pub fn quantile<T>(
array: ArrayView<'_, T, Ix1>,
q: ArrayView<'_, T, Ix1>,
method: Option<&str>,
) -> Result<Array<T, Ix1>, &'static str>Expand description
Calculate the quantile values from a 1D array
§Arguments
array- The input 1D arrayq- The quantile or array of quantiles to compute (between 0 and 1)method- The interpolation method to use: “linear” (default), “lower”, “higher”, “midpoint”, or “nearest”
§Returns
An array containing the quantile values
§Examples
use ndarray::array;
use scirs2_core::ndarray_ext::stats::quantile;
let data = array![1.0, 3.0, 5.0, 7.0, 9.0];
// Median (50th percentile)
let median = quantile(data.view(), array![0.5].view(), Some("linear")).unwrap();
assert_eq!(median[0], 5.0);
// Multiple quantiles
let quartiles = quantile(data.view(), array![0.25, 0.5, 0.75].view(), None).unwrap();
assert_eq!(quartiles[0], 3.0); // 25th percentile
assert_eq!(quartiles[1], 5.0); // 50th percentile
assert_eq!(quartiles[2], 7.0); // 75th percentileThis function is equivalent to NumPy’s np.quantile function.