scirs2_core/advanced_ecosystem_integration/
performance.rs

1//! Performance monitoring and metrics collection
2
3use super::types::*;
4use crate::error::CoreResult;
5use std::collections::HashMap;
6use std::time::{Duration, Instant};
7
8/// Performance monitor for the ecosystem
9#[allow(dead_code)]
10#[derive(Debug)]
11pub struct EcosystemPerformanceMonitor {
12    /// Module performance history
13    module_performance: HashMap<String, Vec<ModulePerformanceMetrics>>,
14    /// System-wide metrics
15    system_metrics: SystemMetrics,
16    /// Performance alerts
17    alerts: Vec<PerformanceAlert>,
18    /// Monitoring configuration
19    #[allow(dead_code)]
20    config: MonitoringConfig,
21}
22
23/// System-wide performance metrics
24#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub struct SystemMetrics {
27    /// Total throughput
28    pub total_throughput: f64,
29    /// Average latency
30    pub avg_latency: Duration,
31    /// Error rate
32    pub error_rate: f64,
33    /// Resource efficiency
34    pub resource_efficiency: f64,
35    /// Quality score
36    pub quality_score: f64,
37}
38
39/// Performance alert
40#[allow(dead_code)]
41#[derive(Debug, Clone)]
42pub struct PerformanceAlert {
43    /// Alert level
44    pub level: AlertLevel,
45    /// Alert message
46    pub message: String,
47    /// Affected module
48    pub module: Option<String>,
49    /// Timestamp
50    pub timestamp: Instant,
51}
52
53/// Alert levels
54#[allow(dead_code)]
55#[derive(Debug, Clone, PartialEq)]
56pub enum AlertLevel {
57    Info,
58    Warning,
59    Error,
60    Critical,
61}
62
63/// Monitoring configuration
64#[allow(dead_code)]
65#[derive(Debug, Clone)]
66pub struct MonitoringConfig {
67    /// Sampling rate (Hz)
68    pub samplingrate: f64,
69    /// Alert thresholds
70    pub alert_thresholds: AlertThresholds,
71    /// History retention (hours)
72    pub history_retention_hours: u32,
73}
74
75/// Alert thresholds
76#[allow(dead_code)]
77#[derive(Debug, Clone)]
78pub struct AlertThresholds {
79    /// Latency threshold (ms)
80    pub latency_threshold: f64,
81    /// Error rate threshold (percentage)
82    pub error_rate_threshold: f64,
83    /// Memory usage threshold (percentage)
84    pub memory_threshold: f64,
85    /// CPU usage threshold (percentage)
86    pub cpu_threshold: f64,
87}
88
89/// Performance report for the ecosystem
90#[allow(dead_code)]
91#[derive(Debug, Clone)]
92pub struct EcosystemPerformanceReport {
93    /// System-wide metrics
94    pub system_metrics: SystemMetrics,
95    /// Module-specific metrics
96    pub module_metrics: HashMap<String, ModulePerformanceMetrics>,
97    /// Resource utilization
98    pub resource_utilization: ResourceUtilization,
99    /// Alerts
100    pub alerts: Vec<PerformanceAlert>,
101    /// Recommendations
102    pub recommendations: Vec<String>,
103    /// Report timestamp
104    pub timestamp: Instant,
105}
106
107impl Default for EcosystemPerformanceMonitor {
108    fn default() -> Self {
109        Self::new()
110    }
111}
112
113impl EcosystemPerformanceMonitor {
114    pub fn new() -> Self {
115        Self {
116            module_performance: HashMap::new(),
117            system_metrics: SystemMetrics {
118                total_throughput: 0.0,
119                avg_latency: Duration::default(),
120                error_rate: 0.0,
121                resource_efficiency: 0.0,
122                quality_score: 0.0,
123            },
124            alerts: Vec::new(),
125            config: MonitoringConfig {
126                samplingrate: 1.0,
127                alert_thresholds: AlertThresholds {
128                    latency_threshold: 1000.0,
129                    error_rate_threshold: 0.05,
130                    memory_threshold: 0.8,
131                    cpu_threshold: 0.8,
132                },
133                history_retention_hours: 24,
134            },
135        }
136    }
137
138    /// Collect system and module metrics
139    pub fn collect_metrics(&mut self) -> CoreResult<()> {
140        // Update system metrics
141        self.system_metrics.total_throughput = self.calculate_total_throughput();
142        self.system_metrics.avg_latency = self.calculate_average_latency();
143        self.system_metrics.error_rate = self.calculate_error_rate();
144        self.system_metrics.resource_efficiency = self.calculate_resource_efficiency();
145        self.system_metrics.quality_score = self.calculate_quality_score();
146
147        // Check for alerts
148        self.check_performance_alerts()?;
149
150        // Clean up old metrics
151        self.cleanup_old_metrics();
152
153        Ok(())
154    }
155
156    /// Record operation duration for a module
157    pub fn record_operation_duration(&mut self, module_name: &str, duration: Duration) {
158        if !self.module_performance.contains_key(module_name) {
159            self.module_performance
160                .insert(module_name.to_string(), Vec::new());
161        }
162
163        // For simplicity, we'll create a basic metric record
164        // In a real implementation, this would be more sophisticated
165        let metrics = ModulePerformanceMetrics {
166            avg_processing_time: duration,
167            ops_per_second: 1.0 / duration.as_secs_f64(),
168            success_rate: 1.0,
169            quality_score: 0.8,
170            efficiency_score: 0.75,
171        };
172
173        if let Some(history) = self.module_performance.get_mut(module_name) {
174            history.push(metrics);
175
176            // Keep only recent metrics (e.g., last 1000 operations)
177            if history.len() > 1000 {
178                history.drain(0..history.len() - 1000);
179            }
180        }
181    }
182
183    /// Generate comprehensive performance report
184    pub fn generate_report(&self) -> EcosystemPerformanceReport {
185        let mut module_metrics = HashMap::new();
186
187        // Aggregate module metrics
188        for (module_name, history) in &self.module_performance {
189            if let Some(latest_metrics) = history.last() {
190                module_metrics.insert(module_name.clone(), latest_metrics.clone());
191            }
192        }
193
194        EcosystemPerformanceReport {
195            system_metrics: self.system_metrics.clone(),
196            module_metrics,
197            resource_utilization: ResourceUtilization {
198                cpu_usage: 0.5,
199                memory_usage: 0.3,
200                gpu_usage: Some(0.2),
201                network_usage: 0.1,
202            },
203            alerts: self.alerts.clone(),
204            recommendations: self.generate_recommendations(),
205            timestamp: Instant::now(),
206        }
207    }
208
209    /// Create optimized pipeline based on performance analysis
210    pub fn create_optimized_pipeline(
211        &self,
212        _input: &AdvancedInput,
213        _config: &CrossModuleOptimizationConfig,
214    ) -> CoreResult<OptimizedPipeline> {
215        // Create optimized processing pipeline based on input characteristics
216        let stages = vec![
217            PipelineStage {
218                name: "preprocessing".to_string(),
219                module: "data_transform".to_string(),
220                config: HashMap::new(),
221                dependencies: vec![],
222            },
223            PipelineStage {
224                name: "computation".to_string(),
225                module: "neural_compute".to_string(),
226                config: HashMap::new(),
227                dependencies: vec!["preprocessing".to_string()],
228            },
229            PipelineStage {
230                name: "postprocessing".to_string(),
231                module: "output_format".to_string(),
232                config: HashMap::new(),
233                dependencies: vec!["computation".to_string()],
234            },
235        ];
236
237        Ok(OptimizedPipeline {
238            stages,
239            optimization_level: OptimizationLevel::Advanced,
240            estimated_performance: PerformanceMetrics {
241                throughput: 1000.0,
242                latency: Duration::from_millis(50),
243                cpu_usage: 50.0,
244                memory_usage: 1024,
245                gpu_usage: 30.0,
246            },
247        })
248    }
249
250    /// Apply pre-stage optimization
251    pub fn apply_pre_stage_optimization(
252        &self,
253        data: AdvancedInput,
254        stage: &PipelineStage,
255        _context: &OptimizationContext,
256    ) -> CoreResult<AdvancedInput> {
257        // Pre-stage optimization logic
258        println!("    ⚡ Applying pre-stage optimizations for {}", stage.name);
259
260        // Add any pre-processing optimizations here
261        Ok(data)
262    }
263
264    /// Execute pipeline stage
265    pub fn execute_pipeline_stage(
266        &self,
267        data: AdvancedInput,
268        stage: &PipelineStage,
269    ) -> CoreResult<AdvancedInput> {
270        // Execute the pipeline stage
271        println!("    🔧 Executing stage: {}", stage.name);
272
273        // In a real implementation, this would delegate to the appropriate module
274        // For now, just pass through the data
275        Ok(data)
276    }
277
278    /// Apply post-stage optimization
279    pub fn apply_post_stage_optimization(
280        &self,
281        data: AdvancedInput,
282        stage: &PipelineStage,
283        context: &mut OptimizationContext,
284    ) -> CoreResult<AdvancedInput> {
285        // Post-stage optimization logic
286        println!(
287            "    📈 Applying post-stage optimizations for {}",
288            stage.name
289        );
290
291        // Update optimization context with stage results
292        context.stages_completed += 1;
293        context.total_memory_used += 1024; // Example value
294        context.total_cpu_cycles += 1000000; // Example value
295
296        Ok(data)
297    }
298
299    /// Add performance alert
300    pub fn add_alert(&mut self, level: AlertLevel, message: String, module: Option<String>) {
301        let alert = PerformanceAlert {
302            level,
303            message,
304            module,
305            timestamp: Instant::now(),
306        };
307        self.alerts.push(alert);
308
309        // Keep only recent alerts
310        if self.alerts.len() > 100 {
311            self.alerts.drain(0..self.alerts.len() - 100);
312        }
313    }
314
315    /// Calculate total system throughput
316    fn calculate_total_throughput(&self) -> f64 {
317        self.module_performance
318            .values()
319            .flat_map(|history| history.iter())
320            .map(|metrics| metrics.ops_per_second)
321            .sum()
322    }
323
324    /// Calculate average system latency
325    fn calculate_average_latency(&self) -> Duration {
326        let latencies: Vec<Duration> = self
327            .module_performance
328            .values()
329            .flat_map(|history| history.iter())
330            .map(|metrics| metrics.avg_processing_time)
331            .collect();
332
333        if latencies.is_empty() {
334            return Duration::from_secs(0);
335        }
336
337        let total_nanos: u64 = latencies.iter().map(|d| d.as_nanos() as u64).sum();
338        Duration::from_nanos(total_nanos / latencies.len() as u64)
339    }
340
341    /// Calculate system error rate
342    fn calculate_error_rate(&self) -> f64 {
343        let success_rates: Vec<f64> = self
344            .module_performance
345            .values()
346            .flat_map(|history| history.iter())
347            .map(|metrics| metrics.success_rate)
348            .collect();
349
350        if success_rates.is_empty() {
351            return 0.0;
352        }
353
354        let avg_success_rate = success_rates.iter().sum::<f64>() / success_rates.len() as f64;
355        1.0 - avg_success_rate
356    }
357
358    /// Calculate resource efficiency
359    fn calculate_resource_efficiency(&self) -> f64 {
360        let efficiency_scores: Vec<f64> = self
361            .module_performance
362            .values()
363            .flat_map(|history| history.iter())
364            .map(|metrics| metrics.efficiency_score)
365            .collect();
366
367        if efficiency_scores.is_empty() {
368            return 0.0;
369        }
370
371        efficiency_scores.iter().sum::<f64>() / efficiency_scores.len() as f64
372    }
373
374    /// Calculate overall quality score
375    fn calculate_quality_score(&self) -> f64 {
376        let quality_scores: Vec<f64> = self
377            .module_performance
378            .values()
379            .flat_map(|history| history.iter())
380            .map(|metrics| metrics.quality_score)
381            .collect();
382
383        if quality_scores.is_empty() {
384            return 0.0;
385        }
386
387        quality_scores.iter().sum::<f64>() / quality_scores.len() as f64
388    }
389
390    /// Check for performance alerts
391    fn check_performance_alerts(&mut self) -> CoreResult<()> {
392        // Check latency threshold
393        if self.system_metrics.avg_latency.as_millis() as f64
394            > self.config.alert_thresholds.latency_threshold
395        {
396            self.add_alert(
397                AlertLevel::Warning,
398                format!(
399                    "System latency ({:.2}ms) exceeds threshold",
400                    self.system_metrics.avg_latency.as_millis()
401                ),
402                None,
403            );
404        }
405
406        // Check error rate threshold
407        if self.system_metrics.error_rate > self.config.alert_thresholds.error_rate_threshold {
408            self.add_alert(
409                AlertLevel::Error,
410                format!(
411                    "Error rate ({:.2}%) exceeds threshold",
412                    self.system_metrics.error_rate * 100.0
413                ),
414                None,
415            );
416        }
417
418        // Check resource efficiency
419        if self.system_metrics.resource_efficiency < 0.5 {
420            self.add_alert(
421                AlertLevel::Info,
422                "Resource efficiency is below optimal levels".to_string(),
423                None,
424            );
425        }
426
427        Ok(())
428    }
429
430    /// Generate performance recommendations
431    fn generate_recommendations(&self) -> Vec<String> {
432        let mut recommendations = Vec::new();
433
434        if self.system_metrics.resource_efficiency < 0.7 {
435            recommendations.push("Consider enabling cross-module optimization".to_string());
436        }
437
438        if self.system_metrics.avg_latency.as_millis() > 500 {
439            recommendations.push("Enable adaptive load balancing to reduce latency".to_string());
440        }
441
442        if self.system_metrics.error_rate > 0.01 {
443            recommendations.push("Review error handling and fault tolerance settings".to_string());
444        }
445
446        if recommendations.is_empty() {
447            recommendations.push("System performance is optimal".to_string());
448        }
449
450        recommendations
451    }
452
453    /// Clean up old performance metrics
454    fn cleanup_old_metrics(&mut self) {
455        let retention_limit = self.config.history_retention_hours as usize * 3600; // Convert to seconds
456
457        for history in self.module_performance.values_mut() {
458            if history.len() > retention_limit {
459                history.drain(0..history.len() - retention_limit);
460            }
461        }
462
463        // Clean up old alerts (keep last 50)
464        if self.alerts.len() > 50 {
465            self.alerts.drain(0..self.alerts.len() - 50);
466        }
467    }
468}