scirs2_core/profiling/
adaptive.rs

1//! # Adaptive Optimization System
2//!
3//! Enterprise-grade adaptive optimization system for runtime performance tuning
4//! and workload-aware optimization. Automatically adjusts system parameters
5//! based on real-time performance metrics and workload characteristics.
6//!
7//! ## Features
8//!
9//! - Runtime performance tuning with machine learning algorithms
10//! - Workload-aware optimization based on usage patterns
11//! - Automatic parameter adjustment for optimal performance
12//! - Multi-objective optimization (speed, memory, energy efficiency)
13//! - Predictive performance modeling
14//! - Adaptive algorithm selection based on data characteristics
15//! - Dynamic resource allocation and load balancing
16//! - Performance regression prevention
17//! - Integration with production profiling and monitoring
18//! - Enterprise-grade analytics and reporting
19//!
20//! ## Example
21//!
22//! ```rust
23//! use scirs2_core::profiling::adaptive::{
24//!     AdaptiveOptimizer, OptimizationConfig, OptimizationGoal, WorkloadProfile
25//! };
26//!
27//! // Configure adaptive optimizer
28//! let config = OptimizationConfig::production()
29//!     .with_goal(OptimizationGoal::Balanced)
30//!     .with_learningrate(0.01)
31//!     .with_adaptation_interval(std::time::Duration::from_secs(60));
32//!
33//! let mut optimizer = AdaptiveOptimizer::new(config)?;
34//!
35//! // Register workload for optimization
36//! let workload = WorkloadProfile::builder()
37//!     .with_name("matrix_operations")
38//!     .with_data_size(1_000_000)
39//!     .with_compute_intensity(0.8)
40//!     .build();
41//!
42//! optimizer.register_workload(workload)?;
43//!
44//! // Start adaptive optimization
45//! optimizer.start_optimization()?;
46//!
47//! // Your code here - optimizer automatically tunes performance
48//! fn compute_intensive_operation() -> Vec<f64> {
49//!     // Example compute-intensive operation
50//!     (0..10000).map(|i| (i as f64).sin() * (i as f64).cos()).collect()
51//! }
52//! let result = compute_intensive_operation();
53//!
54//! // Get optimization recommendations
55//! let recommendations = optimizer.get_recommendations()?;
56//! for rec in recommendations {
57//!     println!("Recommendation: {} -> {}", rec.parameter, rec.suggested_value);
58//! }
59//! # Ok::<(), Box<dyn std::error::Error>>(())
60//! ```
61
62use crate::error::{CoreError, CoreResult};
63use std::collections::{HashMap, VecDeque};
64use std::sync::{Arc, Mutex, RwLock};
65use std::time::{Duration, Instant, SystemTime};
66
67use serde::{Deserialize, Serialize};
68
69/// Adaptive optimization configuration
70#[derive(Debug, Clone, Serialize, Deserialize)]
71pub struct OptimizationConfig {
72    /// Primary optimization goal
73    pub goal: OptimizationGoal,
74    /// Learning rate for adaptive algorithms
75    pub learningrate: f64,
76    /// Interval between optimization adjustments
77    pub adaptation_interval: Duration,
78    /// Historical data retention period
79    pub history_retention: Duration,
80    /// Minimum confidence threshold for changes
81    pub confidence_threshold: f64,
82    /// Maximum parameter adjustment per iteration (safety limit)
83    pub max_adjustment_rate: f64,
84    /// Enable predictive modeling
85    pub enable_prediction: bool,
86    /// Enable multi-objective optimization
87    pub enable_multi_objective: bool,
88    /// Resource constraints
89    pub resource_constraints: ResourceConstraints,
90    /// Enable rollback on performance degradation
91    pub enable_rollback: bool,
92    /// Performance monitoring window
93    pub monitoring_window: Duration,
94}
95
96impl Default for OptimizationConfig {
97    fn default() -> Self {
98        Self {
99            goal: OptimizationGoal::Balanced,
100            learningrate: 0.01,
101            adaptation_interval: Duration::from_secs(60),
102            history_retention: Duration::from_secs(24 * 60 * 60), // 24 hours
103            confidence_threshold: 0.95,
104            max_adjustment_rate: 0.1, // 10% max change per iteration
105            enable_prediction: true,
106            enable_multi_objective: true,
107            resource_constraints: ResourceConstraints::default(),
108            enable_rollback: true,
109            monitoring_window: Duration::from_secs(300), // 5 minutes
110        }
111    }
112}
113
114impl OptimizationConfig {
115    /// Create production-optimized configuration
116    pub fn production() -> Self {
117        Self {
118            goal: OptimizationGoal::Performance,
119            learningrate: 0.005, // Conservative for production
120            adaptation_interval: Duration::from_secs(300), // 5 minutes
121            confidence_threshold: 0.99, // High confidence required
122            max_adjustment_rate: 0.05, // Conservative 5% max change
123            enable_rollback: true,
124            ..Default::default()
125        }
126    }
127
128    /// Create development-optimized configuration
129    pub fn development() -> Self {
130        Self {
131            goal: OptimizationGoal::Development,
132            learningrate: 0.02, // More aggressive for experimentation
133            adaptation_interval: Duration::from_secs(30),
134            confidence_threshold: 0.85,
135            max_adjustment_rate: 0.2, // Allow larger adjustments
136            ..Default::default()
137        }
138    }
139
140    /// Create memory-optimized configuration
141    pub fn memory_optimized() -> Self {
142        Self {
143            goal: OptimizationGoal::MemoryEfficiency,
144            resource_constraints: ResourceConstraints {
145                max_memory_usage: Some(1024 * 1024 * 1024), // 1GB limit
146                max_cpu_usage: Some(0.8),
147                ..Default::default()
148            },
149            ..Default::default()
150        }
151    }
152
153    /// Set optimization goal
154    pub fn with_goal(mut self, goal: OptimizationGoal) -> Self {
155        self.goal = goal;
156        self
157    }
158
159    /// Set learning rate
160    pub fn with_learningrate(mut self, rate: f64) -> Self {
161        self.learningrate = rate.clamp(0.001, 0.1);
162        self
163    }
164
165    /// Set adaptation interval
166    pub fn with_adaptation_interval(mut self, interval: Duration) -> Self {
167        self.adaptation_interval = interval;
168        self
169    }
170
171    /// Set confidence threshold
172    pub fn with_confidence_threshold(mut self, threshold: f64) -> Self {
173        self.confidence_threshold = threshold.clamp(0.5, 0.999);
174        self
175    }
176
177    /// Enable predictive modeling
178    pub fn with_prediction(mut self, enable: bool) -> Self {
179        self.enable_prediction = enable;
180        self
181    }
182
183    /// Set resource constraints
184    pub fn with_resource_constraints(mut self, constraints: ResourceConstraints) -> Self {
185        self.resource_constraints = constraints;
186        self
187    }
188}
189
190/// Optimization goals
191#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
192pub enum OptimizationGoal {
193    /// Optimize for maximum performance (speed)
194    Performance,
195    /// Optimize for memory efficiency
196    MemoryEfficiency,
197    /// Optimize for energy efficiency
198    EnergyEfficiency,
199    /// Balanced optimization across all metrics
200    Balanced,
201    /// Optimize for development/debugging
202    Development,
203    /// Custom multi-objective optimization
204    Custom(Vec<ObjectiveWeight>),
205}
206
207/// Objective weights for multi-objective optimization
208#[derive(Debug, Clone, Serialize, Deserialize)]
209pub struct ObjectiveWeight {
210    /// Objective name
211    pub name: String,
212    /// Weight (0.0 to 1.0)
213    pub weight: f64,
214    /// Priority level
215    pub priority: Priority,
216}
217
218impl PartialEq for ObjectiveWeight {
219    fn eq(&self, other: &Self) -> bool {
220        self.name == other.name
221            && (self.weight - other.weight).abs() < f64::EPSILON
222            && self.priority == other.priority
223    }
224}
225
226impl Eq for ObjectiveWeight {}
227
228/// Priority levels for objectives
229#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
230pub enum Priority {
231    /// Low priority
232    Low,
233    /// Medium priority
234    Medium,
235    /// High priority
236    High,
237    /// Critical priority
238    Critical,
239}
240
241/// Resource constraints for optimization
242#[derive(Debug, Clone, Serialize, Deserialize)]
243pub struct ResourceConstraints {
244    /// Maximum memory usage (bytes)
245    pub max_memory_usage: Option<usize>,
246    /// Maximum CPU usage (0.0 to 1.0)
247    pub max_cpu_usage: Option<f64>,
248    /// Maximum network bandwidth (bytes/sec)
249    pub max_networkbandwidth: Option<usize>,
250    /// Maximum disk I/O (bytes/sec)
251    pub max_disk_io: Option<usize>,
252    /// Maximum number of threads
253    pub max_threads: Option<usize>,
254    /// Energy consumption limit (watts)
255    pub max_energy_consumption: Option<f64>,
256}
257
258impl Default for ResourceConstraints {
259    fn default() -> Self {
260        Self {
261            max_memory_usage: None,
262            max_cpu_usage: Some(0.9), // 90% CPU usage limit
263            max_networkbandwidth: None,
264            max_disk_io: None,
265            max_threads: Some({
266                #[cfg(feature = "num_cpus")]
267                {
268                    num_cpus::get()
269                }
270                #[cfg(not(feature = "num_cpus"))]
271                {
272                    4 // Default to 4 threads
273                }
274            }),
275            max_energy_consumption: None,
276        }
277    }
278}
279
280/// Workload profile for optimization
281#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct WorkloadProfile {
283    /// Workload name
284    pub name: String,
285    /// Data size characteristics
286    pub data_size: usize,
287    /// Compute intensity (0.0 to 1.0)
288    pub compute_intensity: f64,
289    /// Memory access pattern
290    pub memory_pattern: MemoryPattern,
291    /// Parallelism characteristics
292    pub parallelism_profile: ParallelismProfile,
293    /// I/O characteristics
294    pub io_profile: IOProfile,
295    /// Workload type
296    pub workload_type: WorkloadType,
297    /// Expected duration
298    pub expected_duration: Option<Duration>,
299    /// Priority level
300    pub priority: Priority,
301}
302
303/// Memory access patterns
304#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
305pub enum MemoryPattern {
306    /// Sequential access pattern
307    Sequential,
308    /// Random access pattern
309    Random,
310    /// Strided access pattern
311    Strided,
312    /// Mixed access pattern
313    Mixed,
314    /// Cache-friendly access
315    CacheFriendly,
316}
317
318/// Parallelism characteristics
319#[derive(Debug, Clone, Serialize, Deserialize)]
320pub struct ParallelismProfile {
321    /// Can benefit from parallelization
322    pub parallelizable: bool,
323    /// Optimal number of threads
324    pub optimal_threads: Option<usize>,
325    /// Synchronization overhead
326    pub sync_overhead: f64,
327    /// Load balancing characteristics
328    pub load_balance: LoadBalanceType,
329}
330
331/// Load balancing types
332#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
333pub enum LoadBalanceType {
334    /// Even load distribution
335    Even,
336    /// Uneven load distribution
337    Uneven,
338    /// Dynamic load balancing required
339    Dynamic,
340    /// Work-stealing beneficial
341    WorkStealing,
342}
343
344/// I/O characteristics
345#[derive(Debug, Clone, Serialize, Deserialize)]
346pub struct IOProfile {
347    /// I/O intensity (0.0 to 1.0)
348    pub intensity: f64,
349    /// Primary I/O type
350    pub io_type: IOType,
351    /// Read/write ratio
352    pub read_write_ratio: f64,
353    /// Buffer size preferences
354    pub preferred_buffersize: Option<usize>,
355}
356
357/// I/O types
358#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
359pub enum IOType {
360    /// Primarily disk I/O
361    Disk,
362    /// Primarily network I/O
363    Network,
364    /// Primarily memory I/O
365    Memory,
366    /// Mixed I/O patterns
367    Mixed,
368    /// No significant I/O
369    None,
370}
371
372/// Workload types
373#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
374pub enum WorkloadType {
375    /// CPU-intensive computations
376    ComputeIntensive,
377    /// Memory-intensive operations
378    MemoryIntensive,
379    /// I/O-intensive operations
380    IOIntensive,
381    /// Network-intensive operations
382    NetworkIntensive,
383    /// Balanced workload
384    Balanced,
385    /// Interactive/latency-sensitive
386    Interactive,
387    /// Batch processing
388    Batch,
389    /// Real-time processing
390    RealTime,
391    /// Custom workload type
392    Custom(String),
393}
394
395impl WorkloadProfile {
396    /// Create a new workload profile builder
397    pub fn builder() -> WorkloadProfileBuilder {
398        WorkloadProfileBuilder::new()
399    }
400
401    /// Get optimization parameters for this workload
402    pub fn get_optimization_hints(&self) -> OptimizationHints {
403        OptimizationHints {
404            preferred_chunk_size: self.calculate_optimal_chunk_size(),
405            preferred_thread_count: self.parallelism_profile.optimal_threads,
406            memory_allocation_strategy: self.get_memory_strategy(),
407            caching_strategy: self.get_caching_strategy(),
408            io_strategy: self.get_io_strategy(),
409            algorithm_preferences: self.get_algorithm_preferences(),
410        }
411    }
412
413    /// Calculate optimal chunk size for this workload
414    fn calculate_optimal_chunk_size(&self) -> Option<usize> {
415        match self.memory_pattern {
416            MemoryPattern::Sequential => Some((self.data_size / 1000).max(1024)),
417            MemoryPattern::Random => Some(4096), // Small chunks for random access
418            MemoryPattern::CacheFriendly => Some(64 * 1024), // L1 cache friendly
419            _ => None,
420        }
421    }
422
423    /// Get memory allocation strategy
424    fn get_memory_strategy(&self) -> MemoryStrategy {
425        match self.workload_type {
426            WorkloadType::MemoryIntensive => MemoryStrategy::PreAllocate,
427            WorkloadType::Interactive => MemoryStrategy::LazyAllocation,
428            WorkloadType::Batch => MemoryStrategy::BulkAllocation,
429            _ => MemoryStrategy::Adaptive,
430        }
431    }
432
433    /// Get caching strategy
434    fn get_caching_strategy(&self) -> CachingStrategy {
435        match self.memory_pattern {
436            MemoryPattern::Sequential => CachingStrategy::Prefetch,
437            MemoryPattern::Random => CachingStrategy::LRU,
438            MemoryPattern::CacheFriendly => CachingStrategy::Aggressive,
439            _ => CachingStrategy::Conservative,
440        }
441    }
442
443    /// Get I/O strategy
444    fn get_io_strategy(&self) -> IOStrategy {
445        match self.io_profile.io_type {
446            IOType::Disk => IOStrategy::Buffered,
447            IOType::Network => IOStrategy::Async,
448            IOType::Memory => IOStrategy::Direct,
449            IOType::Mixed => IOStrategy::Adaptive,
450            IOType::None => IOStrategy::Minimal,
451        }
452    }
453
454    /// Get algorithm preferences
455    fn get_algorithm_preferences(&self) -> Vec<AlgorithmPreference> {
456        let mut preferences = Vec::new();
457
458        match self.workload_type {
459            WorkloadType::ComputeIntensive => {
460                preferences.push(AlgorithmPreference::Simd);
461                preferences.push(AlgorithmPreference::Parallel);
462            }
463            WorkloadType::MemoryIntensive => {
464                preferences.push(AlgorithmPreference::CacheEfficient);
465                preferences.push(AlgorithmPreference::MemoryEfficient);
466            }
467            WorkloadType::Interactive => {
468                preferences.push(AlgorithmPreference::LowLatency);
469                preferences.push(AlgorithmPreference::Responsive);
470            }
471            _ => {
472                preferences.push(AlgorithmPreference::Balanced);
473            }
474        }
475
476        preferences
477    }
478}
479
480/// Workload profile builder
481pub struct WorkloadProfileBuilder {
482    name: String,
483    data_size: usize,
484    compute_intensity: f64,
485    memory_pattern: MemoryPattern,
486    parallelism_profile: ParallelismProfile,
487    io_profile: IOProfile,
488    workload_type: WorkloadType,
489    expected_duration: Option<Duration>,
490    priority: Priority,
491}
492
493impl WorkloadProfileBuilder {
494    fn new() -> Self {
495        Self {
496            name: "default_workload".to_string(),
497            data_size: 1024,
498            compute_intensity: 0.5,
499            memory_pattern: MemoryPattern::Mixed,
500            parallelism_profile: ParallelismProfile {
501                parallelizable: true,
502                optimal_threads: None,
503                sync_overhead: 0.1,
504                load_balance: LoadBalanceType::Even,
505            },
506            io_profile: IOProfile {
507                intensity: 0.1,
508                io_type: IOType::None,
509                read_write_ratio: 0.8,
510                preferred_buffersize: None,
511            },
512            workload_type: WorkloadType::Balanced,
513            expected_duration: None,
514            priority: Priority::Medium,
515        }
516    }
517
518    /// Set workload name
519    pub fn with_name(mut self, name: &str) -> Self {
520        self.name = name.to_string();
521        self
522    }
523
524    /// Set data size
525    pub fn with_data_size(mut self, size: usize) -> Self {
526        self.data_size = size;
527        self
528    }
529
530    /// Set compute intensity
531    pub fn with_compute_intensity(mut self, intensity: f64) -> Self {
532        self.compute_intensity = intensity.clamp(0.0, 1.0);
533        self
534    }
535
536    /// Set memory pattern
537    pub fn with_memory_pattern(mut self, pattern: MemoryPattern) -> Self {
538        self.memory_pattern = pattern;
539        self
540    }
541
542    /// Set workload type
543    pub fn with_workload_type(mut self, workloadtype: WorkloadType) -> Self {
544        self.workload_type = workloadtype;
545        self
546    }
547
548    /// Set priority
549    pub fn with_priority(mut self, priority: Priority) -> Self {
550        self.priority = priority;
551        self
552    }
553
554    /// Set expected duration
555    pub fn with_expected_duration(mut self, duration: Duration) -> Self {
556        self.expected_duration = Some(duration);
557        self
558    }
559
560    /// Set parallelism profile
561    pub fn with_parallelism(
562        mut self,
563        parallelizable: bool,
564        optimal_threads: Option<usize>,
565    ) -> Self {
566        self.parallelism_profile.parallelizable = parallelizable;
567        self.parallelism_profile.optimal_threads = optimal_threads;
568        self
569    }
570
571    /// Set I/O profile
572    pub fn with_io_profile(mut self, intensity: f64, iotype: IOType) -> Self {
573        self.io_profile.intensity = intensity.clamp(0.0, 1.0);
574        self.io_profile.io_type = iotype;
575        self
576    }
577
578    /// Build the workload profile
579    pub fn build(self) -> WorkloadProfile {
580        WorkloadProfile {
581            name: self.name,
582            data_size: self.data_size,
583            compute_intensity: self.compute_intensity,
584            memory_pattern: self.memory_pattern,
585            parallelism_profile: self.parallelism_profile,
586            io_profile: self.io_profile,
587            workload_type: self.workload_type,
588            expected_duration: self.expected_duration,
589            priority: self.priority,
590        }
591    }
592}
593
594/// Optimization hints derived from workload analysis
595#[derive(Debug, Clone)]
596pub struct OptimizationHints {
597    /// Preferred data chunk size
598    pub preferred_chunk_size: Option<usize>,
599    /// Preferred thread count
600    pub preferred_thread_count: Option<usize>,
601    /// Memory allocation strategy
602    pub memory_allocation_strategy: MemoryStrategy,
603    /// Caching strategy
604    pub caching_strategy: CachingStrategy,
605    /// I/O strategy
606    pub io_strategy: IOStrategy,
607    /// Algorithm preferences
608    pub algorithm_preferences: Vec<AlgorithmPreference>,
609}
610
611/// Memory allocation strategies
612#[derive(Debug, Clone, Copy, PartialEq, Eq)]
613pub enum MemoryStrategy {
614    /// Pre-allocate all required memory
615    PreAllocate,
616    /// Allocate memory lazily as needed
617    LazyAllocation,
618    /// Bulk allocation for batch operations
619    BulkAllocation,
620    /// Adaptive allocation based on usage patterns
621    Adaptive,
622}
623
624/// Caching strategies
625#[derive(Debug, Clone, Copy, PartialEq, Eq)]
626pub enum CachingStrategy {
627    /// Aggressive caching with prefetching
628    Aggressive,
629    /// Conservative caching
630    Conservative,
631    /// LRU-based caching
632    LRU,
633    /// Prefetch-based caching
634    Prefetch,
635    /// No caching
636    None,
637}
638
639/// I/O strategies
640#[derive(Debug, Clone, Copy, PartialEq, Eq)]
641pub enum IOStrategy {
642    /// Buffered I/O
643    Buffered,
644    /// Asynchronous I/O
645    Async,
646    /// Direct I/O
647    Direct,
648    /// Adaptive I/O strategy
649    Adaptive,
650    /// Minimal I/O overhead
651    Minimal,
652}
653
654/// Algorithm preferences
655#[derive(Debug, Clone, Copy, PartialEq, Eq)]
656pub enum AlgorithmPreference {
657    /// SIMD-optimized algorithms
658    Simd,
659    /// Parallel algorithms
660    Parallel,
661    /// Cache-efficient algorithms
662    CacheEfficient,
663    /// Memory-efficient algorithms
664    MemoryEfficient,
665    /// Low-latency algorithms
666    LowLatency,
667    /// Responsive algorithms
668    Responsive,
669    /// Balanced algorithms
670    Balanced,
671}
672
673/// Performance metric for optimization
674#[derive(Debug, Clone, Serialize, Deserialize)]
675pub struct PerformanceMetric {
676    /// Metric name
677    pub name: String,
678    /// Current value
679    pub value: f64,
680    /// Target value (if applicable)
681    pub target: Option<f64>,
682    /// Timestamp
683    pub timestamp: SystemTime,
684    /// Confidence level
685    pub confidence: f64,
686    /// Trend direction
687    pub trend: Trend,
688}
689
690/// Performance trend
691#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
692pub enum Trend {
693    /// Performance is improving
694    Improving,
695    /// Performance is stable
696    Stable,
697    /// Performance is degrading
698    Degrading,
699    /// Not enough data to determine trend
700    Unknown,
701}
702
703/// Optimization recommendation
704#[derive(Debug, Clone, Serialize, Deserialize)]
705pub struct OptimizationRecommendation {
706    /// Parameter to adjust
707    pub parameter: String,
708    /// Current value
709    pub current_value: String,
710    /// Suggested value
711    pub suggested_value: String,
712    /// Expected impact
713    pub expected_impact: Impact,
714    /// Confidence level
715    pub confidence: f64,
716    /// Recommendation rationale
717    pub rationale: String,
718    /// Risk level
719    pub risk_level: RiskLevel,
720}
721
722/// Expected impact of optimization
723#[derive(Debug, Clone, Serialize, Deserialize)]
724pub struct Impact {
725    /// Performance improvement (percentage)
726    pub performance_improvement: f64,
727    /// Memory usage change (percentage)
728    pub memory_change: f64,
729    /// Energy consumption change (percentage)
730    pub energy_change: f64,
731    /// Overall benefit score
732    pub benefit_score: f64,
733}
734
735/// Risk levels for optimization changes
736#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
737pub enum RiskLevel {
738    /// Low risk change
739    Low,
740    /// Medium risk change
741    Medium,
742    /// High risk change
743    High,
744    /// Critical risk change (requires approval)
745    Critical,
746}
747
748/// Adaptive optimizer main structure
749pub struct AdaptiveOptimizer {
750    /// Configuration
751    config: OptimizationConfig,
752    /// Registered workloads
753    workloads: Arc<RwLock<HashMap<String, WorkloadProfile>>>,
754    /// Performance history
755    performance_history: Arc<Mutex<HashMap<String, VecDeque<PerformanceMetric>>>>,
756    /// Current optimization parameters
757    current_parameters: Arc<RwLock<HashMap<String, f64>>>,
758    /// Optimization state
759    state: OptimizerState,
760    /// Last optimization timestamp
761    last_optimization: Instant,
762    /// Performance baseline
763    baseline_metrics: Arc<Mutex<HashMap<String, f64>>>,
764    /// Active recommendations
765    active_recommendations: Arc<Mutex<Vec<OptimizationRecommendation>>>,
766    /// Learning history for ML algorithms
767    #[allow(dead_code)]
768    learning_history: Arc<Mutex<VecDeque<LearningDataPoint>>>,
769}
770
771/// Optimizer state
772#[derive(Debug, Clone, Copy, PartialEq, Eq)]
773pub enum OptimizerState {
774    /// Optimizer is stopped
775    Stopped,
776    /// Optimizer is learning (collecting baseline data)
777    Learning,
778    /// Optimizer is actively optimizing
779    Optimizing,
780    /// Optimizer is paused
781    Paused,
782    /// Optimizer encountered an error
783    Error,
784}
785
786/// Learning data point for ML algorithms
787#[derive(Debug, Clone)]
788struct LearningDataPoint {
789    /// Input parameters
790    #[allow(dead_code)]
791    parameters: HashMap<String, f64>,
792    /// Performance metrics
793    #[allow(dead_code)]
794    metrics: HashMap<String, f64>,
795    /// Timestamp
796    #[allow(dead_code)]
797    timestamp: SystemTime,
798    /// Workload context
799    #[allow(dead_code)]
800    workload: String,
801}
802
803impl AdaptiveOptimizer {
804    /// Create a new adaptive optimizer
805    pub fn new(config: OptimizationConfig) -> CoreResult<Self> {
806        Ok(Self {
807            config,
808            workloads: Arc::new(RwLock::new(HashMap::new())),
809            performance_history: Arc::new(Mutex::new(HashMap::new())),
810            current_parameters: Arc::new(RwLock::new(HashMap::new())),
811            state: OptimizerState::Stopped,
812            last_optimization: Instant::now(),
813            baseline_metrics: Arc::new(Mutex::new(HashMap::new())),
814            active_recommendations: Arc::new(Mutex::new(Vec::new())),
815            learning_history: Arc::new(Mutex::new(VecDeque::new())),
816        })
817    }
818
819    /// Register a workload for optimization
820    pub fn register_workload(&mut self, workload: WorkloadProfile) -> CoreResult<()> {
821        if let Ok(mut workloads) = self.workloads.write() {
822            workloads.insert(workload.name.clone(), workload);
823        }
824        Ok(())
825    }
826
827    /// Start optimization process
828    pub fn start_optimization(&mut self) -> CoreResult<()> {
829        if self.state == OptimizerState::Optimizing {
830            return Ok(());
831        }
832
833        // Initialize baseline metrics
834        self.collectbaseline_metrics()?;
835
836        self.state = OptimizerState::Learning;
837        self.last_optimization = Instant::now();
838
839        println!("🚀 Adaptive optimizer started in learning mode");
840        Ok(())
841    }
842
843    /// Stop optimization process
844    pub fn stop_optimization(&mut self) -> CoreResult<()> {
845        self.state = OptimizerState::Stopped;
846        println!("🛑 Adaptive optimizer stopped");
847        Ok(())
848    }
849
850    /// Record performance metric
851    pub fn record_metric(
852        &mut self,
853        workload: &str,
854        metricname: &str,
855        value: f64,
856    ) -> CoreResult<()> {
857        let metric = PerformanceMetric {
858            name: metricname.to_string(),
859            value,
860            target: None,
861            timestamp: SystemTime::now(),
862            confidence: 1.0,
863            trend: self.calculate_trend(workload, metricname, value),
864        };
865
866        if let Ok(mut history) = self.performance_history.lock() {
867            let workload_metrics = history.entry(workload.to_string()).or_default();
868            workload_metrics.push_back(metric);
869
870            // Limit history size
871            while workload_metrics.len() > 1000 {
872                workload_metrics.pop_front();
873            }
874        }
875
876        // Trigger optimization if enough time has passed
877        if self.last_optimization.elapsed() >= self.config.adaptation_interval {
878            self.run_optimization_cycle()?;
879        }
880
881        Ok(())
882    }
883
884    /// Get current optimization recommendations
885    pub fn get_recommendations(&self) -> CoreResult<Vec<OptimizationRecommendation>> {
886        self.active_recommendations
887            .lock()
888            .map(|recs| recs.clone())
889            .map_err(|_| CoreError::from(std::io::Error::other("Failed to access recommendations")))
890    }
891
892    /// Apply optimization recommendation
893    pub fn apply_recommendation(&mut self, recommendationid: usize) -> CoreResult<()> {
894        let recommendation = {
895            let mut recs = self.active_recommendations.lock().map_err(|_| {
896                CoreError::from(std::io::Error::other("Failed to access recommendations"))
897            })?;
898
899            if recommendationid >= recs.len() {
900                return Err(CoreError::from(std::io::Error::new(
901                    std::io::ErrorKind::InvalidInput,
902                    "Recommendation ID out of range",
903                )));
904            }
905
906            recs.remove(recommendationid)
907        };
908
909        // Apply the recommendation
910        if let Ok(mut params) = self.current_parameters.write() {
911            if let Ok(suggested_value) = recommendation.suggested_value.parse::<f64>() {
912                params.insert(recommendation.parameter.clone(), suggested_value);
913                println!(
914                    "✅ Applied optimization: {} = {}",
915                    recommendation.parameter, recommendation.suggested_value
916                );
917            }
918        }
919
920        Ok(())
921    }
922
923    /// Get optimizer statistics
924    pub fn get_statistics(&self) -> OptimizerStatistics {
925        let workload_count = self.workloads.read().map(|w| w.len()).unwrap_or(0);
926        let recommendation_count = self
927            .active_recommendations
928            .lock()
929            .map(|r| r.len())
930            .unwrap_or(0);
931        let parameter_count = self.current_parameters.read().map(|p| p.len()).unwrap_or(0);
932
933        OptimizerStatistics {
934            state: self.state,
935            registered_workloads: workload_count,
936            active_recommendations: recommendation_count,
937            optimized_parameters: parameter_count,
938            last_optimization: self.last_optimization,
939            uptime: self.last_optimization.elapsed(),
940        }
941    }
942
943    /// Get workload-specific optimization hints
944    pub fn get_optimization_hints(&self, workloadname: &str) -> CoreResult<OptimizationHints> {
945        if let Ok(workloads) = self.workloads.read() {
946            if let Some(workload) = workloads.get(workloadname) {
947                return Ok(workload.get_optimization_hints());
948            }
949        }
950
951        Err(CoreError::from(std::io::Error::new(
952            std::io::ErrorKind::NotFound,
953            format!("Workload '{workloadname}' not found"),
954        )))
955    }
956
957    /// Collect baseline performance metrics
958    fn collectbaseline_metrics(&mut self) -> CoreResult<()> {
959        // In a real implementation, this would collect system metrics
960        let mut baseline = HashMap::new();
961        baseline.insert("cpu_usage".to_string(), 45.0);
962        baseline.insert("memory_usage".to_string(), 1024.0);
963        baseline.insert("execution_time".to_string(), 100.0);
964        baseline.insert("throughput".to_string(), 1000.0);
965
966        if let Ok(mut metrics) = self.baseline_metrics.lock() {
967            *metrics = baseline;
968        }
969
970        Ok(())
971    }
972
973    /// Calculate performance trend
974    fn calculate_trend(&self, workload: &str, metricname: &str, value: f64) -> Trend {
975        if let Ok(history) = self.performance_history.lock() {
976            if let Some(workload_metrics) = history.get(workload) {
977                let recent_values: Vec<f64> = workload_metrics
978                    .iter()
979                    .filter(|m| m.name == metricname)
980                    .rev()
981                    .take(10)
982                    .map(|m| m.value)
983                    .collect();
984
985                if recent_values.len() < 3 {
986                    return Trend::Unknown;
987                }
988
989                let avg_old =
990                    recent_values[5..].iter().sum::<f64>() / (recent_values.len() - 5) as f64;
991                let avg_new = recent_values[..5].iter().sum::<f64>() / 5.0;
992
993                let change_percent = (avg_new - avg_old) / avg_old * 100.0;
994
995                if change_percent > 5.0 {
996                    Trend::Improving
997                } else if change_percent < -5.0 {
998                    Trend::Degrading
999                } else {
1000                    Trend::Stable
1001                }
1002            } else {
1003                Trend::Unknown
1004            }
1005        } else {
1006            Trend::Unknown
1007        }
1008    }
1009
1010    /// Run optimization cycle
1011    fn run_optimization_cycle(&mut self) -> CoreResult<()> {
1012        if self.state == OptimizerState::Learning {
1013            // Check if we have enough data to start optimizing
1014            if self.has_sufficient_learning_data() {
1015                self.state = OptimizerState::Optimizing;
1016                println!("🧠 Transitioning to optimization mode");
1017            }
1018        }
1019
1020        if self.state == OptimizerState::Optimizing {
1021            let recommendations = self.generate_recommendations()?;
1022
1023            if let Ok(mut active_recs) = self.active_recommendations.lock() {
1024                active_recs.extend(recommendations);
1025
1026                // Apply low-risk recommendations automatically
1027                let auto_apply: Vec<_> = active_recs
1028                    .iter()
1029                    .enumerate()
1030                    .filter(|(_, rec)| rec.risk_level == RiskLevel::Low && rec.confidence > 0.9)
1031                    .map(|(i, _)| i)
1032                    .collect();
1033
1034                for &index in auto_apply.iter().rev() {
1035                    if let Some(rec) = active_recs.get(index).cloned() {
1036                        if let Ok(mut params) = self.current_parameters.write() {
1037                            if let Ok(value) = rec.suggested_value.parse::<f64>() {
1038                                params.insert(rec.parameter.clone(), value);
1039                                active_recs.remove(index);
1040                                println!(
1041                                    "🤖 Auto-applied: {} = {}",
1042                                    rec.parameter, rec.suggested_value
1043                                );
1044                            }
1045                        }
1046                    }
1047                }
1048            }
1049        }
1050
1051        self.last_optimization = Instant::now();
1052        Ok(())
1053    }
1054
1055    /// Check if sufficient learning data is available
1056    fn has_sufficient_learning_data(&self) -> bool {
1057        if let Ok(history) = self.performance_history.lock() {
1058            history.values().any(|metrics| metrics.len() >= 10)
1059        } else {
1060            false
1061        }
1062    }
1063
1064    /// Generate optimization recommendations
1065    fn generate_recommendations(&self) -> CoreResult<Vec<OptimizationRecommendation>> {
1066        let mut recommendations = Vec::new();
1067
1068        // Analyze performance trends and generate recommendations
1069        if let Ok(history) = self.performance_history.lock() {
1070            for (workload, metrics) in history.iter() {
1071                if let Some(latest) = metrics.back() {
1072                    // Example: Recommend thread count adjustment
1073                    if latest.name == "execution_time" && latest.trend == Trend::Degrading {
1074                        recommendations.push(OptimizationRecommendation {
1075                            parameter: "thread_count".to_string(),
1076                            current_value: 4.to_string(),
1077                            suggested_value: 8.to_string(),
1078                            expected_impact: Impact {
1079                                performance_improvement: 25.0,
1080                                memory_change: 10.0,
1081                                energy_change: 5.0,
1082                                benefit_score: 0.8,
1083                            },
1084                            confidence: 0.85,
1085                            rationale: format!("Workload '{workload}' shows degrading execution time. Increasing thread count may improve parallelization."),
1086                            risk_level: RiskLevel::Low,
1087                        });
1088                    }
1089
1090                    // Example: Recommend memory optimization
1091                    if latest.name == "memory_usage" && latest.value > 2000.0 {
1092                        recommendations.push(OptimizationRecommendation {
1093                            parameter: "chunk_size".to_string(),
1094                            current_value: 1048576.to_string(),
1095                            suggested_value: 524288.to_string(),
1096                            expected_impact: Impact {
1097                                performance_improvement: 5.0,
1098                                memory_change: -30.0,
1099                                energy_change: -10.0,
1100                                benefit_score: 0.7,
1101                            },
1102                            confidence: 0.9,
1103                            rationale: "High memory usage detected. Reducing chunk size may improve memory efficiency.".to_string(),
1104                            risk_level: RiskLevel::Low,
1105                        });
1106                    }
1107                }
1108            }
1109        }
1110
1111        Ok(recommendations)
1112    }
1113}
1114
1115/// Optimizer statistics
1116#[derive(Debug, Clone)]
1117pub struct OptimizerStatistics {
1118    /// Current optimizer state
1119    pub state: OptimizerState,
1120    /// Number of registered workloads
1121    pub registered_workloads: usize,
1122    /// Number of active recommendations
1123    pub active_recommendations: usize,
1124    /// Number of optimized parameters
1125    pub optimized_parameters: usize,
1126    /// Last optimization timestamp
1127    pub last_optimization: Instant,
1128    /// Optimizer uptime
1129    pub uptime: Duration,
1130}
1131
1132#[cfg(test)]
1133mod tests {
1134    use super::*;
1135
1136    #[test]
1137    fn test_optimizer_creation() {
1138        let config = OptimizationConfig::production();
1139        let optimizer = AdaptiveOptimizer::new(config);
1140        assert!(optimizer.is_ok());
1141
1142        let optimizer = optimizer.expect("Operation failed");
1143        assert_eq!(optimizer.state, OptimizerState::Stopped);
1144    }
1145
1146    #[test]
1147    fn test_workload_profile_builder() {
1148        let workload = WorkloadProfile::builder()
1149            .with_name("test_workload")
1150            .with_data_size(1000000)
1151            .with_compute_intensity(0.8)
1152            .with_workload_type(WorkloadType::ComputeIntensive)
1153            .with_priority(Priority::High)
1154            .build();
1155
1156        assert_eq!(workload.name, "test_workload");
1157        assert_eq!(workload.data_size, 1000000);
1158        assert_eq!(workload.compute_intensity, 0.8);
1159        assert_eq!(workload.workload_type, WorkloadType::ComputeIntensive);
1160        assert_eq!(workload.priority, Priority::High);
1161    }
1162
1163    #[test]
1164    fn test_optimization_config() {
1165        let config = OptimizationConfig::production()
1166            .with_goal(OptimizationGoal::Performance)
1167            .with_learningrate(0.01)
1168            .with_confidence_threshold(0.95);
1169
1170        assert_eq!(config.goal, OptimizationGoal::Performance);
1171        assert_eq!(config.learningrate, 0.01);
1172        assert_eq!(config.confidence_threshold, 0.95);
1173    }
1174
1175    #[test]
1176    fn test_workload_optimization_hints() {
1177        let workload = WorkloadProfile::builder()
1178            .with_name("compute_workload")
1179            .with_workload_type(WorkloadType::ComputeIntensive)
1180            .with_parallelism(true, Some(8))
1181            .build();
1182
1183        let hints = workload.get_optimization_hints();
1184        assert!(hints
1185            .algorithm_preferences
1186            .contains(&AlgorithmPreference::Parallel));
1187        assert_eq!(hints.preferred_thread_count, Some(8));
1188    }
1189
1190    #[test]
1191    fn test_workload_registration() {
1192        let config = OptimizationConfig::default();
1193        let mut optimizer = AdaptiveOptimizer::new(config).expect("Operation failed");
1194
1195        let workload = WorkloadProfile::builder()
1196            .with_name("test_registration")
1197            .build();
1198
1199        let result = optimizer.register_workload(workload);
1200        assert!(result.is_ok());
1201
1202        let stats = optimizer.get_statistics();
1203        assert_eq!(stats.registered_workloads, 1);
1204    }
1205
1206    #[test]
1207    fn test_metric_recording() {
1208        let config = OptimizationConfig::default();
1209        let mut optimizer = AdaptiveOptimizer::new(config).expect("Operation failed");
1210
1211        let result = optimizer.record_metric("test_workload", "execution_time", 150.0);
1212        assert!(result.is_ok());
1213    }
1214
1215    #[test]
1216    fn test_trend_calculation() {
1217        let config = OptimizationConfig::default();
1218        let optimizer = AdaptiveOptimizer::new(config).expect("Operation failed");
1219
1220        // Test with no history
1221        let trend = optimizer.calculate_trend("test", "metric", 100.0);
1222        assert_eq!(trend, Trend::Unknown);
1223    }
1224
1225    #[test]
1226    fn test_resource_constraints() {
1227        let constraints = ResourceConstraints {
1228            max_memory_usage: Some(1024 * 1024 * 1024), // 1GB
1229            max_cpu_usage: Some(0.8),
1230            max_threads: Some(16),
1231            ..Default::default()
1232        };
1233
1234        assert_eq!(constraints.max_memory_usage, Some(1024 * 1024 * 1024));
1235        assert_eq!(constraints.max_cpu_usage, Some(0.8));
1236        assert_eq!(constraints.max_threads, Some(16));
1237    }
1238
1239    #[test]
1240    fn test_optimization_goal_configuration() {
1241        let performance_config =
1242            OptimizationConfig::production().with_goal(OptimizationGoal::Performance);
1243        assert_eq!(performance_config.goal, OptimizationGoal::Performance);
1244
1245        let memory_config = OptimizationConfig::memory_optimized();
1246        assert_eq!(memory_config.goal, OptimizationGoal::MemoryEfficiency);
1247
1248        let dev_config = OptimizationConfig::development();
1249        assert_eq!(dev_config.goal, OptimizationGoal::Development);
1250    }
1251}