Expand description
Array module that provides enhanced array types and utilities
This module provides specialized array types for scientific computing:
MaskedArray
: Arrays that can mask out values for operationsRecordArray
: Arrays with named fields for structured data
These types are inspired by and compatible with NumPy’s masked array and record array implementations, providing similar functionality in Rust.
Modules§
- prelude
- Common array types for scientific computing
Structs§
- Masked
Array - Represents an array with a mask to identify invalid or missing values
- Record
- Represents a single record (row) in a RecordArray
- Record
Array - A structured array with named fields
Enums§
- Array
Error - Error type for array operations
- Field
Value - Enum to hold different types of field values
Constants§
- NOMASK
- The global “no mask” constant
Functions§
- is_
masked - Function to check if a value is masked
- mask_
array - Create a masked array
- masked_
equal - Create a masked array with elements equal to a given value masked
- masked_
greater - Create a masked array with values greater than a given value masked
- masked_
inside - Create a masked array with values inside a range masked
- masked_
invalid - Create a masked array with NaN and infinite values masked
- masked_
less - Create a masked array with values less than a given value masked
- masked_
outside - Create a masked array with values outside a range masked
- masked_
where - Create a masked array with values where a condition is true
- record_
array_ from_ arrays - Create a RecordArray from arrays of the same length
- record_
array_ from_ records - Create a RecordArray from a sequence of tuples
- record_
array_ from_ typed_ arrays - Create a RecordArray from arrays with different numeric types