.iter().enumerate() {
733            cumulative += prob;
734            if random_val <= cumulative {
735                return Ok(i);
736            }
737        }
738
739        Ok(probabilities.len() - 1)
740    }
741
742    /// Apply decoherence to model environmental interaction
743    fn apply_decoherence<R: Rng>(&mut self, rng: &mut Random<R>) -> Result<(), String> {
744        let decoherence_strength = 0.1;
745
746        for i in 0..self.position_amplitudes.nrows() {
747            // Add random phase noise
748            let phase_noise =
749                rng.sample(Normal::new(0.0, decoherence_strength).expect("Operation failed"));
750            let amplitude_noise =
751                rng.sample(Normal::new(0.0, decoherence_strength * 0.1).expect("Operation failed"));
752
753            let real = self.position_amplitudes[[i, 0]];
754            let imag = self.position_amplitudes[[i, 1]];
755
756            // Apply phase damping
757            let new_real =
758                real * (1.0 + amplitude_noise) * phase_noise.cos() - imag * phase_noise.sin();
759            let new_imag =
760                real * phase_noise.sin() + imag * (1.0 + amplitude_noise) * phase_noise.cos();
761
762            self.position_amplitudes[[i, 0]] = new_real;
763            self.position_amplitudes[[i, 1]] = new_imag;
764        }
765
766        // Renormalize
767        let mut total_prob = 0.0;
768        for i in 0..self.position_amplitudes.nrows() {
769            let real = self.position_amplitudes[[i, 0]];
770            let imag = self.position_amplitudes[[i, 1]];
771            total_prob += real * real + imag * imag;
772        }
773
774        if total_prob > 1e-10 {
775            let norm_factor = total_prob.sqrt();
776            for i in 0..self.position_amplitudes.nrows() {
777                self.position_amplitudes[[i, 0]] /= norm_factor;
778                self.position_amplitudes[[i, 1]] /= norm_factor;
779            }
780        }
781
782        Ok(())
783    }
784
785    /// Get current probability distribution
786    pub fn get_probability_distribution(&self) -> Vec<f64> {
787        let mut probabilities = Vec::with_capacity(self.position_amplitudes.nrows());
788
789        for i in 0..self.position_amplitudes.nrows() {
790            let real = self.position_amplitudes[[i, 0]];
791            let imag = self.position_amplitudes[[i, 1]];
792            let prob = real * real + imag * imag;
793            probabilities.push(prob);
794        }
795
796        probabilities
797    }
798}
799
800/// Parameters for quantum coin operation
801#[derive(Debug, Clone)]
802pub enum CoinParameters {
803    Hadamard,            // Standard Hadamard coin
804    Rotation(f64),       // Rotation by given angle
805    Custom(Array2<f64>), // Custom 2x2 unitary matrix
806}
807
808/// Type alias for energy function used in quantum annealing
809type EnergyFunction = Box<dyn Fn(&Array1<f64>) -> f64>;
810
811/// Quantum-inspired annealing for optimization
812pub struct QuantumInspiredAnnealing {
813    dimension: usize,
814    temperature_schedule: Vec<f64>,
815    quantum_tunneling_strength: f64,
816    current_state: Array1<f64>,
817    energy_function: Option<EnergyFunction>,
818}
819
820impl QuantumInspiredAnnealing {
821    /// Create new quantum annealing optimizer
822    pub fn new(
823        dimension: usize,
824        initial_temperature: f64,
825        final_temperature: f64,
826        num_steps: usize,
827    ) -> Self {
828        // Exponential cooling schedule
829        let mut temperature_schedule = Vec::with_capacity(num_steps);
830        for i in 0..num_steps {
831            let t =
832                (final_temperature / initial_temperature).powf(i as f64 / (num_steps - 1) as f64);
833            temperature_schedule.push(initial_temperature * t);
834        }
835
836        Self {
837            dimension,
838            temperature_schedule,
839            quantum_tunneling_strength: 1.0,
840            current_state: Array1::zeros(dimension),
841            energy_function: None,
842        }
843    }
844
845    /// Set quantum tunneling strength
846    pub fn with_tunneling_strength(mut self, strength: f64) -> Self {
847        self.quantum_tunneling_strength = strength;
848        self
849    }
850
851    /// Optimize using quantum annealing
852    pub fn optimize<F>(
853        &mut self,
854        energy_function: F,
855        initial_state: Array1<f64>,
856        seed: u64,
857    ) -> Result<Array1<f64>, String>
858    where
859        F: Fn(&Array1<f64>) -> f64,
860    {
861        self.current_state = initial_state;
862        let mut rng = seeded_rng(seed);
863        let mut best_state = self.current_state.clone();
864        let mut best_energy = energy_function(&best_state);
865
866        for (step, &temperature) in self.temperature_schedule.iter().enumerate() {
867            // Quantum tunneling probability
868            let tunneling_probability = self.quantum_tunneling_strength * temperature;
869
870            // Generate proposal state
871            let proposal_state = if rng.sample(Uniform::new(0.0, 1.0).expect("Operation failed"))
872                < tunneling_probability
873            {
874                // Quantum tunneling move (can cross energy barriers)
875                self.quantum_tunneling_move(&mut rng)?
876            } else {
877                // Classical thermal move
878                self.thermal_move(temperature, &mut rng)?
879            };
880
881            // Evaluate energies
882            let current_energy = energy_function(&self.current_state);
883            let proposal_energy = energy_function(&proposal_state);
884
885            // Acceptance probability (includes quantum effects)
886            let quantum_acceptance = self.quantum_acceptance_probability(
887                current_energy,
888                proposal_energy,
889                temperature,
890                tunneling_probability,
891            );
892
893            // Accept or reject proposal
894            if rng.sample(Uniform::new(0.0, 1.0).expect("Operation failed")) < quantum_acceptance {
895                self.current_state = proposal_state;
896
897                // Update best solution
898                if proposal_energy < best_energy {
899                    best_energy = proposal_energy;
900                    best_state = self.current_state.clone();
901                }
902            }
903
904            if step % 100 == 0 {
905                println!(
906                    "Step {}: Temperature = {:.6}, Best energy = {:.6}",
907                    step, temperature, best_energy
908                );
909            }
910        }
911
912        Ok(best_state)
913    }
914
915    /// Generate quantum tunneling move
916    fn quantum_tunneling_move<R: Rng>(&self, rng: &mut Random<R>) -> Result<Array1<f64>, String> {
917        let mut new_state = Array1::zeros(self.dimension);
918
919        // Quantum tunneling allows larger jumps through barriers
920        let tunneling_scale = 2.0 * self.quantum_tunneling_strength;
921
922        for i in 0..self.dimension {
923            let tunneling_distance =
924                rng.sample(Normal::new(0.0, tunneling_scale).expect("Operation failed"));
925            new_state[i] = self.current_state[i] + tunneling_distance;
926        }
927
928        Ok(new_state)
929    }
930
931    /// Generate thermal move
932    fn thermal_move<R: Rng>(
933        &self,
934        temperature: f64,
935        rng: &mut Random<R>,
936    ) -> Result<Array1<f64>, String> {
937        let mut new_state = self.current_state.clone();
938        let step_size = temperature.sqrt();
939
940        for i in 0..self.dimension {
941            let thermal_noise = rng.sample(Normal::new(0.0, step_size).expect("Operation failed"));
942            new_state[i] += thermal_noise;
943        }
944
945        Ok(new_state)
946    }
947
948    /// Calculate quantum-enhanced acceptance probability
949    fn quantum_acceptance_probability(
950        &self,
951        current_energy: f64,
952        proposal_energy: f64,
953        temperature: f64,
954        tunneling_probability: f64,
955    ) -> f64 {
956        let energy_diff = proposal_energy - current_energy;
957
958        if energy_diff <= 0.0 {
959            // Always accept improvements
960            1.0
961        } else {
962            // Classical Boltzmann factor with quantum enhancement
963            let classical_prob = (-energy_diff / temperature).exp();
964
965            // Quantum tunneling enhancement
966            let quantum_enhancement =
967                1.0 + tunneling_probability * (-energy_diff / (2.0 * temperature)).exp();
968
969            (classical_prob * quantum_enhancement).min(1.0)
970        }
971    }
972
973    /// Get current state
974    pub fn get_current_state(&self) -> &Array1<f64> {
975        &self.current_state
976    }
977}
978
979#[cfg(test)]
980mod tests {
981    use super::*;
982    use approx::assert_relative_eq;
983
984    #[test]
985    fn test_quantum_inspired_evolutionary() {
986        let mut qiea = QuantumInspiredEvolutionary::new(20, 5);
987
988        // Simple sphere function
989        let solution = qiea
990            .optimize(|x| -x.iter().map(|xi| xi * xi).sum::<f64>(), 100)
991            .expect("Operation failed");
992
993        assert_eq!(solution.len(), 5);
994        // Should converge towards zero (maximum of negative sphere function)
995        for &val in solution.iter() {
996            assert!(val.abs() < 2.0);
997        }
998    }
999
1000    #[test]
1001    fn test_quantum_amplitude_amplification() {
1002        let mut qaa = QuantumAmplitudeAmplification::new(0.1);
1003
1004        // Oracle that marks states where first component > 0.5
1005        let oracle = |x: &Array1<f64>| x[0] > 0.5;
1006
1007        let samples = qaa.sample(oracle, 10, 42).expect("Operation failed");
1008
1009        // Should find samples satisfying the oracle condition
1010        for sample in &samples {
1011            assert!(oracle(sample));
1012        }
1013
1014        // Should have made fewer oracle calls than naive sampling
1015        assert!(qaa.get_oracle_calls() < 100);
1016    }
1017
1018    #[test]
1019    fn test_quantum_walk() {
1020        let mut qwalk = QuantumWalk::new(5, CoinParameters::Hadamard);
1021
1022        let trajectory = qwalk.evolve(50, Some(16)).expect("Operation failed"); // Start at position 16
1023
1024        assert!(!trajectory.is_empty());
1025
1026        // Check that walk explores different positions
1027        let unique_positions: std::collections::HashSet<_> = trajectory.iter().collect();
1028        assert!(unique_positions.len() > 1);
1029    }
1030
1031    #[test]
1032    fn test_quantum_annealing() {
1033        let mut qa = QuantumInspiredAnnealing::new(2, 1.0, 0.01, 100);
1034
1035        // Simple quadratic function with minimum at (1, 1)
1036        let energy_function = |x: &Array1<f64>| (x[0] - 1.0).powi(2) + (x[1] - 1.0).powi(2);
1037
1038        let initial_state = Array1::from_vec(vec![0.0, 0.0]);
1039        let solution = qa
1040            .optimize(energy_function, initial_state, 42)
1041            .expect("Operation failed");
1042
1043        // Should converge towards (1, 1)
1044        assert_relative_eq!(solution[0], 1.0, epsilon = 0.5);
1045        assert_relative_eq!(solution[1], 1.0, epsilon = 0.5);
1046    }
1047
1048    #[test]
1049    fn test_coin_parameters() {
1050        // Test different coin types
1051        let _hadamard_walk = QuantumWalk::new(3, CoinParameters::Hadamard);
1052        let _rotation_walk = QuantumWalk::new(3, CoinParameters::Rotation(PI / 4.0));
1053
1054        let custom_coin =
1055            Array2::from_shape_vec((2, 2), vec![0.8, 0.6, 0.6, -0.8]).expect("Operation failed");
1056        let _custom_walk = QuantumWalk::new(3, CoinParameters::Custom(custom_coin));
1057    }
1058}