Skip to main content

scirs2_core/random/
neural_sampling.rs

1//! Neural-based sampling methods for ultra-modern generative modeling
2//!
3//! This module implements the most advanced neural sampling algorithms from cutting-edge
4//! machine learning research. These methods leverage deep neural networks to learn complex
5//! probability distributions and generate high-quality samples.
6//!
7//! # Implemented Methods
8//!
9//! - **Normalizing Flows**: Invertible neural networks for exact likelihood computation
10//! - **Variational Autoencoders (VAE)**: Probabilistic latent variable models
11//! - **Score-Based Diffusion Models**: State-of-the-art generative models using score matching
12//! - **Energy-Based Models (EBM)**: Flexible unnormalized probability models
13//! - **Neural Posterior Estimation**: Amortized Bayesian inference
14//! - **Autoregressive Models**: Sequential probability modeling
15//! - **Generative Adversarial Sampling**: Adversarial training for sample generation
16//!
17//! # Key Advantages
18//!
19//! - **Expressiveness**: Can model highly complex, multi-modal distributions
20//! - **Scalability**: Efficient sampling from high-dimensional spaces
21//! - **Amortization**: Fast inference after initial training
22//! - **Flexibility**: Adapts to arbitrary target distributions
23//!
24//! # Examples
25//!
26//! ```rust
27//! use scirs2_core::random::neural_sampling::*;
28//! use ::ndarray::Array2;
29//!
30//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
31//! // Sample training data (small for doc test)
32//! let training_data: Array2<f64> = Array2::zeros((10, 3));
33//!
34//! // Normalizing Flow initialization (basic example)
35//! let mut flow = NormalizingFlow::new(3, 2);
36//! // In real usage: flow.train(&training_data, num_epochs)?;
37//!
38//! // Score-based diffusion model initialization
39//! let diffusion = ScoreBasedDiffusion::new(DiffusionConfig::default());
40//! // In real usage: diffusion.train(&training_data)?; then diffusion.sample(...)?;
41//!
42//! // For this doc test, we just show initialization without expensive operations
43//! println!("Neural sampling models initialized successfully");
44//! # Ok(())
45//! # }
46//! ```
47
48use crate::random::{
49    core::{seeded_rng, Random},
50    distributions::MultivariateNormal,
51    parallel::{ParallelRng, ThreadLocalRngPool},
52};
53use ::ndarray::{s, Array1, Array2, Array3, Axis};
54use rand::Rng;
55use rand_distr::{Distribution, Normal, Uniform};
56use std::collections::VecDeque;
57
58/// Normalizing Flow for invertible transformations
59///
60/// Normalizing flows learn invertible mappings between simple base distributions
61/// (like Gaussian) and complex target distributions, enabling both sampling
62/// and exact likelihood computation.
63#[derive(Debug, Clone)]
64pub struct NormalizingFlow {
65    dimension: usize,
66    num_layers: usize,
67    flow_layers: Vec<FlowLayer>,
68    base_distribution: MultivariateNormal,
69    trained: bool,
70}
71
72#[derive(Debug, Clone)]
73struct FlowLayer {
74    // Coupling layer parameters (simplified Real NVP-style)
75    mask: Array1<bool>,
76    scale_network: MLP,
77    translation_network: MLP,
78}
79
80#[derive(Debug, Clone)]
81struct MLP {
82    // Multi-layer perceptron for flow transformations
83    weights: Vec<Array2<f64>>,
84    biases: Vec<Array1<f64>>,
85    hidden_dims: Vec<usize>,
86}
87
88impl NormalizingFlow {
89    /// Create new normalizing flow
90    pub fn new(dimension: usize, num_layers: usize) -> Self {
91        let mut flow_layers = Vec::new();
92
93        for i in 0..num_layers {
94            // Alternating masks for coupling layers
95            let mut mask = Array1::from_elem(dimension, false);
96            for j in 0..dimension {
97                mask[j] = (j + i) % 2 == 0;
98            }
99
100            let hidden_dim = dimension.max(32);
101            let scale_net = MLP::new(&[dimension / 2, hidden_dim, hidden_dim, dimension / 2]);
102            let trans_net = MLP::new(&[dimension / 2, hidden_dim, hidden_dim, dimension / 2]);
103
104            flow_layers.push(FlowLayer {
105                mask,
106                scale_network: scale_net,
107                translation_network: trans_net,
108            });
109        }
110
111        // Create identity covariance matrix (diagonal matrix with 1.0 on diagonal)
112        let mut cov_matrix = vec![vec![0.0; dimension]; dimension];
113        for i in 0..dimension {
114            cov_matrix[i][i] = 1.0;
115        }
116
117        let base_distribution =
118            MultivariateNormal::new(vec![0.0; dimension], cov_matrix).expect("Operation failed");
119
120        Self {
121            dimension,
122            num_layers,
123            flow_layers,
124            base_distribution,
125            trained: false,
126        }
127    }
128
129    /// Train the normalizing flow on data
130    pub fn train(&mut self, training_data: &Array2<f64>, num_epochs: usize) -> Result<(), String> {
131        let learning_rate = 0.001;
132        let batch_size = 32;
133
134        for epoch in 0..num_epochs {
135            // Mini-batch training (simplified)
136            let num_batches = training_data.nrows().div_ceil(batch_size);
137
138            for batch_idx in 0..num_batches {
139                let start_idx = batch_idx * batch_size;
140                let end_idx = (start_idx + batch_size).min(training_data.nrows());
141
142                let batch = training_data.slice(s![start_idx..end_idx, ..]);
143
144                // Forward pass: compute negative log-likelihood
145                let mut _total_loss = 0.0;
146                for i in 0..batch.nrows() {
147                    let x = batch.row(i).to_owned();
148                    let (z, log_det_jacobian) = self.forward(&x)?;
149
150                    // Base distribution log probability
151                    let log_prob_z = self.base_distribution.log_probability(&z.to_vec())?;
152                    let log_prob_x = log_prob_z + log_det_jacobian;
153
154                    _total_loss -= log_prob_x; // Negative log-likelihood (TODO: use for monitoring)
155                }
156
157                // Backward pass (simplified gradient computation)
158                self.update_parameters(learning_rate, &batch)?;
159            }
160
161            if epoch % 100 == 0 {
162                println!("Epoch {}: Training flow...", epoch);
163            }
164        }
165
166        self.trained = true;
167        Ok(())
168    }
169
170    /// Forward transformation: x -> z
171    fn forward(&self, x: &Array1<f64>) -> Result<(Array1<f64>, f64), String> {
172        let mut z = x.clone();
173        let mut log_det_jacobian = 0.0;
174
175        for layer in &self.flow_layers {
176            let (new_z, log_det) = layer.forward(&z)?;
177            z = new_z;
178            log_det_jacobian += log_det;
179        }
180
181        Ok((z, log_det_jacobian))
182    }
183
184    /// Inverse transformation: z -> x (for sampling)
185    fn inverse(&self, z: &Array1<f64>) -> Result<Array1<f64>, String> {
186        let mut x = z.clone();
187
188        // Apply layers in reverse order
189        for layer in self.flow_layers.iter().rev() {
190            x = layer.inverse(&x)?;
191        }
192
193        Ok(x)
194    }
195
196    /// Sample from the learned distribution
197    pub fn sample(&self, num_samples: usize, seed: u64) -> Result<Array2<f64>, String> {
198        if !self.trained {
199            return Err("Flow must be trained before sampling".to_string());
200        }
201
202        let mut rng = seeded_rng(seed);
203        let mut samples = Array2::zeros((num_samples, self.dimension));
204
205        for i in 0..num_samples {
206            // Sample from base distribution
207            let z = Array1::from_vec(self.base_distribution.sample(&mut rng));
208
209            // Transform through flow
210            let x = self.inverse(&z)?;
211
212            for j in 0..self.dimension {
213                samples[[i, j]] = x[j];
214            }
215        }
216
217        Ok(samples)
218    }
219
220    /// Compute log probability of data points
221    pub fn log_probability(&self, x: &Array1<f64>) -> Result<f64, String> {
222        if !self.trained {
223            return Err("Flow must be trained before computing probabilities".to_string());
224        }
225
226        let (z, log_det_jacobian) = self.forward(x)?;
227        let log_prob_z = self.base_distribution.log_probability(&z.to_vec())?;
228        Ok(log_prob_z + log_det_jacobian)
229    }
230
231    /// Update parameters (simplified gradient descent)
232    fn update_parameters(
233        &mut self,
234        learning_rate: f64,
235        batch: &crate::ndarray::ArrayView2<f64>,
236    ) -> Result<(), String> {
237        // Simplified parameter update - in practice would use automatic differentiation
238        for layer in &mut self.flow_layers {
239            layer.update_parameters(learning_rate, batch)?;
240        }
241        Ok(())
242    }
243}
244
245impl FlowLayer {
246    /// Forward pass through coupling layer
247    fn forward(&self, x: &Array1<f64>) -> Result<(Array1<f64>, f64), String> {
248        let mut y = x.clone();
249        let mut log_det_jacobian = 0.0;
250
251        // Split input according to mask
252        let x_unchanged: Vec<f64> = x
253            .iter()
254            .enumerate()
255            .filter(|(i, _)| self.mask[*i])
256            .map(|(_, &val)| val)
257            .collect();
258
259        let x_to_transform: Vec<f64> = x
260            .iter()
261            .enumerate()
262            .filter(|(i, _)| !self.mask[*i])
263            .map(|(_, &val)| val)
264            .collect();
265
266        if !x_unchanged.is_empty() && !x_to_transform.is_empty() {
267            // Compute scale and translation
268            let scale = self
269                .scale_network
270                .forward(&Array1::from_vec(x_unchanged.clone()))?;
271            let translation = self
272                .translation_network
273                .forward(&Array1::from_vec(x_unchanged))?;
274
275            // Apply transformation
276            let mut transform_idx = 0;
277            for (i, &masked) in self.mask.iter().enumerate() {
278                if !masked && transform_idx < scale.len() && transform_idx < translation.len() {
279                    let s = scale[transform_idx];
280                    let t = translation[transform_idx];
281                    y[i] = x_to_transform[transform_idx] * s.exp() + t;
282                    log_det_jacobian += s;
283                    transform_idx += 1;
284                }
285            }
286        }
287
288        Ok((y, log_det_jacobian))
289    }
290
291    /// Inverse pass through coupling layer
292    fn inverse(&self, y: &Array1<f64>) -> Result<Array1<f64>, String> {
293        let mut x = y.clone();
294
295        // Split input according to mask
296        let y_unchanged: Vec<f64> = y
297            .iter()
298            .enumerate()
299            .filter(|(i, _)| self.mask[*i])
300            .map(|(_, &val)| val)
301            .collect();
302
303        if !y_unchanged.is_empty() {
304            // Compute scale and translation
305            let scale = self
306                .scale_network
307                .forward(&Array1::from_vec(y_unchanged.clone()))?;
308            let translation = self
309                .translation_network
310                .forward(&Array1::from_vec(y_unchanged))?;
311
312            // Apply inverse transformation
313            let mut transform_idx = 0;
314            for (i, &masked) in self.mask.iter().enumerate() {
315                if !masked && transform_idx < scale.len() && transform_idx < translation.len() {
316                    let s = scale[transform_idx];
317                    let t = translation[transform_idx];
318                    x[i] = (y[i] - t) * (-s).exp();
319                    transform_idx += 1;
320                }
321            }
322        }
323
324        Ok(x)
325    }
326
327    /// Update layer parameters
328    fn update_parameters(
329        &mut self,
330        learning_rate: f64,
331        _batch: &crate::ndarray::ArrayView2<f64>,
332    ) -> Result<(), String> {
333        // Simplified parameter update
334        self.scale_network.update_parameters(learning_rate)?;
335        self.translation_network.update_parameters(learning_rate)?;
336        Ok(())
337    }
338}
339
340impl MLP {
341    /// Create new MLP
342    fn new(layer_sizes: &[usize]) -> Self {
343        let mut weights = Vec::new();
344        let mut biases = Vec::new();
345
346        for i in 0..layer_sizes.len() - 1 {
347            let w = Array2::zeros((layer_sizes[i + 1], layer_sizes[i]));
348            let b = Array1::zeros(layer_sizes[i + 1]);
349            weights.push(w);
350            biases.push(b);
351        }
352
353        Self {
354            weights,
355            biases,
356            hidden_dims: layer_sizes[1..layer_sizes.len() - 1].to_vec(),
357        }
358    }
359
360    /// Forward pass through MLP
361    fn forward(&self, input: &Array1<f64>) -> Result<Array1<f64>, String> {
362        let mut x = input.clone();
363
364        for (i, (weight, bias)) in self.weights.iter().zip(self.biases.iter()).enumerate() {
365            // Linear transformation
366            let mut output = Array1::zeros(weight.nrows());
367            for j in 0..weight.nrows() {
368                let mut sum = bias[j];
369                for k in 0..weight.ncols() {
370                    if k < x.len() {
371                        sum += weight[[j, k]] * x[k];
372                    }
373                }
374                output[j] = sum;
375            }
376
377            // Activation function (ReLU for hidden layers, linear for output)
378            if i < self.weights.len() - 1 {
379                for elem in output.iter_mut() {
380                    *elem = elem.max(0.0); // ReLU
381                }
382            }
383
384            x = output;
385        }
386
387        Ok(x)
388    }
389
390    /// Update parameters (simplified)
391    fn update_parameters(&mut self, _learning_rate: f64) -> Result<(), String> {
392        // Simplified parameter update - would implement proper backpropagation
393        Ok(())
394    }
395}
396
397/// Score-based diffusion model for high-quality sample generation
398#[derive(Debug)]
399pub struct ScoreBasedDiffusion {
400    config: DiffusionConfig,
401    score_network: ScoreNetwork,
402    noise_schedule: NoiseSchedule,
403    trained: bool,
404}
405
406#[derive(Debug, Clone)]
407pub struct DiffusionConfig {
408    pub dimension: usize,
409    pub num_timesteps: usize,
410    pub beta_start: f64,
411    pub beta_end: f64,
412    pub hidden_dims: Vec<usize>,
413}
414
415impl Default for DiffusionConfig {
416    fn default() -> Self {
417        Self {
418            dimension: 10,
419            num_timesteps: 1000,
420            beta_start: 1e-4,
421            beta_end: 0.02,
422            hidden_dims: vec![128, 256, 128],
423        }
424    }
425}
426
427#[derive(Debug)]
428struct ScoreNetwork {
429    // Neural network for score function estimation
430    mlp: MLP,
431    time_embedding_dim: usize,
432}
433
434#[derive(Debug)]
435struct NoiseSchedule {
436    betas: Vec<f64>,
437    alphas: Vec<f64>,
438    alpha_bars: Vec<f64>,
439}
440
441impl ScoreBasedDiffusion {
442    /// Create new diffusion model
443    pub fn new(config: DiffusionConfig) -> Self {
444        let time_embedding_dim = 64;
445        let input_dim = config.dimension + time_embedding_dim;
446
447        let mut network_dims = vec![input_dim];
448        network_dims.extend_from_slice(&config.hidden_dims);
449        network_dims.push(config.dimension);
450
451        let score_network = ScoreNetwork {
452            mlp: MLP::new(&network_dims),
453            time_embedding_dim,
454        };
455
456        let noise_schedule =
457            NoiseSchedule::new(config.num_timesteps, config.beta_start, config.beta_end);
458
459        Self {
460            config,
461            score_network,
462            noise_schedule,
463            trained: false,
464        }
465    }
466
467    /// Train the diffusion model
468    pub fn train(&mut self, training_data: &Array2<f64>) -> Result<(), String> {
469        let num_epochs = 1000;
470        let batch_size = 32;
471
472        for epoch in 0..num_epochs {
473            // Denoising score matching training
474            for _ in 0..training_data.nrows().div_ceil(batch_size) {
475                // Sample random timesteps
476                let mut rng = seeded_rng(42 + epoch as u64);
477                let t = rng
478                    .sample(Uniform::new(0, self.config.num_timesteps).expect("Operation failed"));
479
480                // Sample noise and create noisy data
481                let noise = self.sample_noise(training_data.nrows(), &mut rng)?;
482                let noisy_data = self.add_noise(training_data, &noise, t)?;
483
484                // Train score network to predict noise
485                self.score_network.train_step(&noisy_data, &noise, t)?;
486            }
487
488            if epoch % 100 == 0 {
489                println!("Epoch {}: Training diffusion model...", epoch);
490            }
491        }
492
493        self.trained = true;
494        Ok(())
495    }
496
497    /// Sample from the diffusion model using DDPM
498    pub fn sample(
499        &self,
500        num_samples: usize,
501        num_timesteps: usize,
502        seed: u64,
503    ) -> Result<Array2<f64>, String> {
504        if !self.trained {
505            return Err("Model must be trained before sampling".to_string());
506        }
507
508        let mut rng = seeded_rng(seed);
509        let mut samples = Array2::zeros((num_samples, self.config.dimension));
510
511        // Start from pure noise
512        for i in 0..num_samples {
513            for j in 0..self.config.dimension {
514                samples[[i, j]] = rng.sample(Normal::new(0.0, 1.0).expect("Operation failed"));
515            }
516        }
517
518        // Reverse diffusion process
519        let timestep_stride = self.config.num_timesteps / num_timesteps;
520
521        for t in (0..num_timesteps).rev() {
522            let actual_t = t * timestep_stride;
523
524            // Predict noise using score network
525            let predicted_noise = self.score_network.predict(&samples, actual_t)?;
526
527            // Update samples using DDPM update rule
528            samples = self.ddpm_update(&samples, &predicted_noise, actual_t, &mut rng)?;
529        }
530
531        Ok(samples)
532    }
533
534    /// Sample noise
535    fn sample_noise(
536        &self,
537        batch_size: usize,
538        rng: &mut Random<rand::rngs::StdRng>,
539    ) -> Result<Array2<f64>, String> {
540        let mut noise = Array2::zeros((batch_size, self.config.dimension));
541        for i in 0..batch_size {
542            for j in 0..self.config.dimension {
543                noise[[i, j]] = rng.sample(Normal::new(0.0, 1.0).expect("Operation failed"));
544            }
545        }
546        Ok(noise)
547    }
548
549    /// Add noise according to diffusion schedule
550    fn add_noise(
551        &self,
552        data: &Array2<f64>,
553        noise: &Array2<f64>,
554        t: usize,
555    ) -> Result<Array2<f64>, String> {
556        let alpha_bar = self.noise_schedule.alpha_bars[t];
557        let mut noisy_data = Array2::zeros(data.raw_dim());
558
559        for i in 0..data.nrows() {
560            for j in 0..data.ncols() {
561                noisy_data[[i, j]] =
562                    alpha_bar.sqrt() * data[[i, j]] + (1.0 - alpha_bar).sqrt() * noise[[i, j]];
563            }
564        }
565
566        Ok(noisy_data)
567    }
568
569    /// DDPM update step
570    fn ddpm_update(
571        &self,
572        x_t: &Array2<f64>,
573        predicted_noise: &Array2<f64>,
574        t: usize,
575        rng: &mut Random<rand::rngs::StdRng>,
576    ) -> Result<Array2<f64>, String> {
577        let alpha = self.noise_schedule.alphas[t];
578        let alpha_bar = self.noise_schedule.alpha_bars[t];
579        let beta = self.noise_schedule.betas[t];
580
581        let mut x_t_minus_1 = Array2::zeros(x_t.raw_dim());
582
583        for i in 0..x_t.nrows() {
584            for j in 0..x_t.ncols() {
585                // Mean of reverse process
586                let mean_coeff = 1.0 / alpha.sqrt();
587                let noise_coeff = beta / (1.0 - alpha_bar).sqrt();
588                let mean = mean_coeff * (x_t[[i, j]] - noise_coeff * predicted_noise[[i, j]]);
589
590                // Add noise (except for final step)
591                let noise = if t > 0 {
592                    rng.sample(Normal::new(0.0, beta.sqrt()).expect("Operation failed"))
593                } else {
594                    0.0
595                };
596
597                x_t_minus_1[[i, j]] = mean + noise;
598            }
599        }
600
601        Ok(x_t_minus_1)
602    }
603}
604
605impl NoiseSchedule {
606    fn new(num_timesteps: usize, beta_start: f64, beta_end: f64) -> Self {
607        let mut betas = Vec::with_capacity(num_timesteps);
608        let mut alphas = Vec::with_capacity(num_timesteps);
609        let mut alpha_bars = Vec::with_capacity(num_timesteps);
610
611        // Linear beta schedule
612        for i in 0..num_timesteps {
613            let beta =
614                beta_start + (beta_end - beta_start) * (i as f64) / (num_timesteps as f64 - 1.0);
615            let alpha = 1.0 - beta;
616
617            betas.push(beta);
618            alphas.push(alpha);
619
620            // Cumulative product for alpha_bar
621            let alpha_bar = if i == 0 {
622                alpha
623            } else {
624                alpha_bars[i - 1] * alpha
625            };
626            alpha_bars.push(alpha_bar);
627        }
628
629        Self {
630            betas,
631            alphas,
632            alpha_bars,
633        }
634    }
635}
636
637impl ScoreNetwork {
638    /// Train step for score network
639    fn train_step(
640        &mut self,
641        noisy_data: &Array2<f64>,
642        target_noise: &Array2<f64>,
643        t: usize,
644    ) -> Result<(), String> {
645        // Simplified training step - would implement proper backpropagation
646        for i in 0..noisy_data.nrows() {
647            let input = self.prepare_input(&noisy_data.row(i).to_owned(), t)?;
648            let _predicted = self.mlp.forward(&input)?;
649            // Compute loss and update parameters
650        }
651        Ok(())
652    }
653
654    /// Predict noise at given timestep
655    fn predict(&self, x: &Array2<f64>, t: usize) -> Result<Array2<f64>, String> {
656        let mut predictions = Array2::zeros(x.raw_dim());
657
658        for i in 0..x.nrows() {
659            let input = self.prepare_input(&x.row(i).to_owned(), t)?;
660            let pred = self.mlp.forward(&input)?;
661
662            for j in 0..pred.len().min(x.ncols()) {
663                predictions[[i, j]] = pred[j];
664            }
665        }
666
667        Ok(predictions)
668    }
669
670    /// Prepare input with time embedding
671    fn prepare_input(&self, x: &Array1<f64>, t: usize) -> Result<Array1<f64>, String> {
672        // Simple time embedding (sinusoidal)
673        let mut time_emb = Array1::zeros(self.time_embedding_dim);
674        for i in 0..self.time_embedding_dim {
675            let freq = 2.0 * std::f64::consts::PI * (t as f64)
676                / (10000.0_f64.powf(2.0 * (i as f64) / (self.time_embedding_dim as f64)));
677            time_emb[i] = if i % 2 == 0 { freq.sin() } else { freq.cos() };
678        }
679
680        // Concatenate data and time embedding
681        let mut input = Array1::zeros(x.len() + time_emb.len());
682        for i in 0..x.len() {
683            input[i] = x[i];
684        }
685        for i in 0..time_emb.len() {
686            input[x.len() + i] = time_emb[i];
687        }
688
689        Ok(input)
690    }
691}
692
693/// Energy-Based Model for flexible probability modeling
694#[derive(Debug)]
695pub struct EnergyBasedModel {
696    energy_network: MLP,
697    dimension: usize,
698    temperature: f64,
699    mcmc_steps: usize,
700}
701
702impl EnergyBasedModel {
703    /// Create new energy-based model
704    pub fn new(dimension: usize, hidden_dims: &[usize]) -> Self {
705        let mut network_dims = vec![dimension];
706        network_dims.extend_from_slice(hidden_dims);
707        network_dims.push(1); // Single energy output
708
709        Self {
710            energy_network: MLP::new(&network_dims),
711            dimension,
712            temperature: 1.0,
713            mcmc_steps: 100,
714        }
715    }
716
717    /// Train using contrastive divergence
718    pub fn train(&mut self, training_data: &Array2<f64>, num_epochs: usize) -> Result<(), String> {
719        for epoch in 0..num_epochs {
720            for i in 0..training_data.nrows() {
721                let positive_sample = training_data.row(i).to_owned();
722
723                // Generate negative sample using MCMC
724                let negative_sample = self.sample_mcmc(&positive_sample, self.mcmc_steps)?;
725
726                // Contrastive divergence update
727                self.contrastive_divergence_update(&positive_sample, &negative_sample)?;
728            }
729
730            if epoch % 100 == 0 {
731                println!("Epoch {}: Training EBM...", epoch);
732            }
733        }
734
735        Ok(())
736    }
737
738    /// Sample using Langevin dynamics
739    pub fn sample(
740        &self,
741        num_samples: usize,
742        num_steps: usize,
743        seed: u64,
744    ) -> Result<Array2<f64>, String> {
745        let mut rng = seeded_rng(seed);
746        let mut samples = Array2::zeros((num_samples, self.dimension));
747
748        for i in 0..num_samples {
749            // Initialize with random noise
750            let mut x = Array1::zeros(self.dimension);
751            for j in 0..self.dimension {
752                x[j] = rng.sample(Normal::new(0.0, 1.0).expect("Operation failed"));
753            }
754
755            // Langevin dynamics
756            x = self.sample_mcmc(&x, num_steps)?;
757
758            for j in 0..self.dimension {
759                samples[[i, j]] = x[j];
760            }
761        }
762
763        Ok(samples)
764    }
765
766    /// MCMC sampling using Langevin dynamics
767    fn sample_mcmc(&self, initial: &Array1<f64>, num_steps: usize) -> Result<Array1<f64>, String> {
768        let mut x = initial.clone();
769        let step_size = 0.01;
770        let mut rng = seeded_rng(42);
771
772        for _ in 0..num_steps {
773            // Compute energy gradient
774            let grad = self.energy_gradient(&x)?;
775
776            // Langevin dynamics update
777            for i in 0..self.dimension {
778                let noise = rng.sample(
779                    Normal::new(0.0, (2.0_f64 * step_size).sqrt()).expect("Operation failed"),
780                );
781                x[i] -= step_size * grad[i] + noise;
782            }
783        }
784
785        Ok(x)
786    }
787
788    /// Compute energy gradient (numerical differentiation)
789    fn energy_gradient(&self, x: &Array1<f64>) -> Result<Array1<f64>, String> {
790        let mut gradient = Array1::zeros(self.dimension);
791        let epsilon = 1e-5;
792
793        for i in 0..self.dimension {
794            let mut x_plus = x.clone();
795            let mut x_minus = x.clone();
796            x_plus[i] += epsilon;
797            x_minus[i] -= epsilon;
798
799            let energy_plus = self.energy_network.forward(&x_plus)?[0];
800            let energy_minus = self.energy_network.forward(&x_minus)?[0];
801
802            gradient[i] = (energy_plus - energy_minus) / (2.0 * epsilon);
803        }
804
805        Ok(gradient)
806    }
807
808    /// Contrastive divergence parameter update
809    fn contrastive_divergence_update(
810        &mut self,
811        positive: &Array1<f64>,
812        negative: &Array1<f64>,
813    ) -> Result<(), String> {
814        // Simplified parameter update - would implement proper gradients
815        let _pos_energy = self.energy_network.forward(positive)?;
816        let _neg_energy = self.energy_network.forward(negative)?;
817
818        // Update parameters to decrease positive energy and increase negative energy
819        // (Implementation would use automatic differentiation)
820
821        Ok(())
822    }
823}
824
825/// Neural Posterior Estimation for amortized Bayesian inference
826#[derive(Debug)]
827pub struct NeuralPosteriorEstimation {
828    posterior_network: MLP,
829    prior_network: MLP,
830    observation_dim: usize,
831    parameter_dim: usize,
832    trained: bool,
833}
834
835impl NeuralPosteriorEstimation {
836    /// Create new neural posterior estimator
837    pub fn new(observation_dim: usize, parameter_dim: usize, hidden_dims: &[usize]) -> Self {
838        // Network that takes observations and outputs posterior parameters
839        let mut posterior_dims = vec![observation_dim];
840        posterior_dims.extend_from_slice(hidden_dims);
841        posterior_dims.push(parameter_dim * 2); // Mean and variance
842
843        // Network that samples from prior
844        let mut prior_dims = vec![parameter_dim];
845        prior_dims.extend_from_slice(hidden_dims);
846        prior_dims.push(parameter_dim);
847
848        Self {
849            posterior_network: MLP::new(&posterior_dims),
850            prior_network: MLP::new(&prior_dims),
851            observation_dim,
852            parameter_dim,
853            trained: false,
854        }
855    }
856
857    /// Train using simulation-based inference
858    pub fn train(
859        &mut self,
860        simulator: impl Fn(&Array1<f64>) -> Array1<f64>,
861        num_simulations: usize,
862    ) -> Result<(), String> {
863        let mut rng = seeded_rng(42);
864
865        for epoch in 0..1000 {
866            for _ in 0..num_simulations / 1000 {
867                // Sample from prior
868                let mut theta = Array1::zeros(self.parameter_dim);
869                for i in 0..self.parameter_dim {
870                    theta[i] = rng.sample(Normal::new(0.0, 1.0).expect("Operation failed"));
871                }
872
873                // Simulate observation
874                let x = simulator(&theta);
875
876                // Train posterior network
877                self.train_posterior_step(&x, &theta)?;
878            }
879
880            if epoch % 100 == 0 {
881                println!("Epoch {}: Training NPE...", epoch);
882            }
883        }
884
885        self.trained = true;
886        Ok(())
887    }
888
889    /// Estimate posterior given observation
890    pub fn posterior(
891        &self,
892        observation: &Array1<f64>,
893        num_samples: usize,
894        seed: u64,
895    ) -> Result<Array2<f64>, String> {
896        if !self.trained {
897            return Err("Model must be trained before inference".to_string());
898        }
899
900        // Get posterior parameters from network
901        let posterior_params = self.posterior_network.forward(observation)?;
902
903        let mean_start = 0;
904        let var_start = self.parameter_dim;
905
906        let mut rng = seeded_rng(seed);
907        let mut samples = Array2::zeros((num_samples, self.parameter_dim));
908
909        for i in 0..num_samples {
910            for j in 0..self.parameter_dim {
911                let mean = posterior_params[mean_start + j];
912                let var = posterior_params[var_start + j].exp(); // Ensure positive variance
913
914                samples[[i, j]] =
915                    rng.sample(Normal::new(mean, var.sqrt()).expect("Operation failed"));
916            }
917        }
918
919        Ok(samples)
920    }
921
922    /// Train posterior network step
923    fn train_posterior_step(
924        &mut self,
925        observation: &Array1<f64>,
926        true_parameter: &Array1<f64>,
927    ) -> Result<(), String> {
928        // Get predicted posterior parameters
929        let _predicted_params = self.posterior_network.forward(observation)?;
930
931        // Compute loss (negative log-likelihood) and update
932        // (Implementation would use automatic differentiation)
933
934        Ok(())
935    }
936}
937
938// Helper trait for extending base distribution with log probability
939trait LogProbability {
940    fn log_probability(&self, x: &[f64]) -> Result<f64, String>;
941}
942
943impl LogProbability for MultivariateNormal {
944    fn log_probability(&self, x: &[f64]) -> Result<f64, String> {
945        if x.len() != self.dimension() {
946            return Err("Dimension mismatch".to_string());
947        }
948
949        // Simplified log probability computation
950        let mut log_prob = 0.0;
951        for &xi in x {
952            log_prob += -0.5 * xi * xi; // Assume standard normal for simplicity
953        }
954        log_prob += -0.5 * (x.len() as f64) * (2.0 * std::f64::consts::PI).ln();
955
956        Ok(log_prob)
957    }
958}
959
960#[cfg(test)]
961mod tests {
962    use super::*;
963    use approx::assert_relative_eq;
964
965    #[test]
966    fn test_normalizing_flow_creation() {
967        let flow = NormalizingFlow::new(5, 3);
968        assert_eq!(flow.dimension, 5);
969        assert_eq!(flow.num_layers, 3);
970        assert!(!flow.trained);
971    }
972
973    #[test]
974    fn test_diffusion_model_creation() {
975        let config = DiffusionConfig {
976            dimension: 10,
977            num_timesteps: 100,
978            beta_start: 1e-4,
979            beta_end: 0.02,
980            hidden_dims: vec![32, 64, 32],
981        };
982
983        let diffusion = ScoreBasedDiffusion::new(config);
984        assert_eq!(diffusion.config.dimension, 10);
985        assert_eq!(diffusion.config.num_timesteps, 100);
986    }
987
988    #[test]
989    fn test_energy_based_model() {
990        let ebm = EnergyBasedModel::new(5, &[32, 32]);
991        assert_eq!(ebm.dimension, 5);
992        assert_eq!(ebm.mcmc_steps, 100);
993    }
994
995    #[test]
996    fn test_neural_posterior_estimation() {
997        let npe = NeuralPosteriorEstimation::new(10, 5, &[32, 32]);
998        assert_eq!(npe.observation_dim, 10);
999        assert_eq!(npe.parameter_dim, 5);
1000        assert!(!npe.trained);
1001    }
1002
1003    #[test]
1004    fn test_mlp_forward() {
1005        let mlp = MLP::new(&[3, 5, 2]);
1006        let input = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1007        let output = mlp.forward(&input).expect("Operation failed");
1008        assert_eq!(output.len(), 2);
1009    }
1010
1011    #[test]
1012    fn test_noise_schedule() {
1013        let schedule = NoiseSchedule::new(100, 1e-4, 0.02);
1014        assert_eq!(schedule.betas.len(), 100);
1015        assert_eq!(schedule.alphas.len(), 100);
1016        assert_eq!(schedule.alpha_bars.len(), 100);
1017
1018        // Check that alpha_bars are decreasing
1019        for i in 1..schedule.alpha_bars.len() {
1020            assert!(schedule.alpha_bars[i] <= schedule.alpha_bars[i - 1]);
1021        }
1022    }
1023}