scirs2_core/advanced_ecosystem_integration/
performance.rs1use super::types::*;
4use crate::error::CoreResult;
5use std::collections::HashMap;
6use std::time::{Duration, Instant};
7
8#[allow(dead_code)]
10#[derive(Debug)]
11pub struct EcosystemPerformanceMonitor {
12 module_performance: HashMap<String, Vec<ModulePerformanceMetrics>>,
14 system_metrics: SystemMetrics,
16 alerts: Vec<PerformanceAlert>,
18 #[allow(dead_code)]
20 config: MonitoringConfig,
21}
22
23#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub struct SystemMetrics {
27 pub total_throughput: f64,
29 pub avg_latency: Duration,
31 pub error_rate: f64,
33 pub resource_efficiency: f64,
35 pub quality_score: f64,
37}
38
39#[allow(dead_code)]
41#[derive(Debug, Clone)]
42pub struct PerformanceAlert {
43 pub level: AlertLevel,
45 pub message: String,
47 pub module: Option<String>,
49 pub timestamp: Instant,
51}
52
53#[allow(dead_code)]
55#[derive(Debug, Clone, PartialEq)]
56pub enum AlertLevel {
57 Info,
58 Warning,
59 Error,
60 Critical,
61}
62
63#[allow(dead_code)]
65#[derive(Debug, Clone)]
66pub struct MonitoringConfig {
67 pub samplingrate: f64,
69 pub alert_thresholds: AlertThresholds,
71 pub history_retention_hours: u32,
73}
74
75#[allow(dead_code)]
77#[derive(Debug, Clone)]
78pub struct AlertThresholds {
79 pub latency_threshold: f64,
81 pub error_rate_threshold: f64,
83 pub memory_threshold: f64,
85 pub cpu_threshold: f64,
87}
88
89#[allow(dead_code)]
91#[derive(Debug, Clone)]
92pub struct EcosystemPerformanceReport {
93 pub system_metrics: SystemMetrics,
95 pub module_metrics: HashMap<String, ModulePerformanceMetrics>,
97 pub resource_utilization: ResourceUtilization,
99 pub alerts: Vec<PerformanceAlert>,
101 pub recommendations: Vec<String>,
103 pub timestamp: Instant,
105}
106
107impl Default for EcosystemPerformanceMonitor {
108 fn default() -> Self {
109 Self::new()
110 }
111}
112
113impl EcosystemPerformanceMonitor {
114 pub fn new() -> Self {
115 Self {
116 module_performance: HashMap::new(),
117 system_metrics: SystemMetrics {
118 total_throughput: 0.0,
119 avg_latency: Duration::default(),
120 error_rate: 0.0,
121 resource_efficiency: 0.0,
122 quality_score: 0.0,
123 },
124 alerts: Vec::new(),
125 config: MonitoringConfig {
126 samplingrate: 1.0,
127 alert_thresholds: AlertThresholds {
128 latency_threshold: 1000.0,
129 error_rate_threshold: 0.05,
130 memory_threshold: 0.8,
131 cpu_threshold: 0.8,
132 },
133 history_retention_hours: 24,
134 },
135 }
136 }
137
138 pub fn collect_metrics(&mut self) -> CoreResult<()> {
140 self.system_metrics.total_throughput = self.calculate_total_throughput();
142 self.system_metrics.avg_latency = self.calculate_average_latency();
143 self.system_metrics.error_rate = self.calculate_error_rate();
144 self.system_metrics.resource_efficiency = self.calculate_resource_efficiency();
145 self.system_metrics.quality_score = self.calculate_quality_score();
146
147 self.check_performance_alerts()?;
149
150 self.cleanup_old_metrics();
152
153 Ok(())
154 }
155
156 pub fn record_operation_duration(&mut self, module_name: &str, duration: Duration) {
158 if !self.module_performance.contains_key(module_name) {
159 self.module_performance
160 .insert(module_name.to_string(), Vec::new());
161 }
162
163 let metrics = ModulePerformanceMetrics {
166 avg_processing_time: duration,
167 ops_per_second: 1.0 / duration.as_secs_f64(),
168 success_rate: 1.0,
169 quality_score: 0.8,
170 efficiency_score: 0.75,
171 };
172
173 if let Some(history) = self.module_performance.get_mut(module_name) {
174 history.push(metrics);
175
176 if history.len() > 1000 {
178 history.drain(0..history.len() - 1000);
179 }
180 }
181 }
182
183 pub fn generate_report(&self) -> EcosystemPerformanceReport {
185 let mut module_metrics = HashMap::new();
186
187 for (module_name, history) in &self.module_performance {
189 if let Some(latest_metrics) = history.last() {
190 module_metrics.insert(module_name.clone(), latest_metrics.clone());
191 }
192 }
193
194 EcosystemPerformanceReport {
195 system_metrics: self.system_metrics.clone(),
196 module_metrics,
197 resource_utilization: ResourceUtilization {
198 cpu_usage: 0.5,
199 memory_usage: 0.3,
200 gpu_usage: Some(0.2),
201 network_usage: 0.1,
202 },
203 alerts: self.alerts.clone(),
204 recommendations: self.generate_recommendations(),
205 timestamp: Instant::now(),
206 }
207 }
208
209 pub fn create_optimized_pipeline(
211 &self,
212 _input: &AdvancedInput,
213 _config: &CrossModuleOptimizationConfig,
214 ) -> CoreResult<OptimizedPipeline> {
215 let stages = vec![
217 PipelineStage {
218 name: "preprocessing".to_string(),
219 module: "data_transform".to_string(),
220 config: HashMap::new(),
221 dependencies: vec![],
222 },
223 PipelineStage {
224 name: "computation".to_string(),
225 module: "neural_compute".to_string(),
226 config: HashMap::new(),
227 dependencies: vec!["preprocessing".to_string()],
228 },
229 PipelineStage {
230 name: "postprocessing".to_string(),
231 module: "output_format".to_string(),
232 config: HashMap::new(),
233 dependencies: vec!["computation".to_string()],
234 },
235 ];
236
237 Ok(OptimizedPipeline {
238 stages,
239 optimization_level: OptimizationLevel::Advanced,
240 estimated_performance: PerformanceMetrics {
241 throughput: 1000.0,
242 latency: Duration::from_millis(50),
243 cpu_usage: 50.0,
244 memory_usage: 1024,
245 gpu_usage: 30.0,
246 },
247 })
248 }
249
250 pub fn apply_pre_stage_optimization(
252 &self,
253 data: AdvancedInput,
254 stage: &PipelineStage,
255 _context: &OptimizationContext,
256 ) -> CoreResult<AdvancedInput> {
257 println!(" ⚡ Applying pre-stage optimizations for {}", stage.name);
259
260 Ok(data)
262 }
263
264 pub fn execute_pipeline_stage(
266 &self,
267 data: AdvancedInput,
268 stage: &PipelineStage,
269 ) -> CoreResult<AdvancedInput> {
270 println!(" 🔧 Executing stage: {}", stage.name);
272
273 Ok(data)
276 }
277
278 pub fn apply_post_stage_optimization(
280 &self,
281 data: AdvancedInput,
282 stage: &PipelineStage,
283 context: &mut OptimizationContext,
284 ) -> CoreResult<AdvancedInput> {
285 println!(
287 " 📈 Applying post-stage optimizations for {}",
288 stage.name
289 );
290
291 context.stages_completed += 1;
293 context.total_memory_used += 1024; context.total_cpu_cycles += 1000000; Ok(data)
297 }
298
299 pub fn add_alert(&mut self, level: AlertLevel, message: String, module: Option<String>) {
301 let alert = PerformanceAlert {
302 level,
303 message,
304 module,
305 timestamp: Instant::now(),
306 };
307 self.alerts.push(alert);
308
309 if self.alerts.len() > 100 {
311 self.alerts.drain(0..self.alerts.len() - 100);
312 }
313 }
314
315 fn calculate_total_throughput(&self) -> f64 {
317 self.module_performance
318 .values()
319 .flat_map(|history| history.iter())
320 .map(|metrics| metrics.ops_per_second)
321 .sum()
322 }
323
324 fn calculate_average_latency(&self) -> Duration {
326 let latencies: Vec<Duration> = self
327 .module_performance
328 .values()
329 .flat_map(|history| history.iter())
330 .map(|metrics| metrics.avg_processing_time)
331 .collect();
332
333 if latencies.is_empty() {
334 return Duration::from_secs(0);
335 }
336
337 let total_nanos: u64 = latencies.iter().map(|d| d.as_nanos() as u64).sum();
338 Duration::from_nanos(total_nanos / latencies.len() as u64)
339 }
340
341 fn calculate_error_rate(&self) -> f64 {
343 let success_rates: Vec<f64> = self
344 .module_performance
345 .values()
346 .flat_map(|history| history.iter())
347 .map(|metrics| metrics.success_rate)
348 .collect();
349
350 if success_rates.is_empty() {
351 return 0.0;
352 }
353
354 let avg_success_rate = success_rates.iter().sum::<f64>() / success_rates.len() as f64;
355 1.0 - avg_success_rate
356 }
357
358 fn calculate_resource_efficiency(&self) -> f64 {
360 let efficiency_scores: Vec<f64> = self
361 .module_performance
362 .values()
363 .flat_map(|history| history.iter())
364 .map(|metrics| metrics.efficiency_score)
365 .collect();
366
367 if efficiency_scores.is_empty() {
368 return 0.0;
369 }
370
371 efficiency_scores.iter().sum::<f64>() / efficiency_scores.len() as f64
372 }
373
374 fn calculate_quality_score(&self) -> f64 {
376 let quality_scores: Vec<f64> = self
377 .module_performance
378 .values()
379 .flat_map(|history| history.iter())
380 .map(|metrics| metrics.quality_score)
381 .collect();
382
383 if quality_scores.is_empty() {
384 return 0.0;
385 }
386
387 quality_scores.iter().sum::<f64>() / quality_scores.len() as f64
388 }
389
390 fn check_performance_alerts(&mut self) -> CoreResult<()> {
392 if self.system_metrics.avg_latency.as_millis() as f64
394 > self.config.alert_thresholds.latency_threshold
395 {
396 self.add_alert(
397 AlertLevel::Warning,
398 format!(
399 "System latency ({:.2}ms) exceeds threshold",
400 self.system_metrics.avg_latency.as_millis()
401 ),
402 None,
403 );
404 }
405
406 if self.system_metrics.error_rate > self.config.alert_thresholds.error_rate_threshold {
408 self.add_alert(
409 AlertLevel::Error,
410 format!(
411 "Error rate ({:.2}%) exceeds threshold",
412 self.system_metrics.error_rate * 100.0
413 ),
414 None,
415 );
416 }
417
418 if self.system_metrics.resource_efficiency < 0.5 {
420 self.add_alert(
421 AlertLevel::Info,
422 "Resource efficiency is below optimal levels".to_string(),
423 None,
424 );
425 }
426
427 Ok(())
428 }
429
430 fn generate_recommendations(&self) -> Vec<String> {
432 let mut recommendations = Vec::new();
433
434 if self.system_metrics.resource_efficiency < 0.7 {
435 recommendations.push("Consider enabling cross-module optimization".to_string());
436 }
437
438 if self.system_metrics.avg_latency.as_millis() > 500 {
439 recommendations.push("Enable adaptive load balancing to reduce latency".to_string());
440 }
441
442 if self.system_metrics.error_rate > 0.01 {
443 recommendations.push("Review error handling and fault tolerance settings".to_string());
444 }
445
446 if recommendations.is_empty() {
447 recommendations.push("System performance is optimal".to_string());
448 }
449
450 recommendations
451 }
452
453 fn cleanup_old_metrics(&mut self) {
455 let retention_limit = self.config.history_retention_hours as usize * 3600; for history in self.module_performance.values_mut() {
458 if history.len() > retention_limit {
459 history.drain(0..history.len() - retention_limit);
460 }
461 }
462
463 if self.alerts.len() > 50 {
465 self.alerts.drain(0..self.alerts.len() - 50);
466 }
467 }
468}