pub fn exp_simd<F>(x: &ArrayView1<'_, F>) -> Array1<F>where
F: Float + SimdUnifiedOps,Expand description
Compute the exponential (e^x) of each element (SIMD-accelerated).
Computes e^x for each element in the array.
§Arguments
x- Input 1D array
§Returns
Array1<F> with the same length as input, with exponential values.
§Performance
- Auto-vectorization: Compiler optimizations provide excellent performance
- Speedup: 2-4x on large arrays via auto-vectorization
§Mathematical Definition
exp(x) = e^x where e ≈ 2.71828...§Examples
use scirs2_core::ndarray::array;
use scirs2_core::ndarray_ext::elementwise::exp_simd;
let x = array![0.0_f64, 1.0, 2.0];
let result = exp_simd(&x.view());
assert!((result[0] - 1.0).abs() < 1e-10);
assert!((result[1] - 2.718281828).abs() < 1e-9);
assert!((result[2] - 7.389056099).abs() < 1e-9);§Edge Cases
- Empty array: Returns empty array
- Zero: exp(0) = 1
- Large positive: May overflow to infinity
- Large negative: Approaches zero
- NaN: Returns NaN (preserves NaN)
§Applications
- Machine Learning: Softmax, sigmoid activation
- Optimization: Exponential decay, learning rate schedules
- Probability: Exponential distribution, Gaussian PDF
- Neural Networks: Attention mechanisms, transformer models
- Reinforcement Learning: Policy gradients, Q-learning