1use crate::error::{CoreError, CoreResult};
8use crate::performance::{OptimizationSettings, PerformanceProfile, WorkloadType};
9use std::collections::{HashMap, VecDeque};
10use std::sync::{Arc, Mutex, RwLock};
11use std::thread;
12use std::time::{Duration, Instant};
13
14static GLOBAL_RESOURCE_MANAGER: std::sync::OnceLock<Arc<ResourceManager>> =
16 std::sync::OnceLock::new();
17
18#[derive(Debug)]
20pub struct ResourceManager {
21 allocator: Arc<Mutex<AdaptiveAllocator>>,
22 tuner: Arc<RwLock<AutoTuner>>,
23 monitor: Arc<Mutex<ResourceMonitor>>,
24 policies: Arc<RwLock<ResourcePolicies>>,
25}
26
27impl ResourceManager {
28 pub fn new() -> CoreResult<Self> {
30 let performance_profile = PerformanceProfile::detect();
31
32 Ok(Self {
33 allocator: Arc::new(Mutex::new(AdaptiveAllocator::new(
34 performance_profile.clone(),
35 )?)),
36 tuner: Arc::new(RwLock::new(AutoTuner::new(performance_profile.clone())?)),
37 monitor: Arc::new(Mutex::new(ResourceMonitor::new()?)),
38 policies: Arc::new(RwLock::new(ResourcePolicies::default())),
39 })
40 }
41
42 pub fn global() -> CoreResult<Arc<Self>> {
44 Ok(GLOBAL_RESOURCE_MANAGER
45 .get_or_init(|| Arc::new(Self::new().expect("Operation failed")))
46 .clone())
47 }
48
49 pub fn start(&self) -> CoreResult<()> {
51 let monitor = self.monitor.clone();
53 let policies = self.policies.clone();
54 let tuner = self.tuner.clone();
55
56 thread::spawn(move || loop {
57 if let Err(e) = Self::monitoring_loop(&monitor, &policies, &tuner) {
58 eprintln!("Resource monitoring error: {e:?}");
59 }
60 thread::sleep(Duration::from_secs(10));
61 });
62
63 let tuner_clone = self.tuner.clone();
65 let monitor_clone = self.monitor.clone();
66
67 thread::spawn(move || loop {
68 if let Err(e) = Self::tuning_loop(&tuner_clone, &monitor_clone) {
69 eprintln!("Auto-tuning error: {e:?}");
70 }
71 thread::sleep(Duration::from_secs(30));
72 });
73
74 Ok(())
75 }
76
77 fn monitoring_loop(
78 monitor: &Arc<Mutex<ResourceMonitor>>,
79 policies: &Arc<RwLock<ResourcePolicies>>,
80 tuner: &Arc<RwLock<AutoTuner>>,
81 ) -> CoreResult<()> {
82 let mut monitor = monitor.lock().expect("Operation failed");
83 let metrics = monitor.collect_metrics()?;
84
85 let policies = policies.read().expect("Operation failed");
87 if let Some(action) = policies.check_violations(&metrics)? {
88 match action {
89 PolicyAction::ScaleUp => {
90 let mut tuner = tuner.write().expect("Operation failed");
91 (*tuner).increase_resources(&metrics)?;
92 }
93 PolicyAction::ScaleDown => {
94 let mut tuner = tuner.write().expect("Operation failed");
95 (*tuner).decrease_resources(&metrics)?;
96 }
97 PolicyAction::Optimize => {
98 let mut tuner = tuner.write().expect("Operation failed");
99 tuner.optimize_configuration(&metrics)?;
100 }
101 PolicyAction::Alert => {
102 monitor.trigger_alert(&metrics)?;
103 }
104 }
105 }
106
107 Ok(())
108 }
109
110 fn tuning_loop(
111 tuner: &Arc<RwLock<AutoTuner>>,
112 monitor: &Arc<Mutex<ResourceMonitor>>,
113 ) -> CoreResult<()> {
114 let metrics = {
115 let monitor = monitor.lock().expect("Operation failed");
116 monitor.get_current_metrics()?
117 };
118
119 let mut tuner = tuner.write().expect("Operation failed");
120 tuner.adaptive_optimization(&metrics)?;
121
122 Ok(())
123 }
124
125 pub fn allocate_optimized<T>(
127 &self,
128 size: usize,
129 workload_type: WorkloadType,
130 ) -> CoreResult<OptimizedAllocation<T>> {
131 let mut allocator = self.allocator.lock().expect("Operation failed");
132 allocator.allocate_optimized(size, workload_type)
133 }
134
135 pub fn get_utilization(&self) -> CoreResult<ResourceUtilization> {
137 let monitor = self.monitor.lock().expect("Operation failed");
138 monitor.get_current_utilization()
139 }
140
141 pub fn updatepolicies(&self, newpolicies: ResourcePolicies) -> CoreResult<()> {
143 let mut policies = self.policies.write().expect("Operation failed");
144 *policies = newpolicies;
145 Ok(())
146 }
147
148 pub fn get_recommendations(&self) -> CoreResult<Vec<TuningRecommendation>> {
150 let tuner = self.tuner.read().expect("Operation failed");
151 tuner.get_recommendations()
152 }
153}
154
155#[derive(Debug)]
157pub struct AdaptiveAllocator {
158 #[allow(dead_code)]
159 performance_profile: PerformanceProfile,
160 allocation_patterns: HashMap<WorkloadType, AllocationPattern>,
161 memory_pools: HashMap<String, MemoryPool>,
162 total_allocated: usize,
163 peak_allocated: usize,
164}
165
166#[derive(Debug, Clone)]
167struct AllocationPattern {
168 #[allow(dead_code)]
169 typical_size: usize,
170 #[allow(dead_code)]
171 typical_lifetime: Duration,
172 access_pattern: AccessPattern,
173 alignment_requirement: usize,
174}
175
176#[derive(Debug, Clone, Copy, PartialEq, Eq)]
177enum AccessPattern {
178 Sequential,
179 Random,
180 #[allow(dead_code)]
181 Strided,
182 Temporal,
183}
184
185impl AdaptiveAllocator {
186 pub fn new(performanceprofile: PerformanceProfile) -> CoreResult<Self> {
187 let mut allocator = Self {
188 performance_profile: performanceprofile,
189 allocation_patterns: HashMap::new(),
190 memory_pools: HashMap::new(),
191 total_allocated: 0,
192 peak_allocated: 0,
193 };
194
195 allocator.initialize_patterns()?;
197
198 Ok(allocator)
199 }
200
201 fn initialize_patterns(&mut self) -> CoreResult<()> {
202 self.allocation_patterns.insert(
204 WorkloadType::LinearAlgebra,
205 AllocationPattern {
206 typical_size: 1024 * 1024, typical_lifetime: Duration::from_secs(60),
208 access_pattern: AccessPattern::Sequential,
209 alignment_requirement: 64, },
211 );
212
213 self.allocation_patterns.insert(
215 WorkloadType::Statistics,
216 AllocationPattern {
217 typical_size: 64 * 1024, typical_lifetime: Duration::from_secs(30),
219 access_pattern: AccessPattern::Random,
220 alignment_requirement: 32,
221 },
222 );
223
224 self.allocation_patterns.insert(
226 WorkloadType::SignalProcessing,
227 AllocationPattern {
228 typical_size: 256 * 1024, typical_lifetime: Duration::from_secs(45),
230 access_pattern: AccessPattern::Temporal,
231 alignment_requirement: 64,
232 },
233 );
234
235 Ok(())
236 }
237
238 pub fn allocate_optimized<T>(
239 &mut self,
240 size: usize,
241 workload_type: WorkloadType,
242 ) -> CoreResult<OptimizedAllocation<T>> {
243 let pattern = self
244 .allocation_patterns
245 .get(&workload_type)
246 .cloned()
247 .unwrap_or_else(|| AllocationPattern {
248 typical_size: size,
249 typical_lifetime: Duration::from_secs(60),
250 access_pattern: AccessPattern::Sequential,
251 alignment_requirement: std::mem::align_of::<T>(),
252 });
253
254 let strategy = self.choose_allocation_strategy(size, &pattern)?;
256
257 let allocation = match strategy {
259 AllocationStrategy::Pool(pool_name) => self.allocate_from_pool(&pool_name, size)?,
260 AllocationStrategy::Direct => {
261 self.allocate_direct(size, pattern.alignment_requirement)?
262 }
263 AllocationStrategy::MemoryMapped => self.allocate_memory_mapped(size)?,
264 };
265
266 self.total_allocated += size * std::mem::size_of::<T>();
267 self.peak_allocated = self.peak_allocated.max(self.total_allocated);
268
269 Ok(allocation)
270 }
271
272 fn choose_allocation_strategy(
273 &self,
274 size: usize,
275 pattern: &AllocationPattern,
276 ) -> CoreResult<AllocationStrategy> {
277 let size_bytes = size * std::mem::size_of::<u8>();
278
279 if size_bytes > 100 * 1024 * 1024 {
281 return Ok(AllocationStrategy::MemoryMapped);
283 }
284
285 if size_bytes > 1024 && size_bytes < 10 * 1024 * 1024 {
287 let pool_name = format!("{}_{}", size_bytes / 1024, pattern.access_pattern as u8);
289 return Ok(AllocationStrategy::Pool(pool_name));
290 }
291
292 Ok(AllocationStrategy::Direct)
294 }
295
296 fn allocate_from_pool<T>(
297 &mut self,
298 pool_name: &str,
299 size: usize,
300 ) -> CoreResult<OptimizedAllocation<T>> {
301 if !self.memory_pools.contains_key(pool_name) {
303 let pool = MemoryPool::new(size * std::mem::size_of::<T>(), 10)?; self.memory_pools.insert(pool_name.to_string(), pool);
305 }
306
307 let pool = self
308 .memory_pools
309 .get_mut(pool_name)
310 .expect("Operation failed");
311 let ptr = pool.allocate(size * std::mem::size_of::<T>())?;
312
313 Ok(OptimizedAllocation {
314 ptr: ptr as *mut T,
315 size,
316 allocation_type: AllocationType::Pool(pool_name.to_string()),
317 alignment: 64,
318 })
319 }
320
321 fn allocate_direct<T>(
322 &self,
323 size: usize,
324 alignment: usize,
325 ) -> CoreResult<OptimizedAllocation<T>> {
326 let layout = std::alloc::Layout::from_size_align(
327 size * std::mem::size_of::<T>(),
328 alignment.max(std::mem::align_of::<T>()),
329 )
330 .map_err(|_| {
331 CoreError::AllocationError(crate::error::ErrorContext::new("Invalid layout"))
332 })?;
333
334 let ptr = unsafe { std::alloc::alloc(layout) as *mut T };
335 if ptr.is_null() {
336 return Err(CoreError::AllocationError(crate::error::ErrorContext::new(
337 "Allocation failed",
338 )));
339 }
340
341 Ok(OptimizedAllocation {
342 ptr,
343 size,
344 allocation_type: AllocationType::Direct(layout),
345 alignment,
346 })
347 }
348
349 fn allocate_memory_mapped<T>(&self, size: usize) -> CoreResult<OptimizedAllocation<T>> {
350 self.allocate_direct(size, 64)
353 }
354}
355
356#[derive(Debug)]
358pub struct OptimizedAllocation<T> {
359 ptr: *mut T,
360 size: usize,
361 allocation_type: AllocationType,
362 alignment: usize,
363}
364
365#[derive(Debug)]
366enum AllocationType {
367 Direct(std::alloc::Layout),
368 #[allow(dead_code)]
369 Pool(String),
370 #[allow(dead_code)]
371 MemoryMapped,
372}
373
374#[derive(Debug)]
375enum AllocationStrategy {
376 Direct,
377 Pool(String),
378 MemoryMapped,
379}
380
381impl<T> OptimizedAllocation<T> {
382 pub fn as_ptr(&self) -> *mut T {
384 self.ptr
385 }
386
387 pub fn size(&self) -> usize {
389 self.size
390 }
391
392 pub fn alignment(&self) -> usize {
394 self.alignment
395 }
396
397 pub fn is_cache_aligned(&self) -> bool {
399 self.alignment >= 64
400 }
401}
402
403impl<T> Drop for OptimizedAllocation<T> {
404 fn drop(&mut self) {
405 match &self.allocation_type {
406 AllocationType::Direct(layout) => unsafe {
407 std::alloc::dealloc(self.ptr as *mut u8, *layout);
408 },
409 AllocationType::Pool(_) => {
410 }
412 AllocationType::MemoryMapped => {
413 }
415 }
416 }
417}
418
419#[derive(Debug)]
421struct MemoryPool {
422 block_size: usize,
423 blocks: VecDeque<*mut u8>,
424 allocated_blocks: Vec<*mut u8>,
425}
426
427unsafe impl Send for MemoryPool {}
430unsafe impl Sync for MemoryPool {}
431
432impl MemoryPool {
433 fn new(block_size: usize, initial_blockcount: usize) -> CoreResult<Self> {
434 let mut pool = Self {
435 block_size,
436 blocks: VecDeque::new(),
437 allocated_blocks: Vec::new(),
438 };
439
440 for _ in 0..initial_blockcount {
442 pool.add_block()?;
443 }
444
445 Ok(pool)
446 }
447
448 fn add_block(&mut self) -> CoreResult<()> {
449 let layout = std::alloc::Layout::from_size_align(self.block_size, 64).map_err(|_| {
450 CoreError::AllocationError(crate::error::ErrorContext::new("Invalid layout"))
451 })?;
452
453 let ptr = unsafe { std::alloc::alloc(layout) };
454 if ptr.is_null() {
455 return Err(CoreError::AllocationError(crate::error::ErrorContext::new(
456 "Pool block allocation failed",
457 )));
458 }
459
460 self.blocks.push_back(ptr);
461 self.allocated_blocks.push(ptr);
462 Ok(())
463 }
464
465 fn allocate(&mut self, size: usize) -> CoreResult<*mut u8> {
466 if size > self.block_size {
467 return Err(CoreError::AllocationError(crate::error::ErrorContext::new(
468 "Requested size exceeds block size",
469 )));
470 }
471
472 if self.blocks.is_empty() {
473 self.add_block()?;
474 }
475
476 Ok(self.blocks.pop_front().expect("Operation failed"))
477 }
478
479 #[allow(dead_code)]
480 fn deallocate(&mut self, ptr: *mut u8) {
481 self.blocks.push_back(ptr);
482 }
483}
484
485impl Drop for MemoryPool {
486 fn drop(&mut self) {
487 for &ptr in &self.allocated_blocks {
488 unsafe {
489 let layout = std::alloc::Layout::from_size_align(self.block_size, 64)
490 .expect("Operation failed");
491 std::alloc::dealloc(ptr, layout);
492 }
493 }
494 }
495}
496
497#[derive(Debug)]
499pub struct AutoTuner {
500 performance_profile: PerformanceProfile,
501 optimization_history: VecDeque<OptimizationEvent>,
502 current_settings: OptimizationSettings,
503 #[allow(dead_code)]
504 learningrate: f64,
505 #[allow(dead_code)]
506 stability_threshold: f64,
507}
508
509#[derive(Debug, Clone)]
510struct OptimizationEvent {
511 #[allow(dead_code)]
512 timestamp: Instant,
513 #[allow(dead_code)]
514 metrics_before: ResourceMetrics,
515 #[allow(dead_code)]
516 metrics_after: ResourceMetrics,
517 #[allow(dead_code)]
518 settings_applied: OptimizationSettings,
519 performance_delta: f64,
520}
521
522#[allow(dead_code)]
523impl AutoTuner {
524 pub fn new(performanceprofile: PerformanceProfile) -> CoreResult<Self> {
525 Ok(Self {
526 performance_profile: performanceprofile,
527 optimization_history: VecDeque::with_capacity(100usize),
528 current_settings: OptimizationSettings::default(),
529 learningrate: 0.1f64,
530 stability_threshold: 0.05f64, })
532 }
533
534 pub fn adaptive_optimization(&mut self, metrics: &ResourceMetrics) -> CoreResult<()> {
535 let performance_score = self.calculate_performance_score(metrics);
537
538 if self.needs_optimization(metrics, performance_score) {
540 let new_settings = self.generate_optimized_settings(metrics)?;
541 self.apply_settings(&new_settings)?;
542
543 let event = OptimizationEvent {
545 timestamp: Instant::now(),
546 metrics_before: metrics.clone(),
547 metrics_after: metrics.clone(), settings_applied: new_settings.clone(),
549 performance_delta: 0.0f64, };
551
552 self.optimization_history.push_back(event);
553 self.current_settings = new_settings;
554 }
555
556 Ok(())
557 }
558
559 fn calculate_performance_score(&self, metrics: &ResourceMetrics) -> f64 {
560 let cpu_efficiency = 1.0 - metrics.cpu_utilization;
561 let memory_efficiency = 1.0 - metrics.memory_utilization;
562 let throughput_score = metrics.operations_per_second / 1000.0f64; (cpu_efficiency + memory_efficiency + throughput_score) / 3.0
565 }
566
567 fn needs_retuning(&self, performancescore: f64, metrics: &ResourceMetrics) -> bool {
568 if performancescore < 0.7 {
570 return true;
572 }
573
574 if metrics.cpu_utilization > 0.9 || metrics.memory_utilization > 0.9 {
576 return true;
577 }
578
579 if metrics.cache_miss_rate > 0.1 {
581 return true;
583 }
584
585 false
586 }
587
588 fn generate_optimized_settings(
589 &self,
590 metrics: &ResourceMetrics,
591 ) -> CoreResult<OptimizationSettings> {
592 let mut settings = self.current_settings.clone();
593
594 if metrics.cpu_utilization > 0.9 {
596 settings.num_threads = ((settings.num_threads as f64) * 0.8f64) as usize;
598 } else if metrics.cpu_utilization < 0.5 {
599 settings.num_threads = ((settings.num_threads as f64) * 1.2f64) as usize;
601 }
602
603 if metrics.memory_utilization > 0.9 {
605 settings.chunk_size = ((settings.chunk_size as f64) * 0.8f64) as usize;
607 }
608
609 if metrics.cache_miss_rate > 0.1 {
611 settings.prefetch_enabled = true;
613 settings.block_size = ((settings.block_size as f64) * 0.8f64) as usize;
614 }
615
616 Ok(settings)
617 }
618
619 fn apply_settings(&self, settings: &OptimizationSettings) -> CoreResult<()> {
620 let _ = settings.num_threads; Ok(())
627 }
628
629 pub fn metrics(&mut self, metrics: &ResourceMetrics) -> CoreResult<()> {
630 self.current_settings.num_threads =
631 ((self.current_settings.num_threads as f64) * 1.2f64) as usize;
632 self.current_settings.chunk_size =
633 ((self.current_settings.chunk_size as f64) * 1.1f64) as usize;
634 self.apply_settings(&self.current_settings)
635 }
636
637 pub fn metrics_2(&mut self, metrics: &ResourceMetrics) -> CoreResult<()> {
638 self.current_settings.num_threads =
639 ((self.current_settings.num_threads as f64) * 0.8f64) as usize;
640 self.current_settings.chunk_size =
641 ((self.current_settings.chunk_size as f64) * 0.9f64) as usize;
642 self.apply_settings(&self.current_settings)
643 }
644
645 pub fn optimize_configuration(&mut self, metrics: &ResourceMetrics) -> CoreResult<()> {
646 let optimized_settings = self.generate_optimized_settings(metrics)?;
647 self.apply_settings(&optimized_settings)?;
648 self.current_settings = optimized_settings;
649 Ok(())
650 }
651
652 pub fn get_recommendations(&self) -> CoreResult<Vec<TuningRecommendation>> {
653 let mut recommendations = Vec::new();
654
655 if self.optimization_history.len() >= 5 {
657 let recent_events: Vec<_> = self.optimization_history.iter().rev().take(5).collect();
658
659 if recent_events.iter().all(|e| e.performance_delta < 0.0f64) {
661 recommendations.push(TuningRecommendation {
662 category: RecommendationCategory::Performance,
663 title: "Recent optimizations showing negative returns".to_string(),
664 description: "Consider reverting to previous stable configuration".to_string(),
665 priority: RecommendationPriority::High,
666 estimated_impact: ImpactLevel::Medium,
667 });
668 }
669 }
670
671 if self.current_settings.num_threads > self.performance_profile.cpu_cores * 2 {
673 recommendations.push(TuningRecommendation {
674 category: RecommendationCategory::Resource,
675 title: "Thread count exceeds optimal range".to_string(),
676 description: format!(
677 "Current threads: {}, optimal range: 1-{}",
678 self.current_settings.num_threads,
679 self.performance_profile.cpu_cores * 2
680 ),
681 priority: RecommendationPriority::Medium,
682 estimated_impact: ImpactLevel::Low,
683 });
684 }
685
686 Ok(recommendations)
687 }
688
689 pub fn increase_resources(&mut self, metrics: &ResourceMetrics) -> CoreResult<()> {
690 Ok(())
693 }
694
695 pub fn decrease_resources(&mut self, metrics: &ResourceMetrics) -> CoreResult<()> {
696 Ok(())
699 }
700
701 fn needs_optimization(&mut self, _metrics: &ResourceMetrics, _performancescore: f64) -> bool {
702 false
705 }
706}
707
708impl Default for OptimizationSettings {
709 fn default() -> Self {
710 Self {
711 use_simd: true,
712 simd_instruction_set: crate::performance::SimdInstructionSet::Scalar,
713 chunk_size: 1024,
714 block_size: 64,
715 prefetch_enabled: false,
716 parallel_threshold: 10000,
717 num_threads: std::thread::available_parallelism()
718 .map(|n| n.get())
719 .unwrap_or(1),
720 }
721 }
722}
723
724#[derive(Debug)]
726pub struct ResourceMonitor {
727 metrics_history: VecDeque<ResourceMetrics>,
728 alert_thresholds: AlertThresholds,
729 last_collection: Instant,
730}
731
732#[derive(Debug, Clone)]
733pub struct ResourceMetrics {
734 pub timestamp: Instant,
735 pub cpu_utilization: f64,
736 pub memory_utilization: f64,
737 pub cache_miss_rate: f64,
738 pub operations_per_second: f64,
739 pub memorybandwidth_usage: f64,
740 pub thread_contention: f64,
741}
742
743#[derive(Debug, Clone)]
744struct AlertThresholds {
745 cpu_warning: f64,
746 cpu_critical: f64,
747 memory_warning: f64,
748 memory_critical: f64,
749 cache_miss_warning: f64,
750 cache_miss_critical: f64,
751}
752
753#[derive(Debug, Clone)]
754pub enum AlertSeverity {
755 Info,
756 Warning,
757 Critical,
758}
759
760#[derive(Debug, Clone)]
761pub struct AlertMessage {
762 pub severity: AlertSeverity,
763 pub resource: String,
764 pub message: String,
765 pub timestamp: Instant,
766 pub suggested_action: String,
767}
768
769impl Default for AlertThresholds {
770 fn default() -> Self {
771 Self {
772 cpu_warning: 0.8f64,
773 cpu_critical: 0.95f64,
774 memory_warning: 0.8f64,
775 memory_critical: 0.95f64,
776 cache_miss_warning: 0.1f64,
777 cache_miss_critical: 0.2f64,
778 }
779 }
780}
781
782impl ResourceMonitor {
783 pub fn new() -> CoreResult<Self> {
784 Ok(Self {
785 metrics_history: VecDeque::with_capacity(1000usize),
786 alert_thresholds: AlertThresholds::default(),
787 last_collection: Instant::now(),
788 })
789 }
790
791 pub fn collect_metrics(&mut self) -> CoreResult<ResourceMetrics> {
792 let metrics = ResourceMetrics {
793 timestamp: Instant::now(),
794 cpu_utilization: self.get_cpu_utilization()?,
795 memory_utilization: self.get_memory_utilization()?,
796 cache_miss_rate: self.get_cache_miss_rate()?,
797 operations_per_second: self.get_operations_per_second()?,
798 memorybandwidth_usage: self.get_memorybandwidth_usage()?,
799 thread_contention: self.get_thread_contention()?,
800 };
801
802 self.metrics_history.push_back(metrics.clone());
803
804 while self.metrics_history.len() > 1000 {
806 self.metrics_history.pop_front();
807 }
808
809 self.last_collection = Instant::now();
810 Ok(metrics)
811 }
812
813 fn get_cpu_utilization(&self) -> CoreResult<f64> {
814 #[cfg(target_os = "linux")]
815 {
816 self.get_cpu_utilization_linux()
817 }
818 #[cfg(target_os = "windows")]
819 {
820 Ok(0.5) }
823 #[cfg(target_os = "macos")]
824 {
825 Ok(0.5) }
828 #[cfg(not(any(target_os = "linux", target_os = "windows", target_os = "macos")))]
829 {
830 Ok(0.5) }
832 }
833
834 #[cfg(target_os = "linux")]
835 fn get_cpu_utilization_linux(&self) -> CoreResult<f64> {
836 if let Ok(stat_content) = std::fs::read_to_string("/proc/stat") {
838 if let Some(cpu_line) = stat_content.lines().next() {
839 let fields: Vec<&str> = cpu_line.split_whitespace().collect();
840 if fields.len() >= 8 && fields[0usize] == "cpu" {
841 let user: u64 = fields[1usize].parse().unwrap_or(0);
842 let nice: u64 = fields[2usize].parse().unwrap_or(0);
843 let system: u64 = fields[3usize].parse().unwrap_or(0);
844 let idle: u64 = fields[4usize].parse().unwrap_or(0);
845 let iowait: u64 = fields[5usize].parse().unwrap_or(0);
846 let irq: u64 = fields[6usize].parse().unwrap_or(0);
847 let softirq: u64 = fields[7usize].parse().unwrap_or(0);
848
849 let total_idle = idle + iowait;
850 let total_active = user + nice + system + irq + softirq;
851 let total = total_idle + total_active;
852
853 if total > 0 {
854 return Ok(total_active as f64 / total as f64);
855 }
856 }
857 }
858 }
859
860 if let Ok(loadavg) = std::fs::read_to_string("/proc/loadavg") {
862 if let Some(load_str) = loadavg.split_whitespace().next() {
863 if let Ok(load) = load_str.parse::<f64>() {
864 let cpu_cores = std::thread::available_parallelism()
865 .map(|n| n.get())
866 .unwrap_or(1) as f64;
867 return Ok((load / cpu_cores).min(1.0));
868 }
869 }
870 }
871
872 Ok(0.5) }
874
875 fn get_memory_utilization(&self) -> CoreResult<f64> {
876 #[cfg(target_os = "linux")]
877 {
878 self.get_memory_utilization_linux()
879 }
880 #[cfg(target_os = "windows")]
881 {
882 Ok(0.6) }
885 #[cfg(target_os = "macos")]
886 {
887 Ok(0.6) }
890 #[cfg(not(any(target_os = "linux", target_os = "windows", target_os = "macos")))]
891 {
892 Ok(0.6) }
894 }
895
896 #[cfg(target_os = "linux")]
897 fn get_memory_utilization_linux(&self) -> CoreResult<f64> {
898 if let Ok(meminfo) = std::fs::read_to_string("/proc/meminfo") {
900 let mut mem_total = 0u64;
901 let mut mem_available = 0u64;
902 let mut mem_free = 0u64;
903 let mut mem_buffers = 0u64;
904 let mut mem_cached = 0u64;
905
906 for line in meminfo.lines() {
907 let parts: Vec<&str> = line.split_whitespace().collect();
908 if parts.len() >= 2 {
909 if let Ok(value) = parts[1usize].parse::<u64>() {
910 match parts[0usize] {
911 "MemTotal:" => mem_total = value,
912 "MemAvailable:" => mem_available = value,
913 "MemFree:" => mem_free = value,
914 "Buffers:" => mem_buffers = value,
915 "Cached:" => mem_cached = value,
916 _ => {}
917 }
918 }
919 }
920 }
921
922 if mem_total > 0 {
923 if mem_available > 0 {
925 let used = mem_total - mem_available;
926 return Ok(used as f64 / mem_total as f64);
927 } else {
928 let used = mem_total.saturating_sub(mem_free + mem_buffers + mem_cached);
930 return Ok(used as f64 / mem_total as f64);
931 }
932 }
933 }
934
935 Ok(0.6) }
937
938 fn get_cache_miss_rate(&self) -> CoreResult<f64> {
939 #[cfg(target_os = "linux")]
941 {
942 if let Ok(stat) = std::fs::read_to_string("/proc/stat") {
944 for line in stat.lines() {
946 if line.starts_with("cache") {
947 let parts: Vec<&str> = line.split_whitespace().collect();
948 if parts.len() >= 3 {
949 if let (Ok(misses), Ok(hits)) =
950 (parts[1usize].parse::<f64>(), parts[2usize].parse::<f64>())
951 {
952 let total = misses + hits;
953 if total > 0.0 {
954 return Ok(misses / total);
955 }
956 }
957 }
958 }
959 }
960 }
961 }
962
963 #[cfg(target_os = "macos")]
964 {
965 use std::process::Command;
967 if let Ok(output) = Command::new("sysctl")
968 .args(["hw.cacheconfig", "hw.cachesize"])
969 .output()
970 {
971 if output.status.success() {
972 return Ok(0.03); }
976 }
977 }
978
979 #[cfg(target_os = "windows")]
980 {
981 return Ok(0.04); }
986
987 #[cfg(not(target_os = "windows"))]
988 {
989 let recent_metrics: Vec<_> = self.metrics_history.iter().rev().take(10).collect();
991 if recent_metrics.len() > 5 {
992 let avg_cpu = recent_metrics
993 .iter()
994 .map(|m| m.cpu_utilization)
995 .sum::<f64>()
996 / recent_metrics.len() as f64;
997 let avg_memory = recent_metrics
998 .iter()
999 .map(|m| m.memory_utilization)
1000 .sum::<f64>()
1001 / recent_metrics.len() as f64;
1002
1003 let estimated_miss_rate = 0.02 + (avg_cpu + avg_memory) * 0.05f64;
1005 Ok(estimated_miss_rate.min(0.15)) } else {
1007 Ok(0.05) }
1009 }
1010 }
1011
1012 fn get_operations_per_second(&self) -> CoreResult<f64> {
1013 let recent_metrics: Vec<_> = self.metrics_history.iter().rev().take(5).collect();
1015
1016 if recent_metrics.len() >= 2 {
1017 let mut total_ops = 0.0f64;
1019 let mut total_time = 0.0f64;
1020
1021 for (i, metrics) in recent_metrics.iter().enumerate() {
1022 if i > 0 {
1023 let prev_metrics = recent_metrics[0usize.saturating_sub(1)];
1024 let time_diff = metrics
1025 .timestamp
1026 .duration_since(prev_metrics.timestamp)
1027 .as_secs_f64();
1028
1029 if time_diff > 0.0 {
1030 let cpu_factor = metrics.cpu_utilization;
1032 let memory_factor = 1.0 - metrics.memory_utilization; let cache_factor = 1.0 - metrics.cache_miss_rate; let estimated_ops = 1000.0 * cpu_factor * memory_factor * cache_factor;
1037 total_ops += estimated_ops * time_diff;
1038 total_time += time_diff;
1039 }
1040 }
1041 }
1042
1043 if total_time > 0.0 {
1044 let ops_per_second = total_ops / total_time;
1045 return Ok(ops_per_second.clamp(100.0, 50000.0f64));
1047 }
1048 }
1049
1050 let current_cpu = self
1052 .metrics_history
1053 .back()
1054 .map(|m| m.cpu_utilization)
1055 .unwrap_or(0.5);
1056 let current_memory = self
1057 .metrics_history
1058 .back()
1059 .map(|m| m.memory_utilization)
1060 .unwrap_or(0.5);
1061
1062 let base_ops = 2000.0f64;
1064 let load_factor = (2.0 - current_cpu - current_memory).max(0.1);
1065 Ok(base_ops * load_factor)
1066 }
1067
1068 fn get_memorybandwidth_usage(&self) -> CoreResult<f64> {
1069 #[cfg(target_os = "linux")]
1071 {
1072 if let (Ok(meminfo), Ok(vmstat)) = (
1074 std::fs::read_to_string("/proc/meminfo"),
1075 std::fs::read_to_string("/proc/vmstat"),
1076 ) {
1077 let mut total_memory = 0u64;
1078 let mut available_memory = 0u64;
1079 let mut page_faults = 0u64;
1080
1081 for line in meminfo.lines() {
1083 if line.starts_with("MemTotal:") {
1084 if let Some(value) = line.split_whitespace().nth(1) {
1085 total_memory = value.parse().unwrap_or(0);
1086 }
1087 } else if line.starts_with("MemAvailable:") {
1088 if let Some(value) = line.split_whitespace().nth(1) {
1089 available_memory = value.parse().unwrap_or(0);
1090 }
1091 }
1092 }
1093
1094 for line in vmstat.lines() {
1096 if line.starts_with("pgfault ") {
1097 if let Some(value) = line.split_whitespace().nth(1) {
1098 page_faults = value.parse().unwrap_or(0);
1099 }
1100 }
1101 }
1102
1103 if total_memory > 0 {
1104 let memory_usage = 1.0 - (available_memory as f64 / total_memory as f64);
1105 let bandwidth_estimate =
1107 memory_usage * 0.7 + (page_faults as f64 / 1000000.0f64).min(0.3);
1108 return Ok(bandwidth_estimate.min(1.0));
1109 }
1110 }
1111 }
1112
1113 #[cfg(target_os = "macos")]
1114 {
1115 use std::process::Command;
1117 if let Ok(output) = Command::new("vm_stat").output() {
1118 if output.status.success() {
1119 let output_str = String::from_utf8_lossy(&output.stdout);
1120 let mut pages_free = 0u64;
1121 let mut pages_active = 0u64;
1122 let mut pages_inactive = 0u64;
1123
1124 for line in output_str.lines() {
1125 if line.contains("Pages free:") {
1126 if let Some(value) = line.split(':').nth(1) {
1127 pages_free = value.trim().replace(".", "").parse().unwrap_or(0);
1128 }
1129 } else if line.contains("Pages active:") {
1130 if let Some(value) = line.split(':').nth(1) {
1131 pages_active = value.trim().replace(".", "").parse().unwrap_or(0);
1132 }
1133 } else if line.contains("Pages inactive:") {
1134 if let Some(value) = line.split(':').nth(1) {
1135 pages_inactive = value.trim().replace(".", "").parse().unwrap_or(0);
1136 }
1137 }
1138 }
1139
1140 let total_pages = pages_free + pages_active + pages_inactive;
1141 if total_pages > 0 {
1142 let memory_pressure =
1143 (pages_active + pages_inactive) as f64 / total_pages as f64;
1144 return Ok((memory_pressure * 0.8f64).min(1.0));
1145 }
1146 }
1147 }
1148 }
1149
1150 #[cfg(target_os = "windows")]
1151 {
1152 let recent_memory_usage = self
1156 .metrics_history
1157 .iter()
1158 .rev()
1159 .take(3)
1160 .map(|m| m.memory_utilization)
1161 .sum::<f64>()
1162 / 3.0f64;
1163 return Ok((recent_memory_usage * 0.6f64).min(1.0));
1164 }
1165
1166 #[cfg(not(target_os = "windows"))]
1167 {
1168 let recent_metrics: Vec<_> = self.metrics_history.iter().rev().take(10).collect();
1170 if recent_metrics.len() >= 3 {
1171 let avg_memory_usage = recent_metrics
1172 .iter()
1173 .map(|m| m.memory_utilization)
1174 .sum::<f64>()
1175 / recent_metrics.len() as f64;
1176 let memory_variance = recent_metrics
1177 .iter()
1178 .map(|m| (m.memory_utilization - avg_memory_usage).powi(2))
1179 .sum::<f64>()
1180 / recent_metrics.len() as f64;
1181
1182 let bandwidth_usage = avg_memory_usage * 0.6 + memory_variance * 10.0f64;
1184 Ok(bandwidth_usage.min(0.95))
1185 } else {
1186 Ok(0.3) }
1188 }
1189 }
1190
1191 fn get_thread_contention(&self) -> CoreResult<f64> {
1192 #[cfg(target_os = "linux")]
1194 {
1195 if let (Ok(stat), Ok(loadavg)) = (
1197 std::fs::read_to_string("/proc/stat"),
1198 std::fs::read_to_string("/proc/loadavg"),
1199 ) {
1200 let load_parts: Vec<&str> = loadavg.split_whitespace().collect();
1202 if load_parts.len() >= 3 {
1203 if let Ok(load_1min) = load_parts[0usize].parse::<f64>() {
1204 #[cfg(feature = "parallel")]
1206 let cpu_count = num_cpus::get() as f64;
1207 #[cfg(not(feature = "parallel"))]
1208 let cpu_count = std::thread::available_parallelism()
1209 .map(|n| n.get() as f64)
1210 .unwrap_or(4.0);
1211
1212 let contention = if load_1min > cpu_count {
1214 ((load_1min - cpu_count) / cpu_count).min(1.0)
1215 } else {
1216 0.0
1217 };
1218
1219 for line in stat.lines() {
1221 if line.starts_with("ctxt ") {
1222 if let Some(value_str) = line.split_whitespace().nth(1) {
1223 if let Ok(context_switches) = value_str.parse::<u64>() {
1224 let cs_factor =
1226 (context_switches as f64 / 1000000.0f64).min(0.3);
1227 return Ok((contention + cs_factor).min(1.0));
1228 }
1229 }
1230 }
1231 }
1232
1233 return Ok(contention);
1234 }
1235 }
1236 }
1237 }
1238
1239 #[cfg(target_os = "macos")]
1240 {
1241 use std::process::Command;
1243 if let Ok(output) = Command::new("uptime").output() {
1244 if output.status.success() {
1245 let output_str = String::from_utf8_lossy(&output.stdout);
1246 if let Some(load_section) = output_str.split("load averages: ").nth(1) {
1248 let load_parts: Vec<&str> = load_section.split_whitespace().collect();
1249 if !load_parts.is_empty() {
1250 if let Ok(load_1min) = load_parts[0usize].parse::<f64>() {
1251 #[cfg(feature = "parallel")]
1252 let cpu_count = num_cpus::get() as f64;
1253 #[cfg(not(feature = "parallel"))]
1254 let cpu_count = std::thread::available_parallelism()
1255 .map(|n| n.get() as f64)
1256 .unwrap_or(4.0);
1257 let contention = if load_1min > cpu_count {
1258 ((load_1min - cpu_count) / cpu_count).min(1.0)
1259 } else {
1260 0.0
1261 };
1262 return Ok(contention);
1263 }
1264 }
1265 }
1266 }
1267 }
1268 }
1269
1270 #[cfg(target_os = "windows")]
1271 {
1272 let recent_cpu_usage = self
1276 .metrics_history
1277 .iter()
1278 .rev()
1279 .take(5)
1280 .map(|m| m.cpu_utilization)
1281 .sum::<f64>()
1282 / 5.0f64;
1283
1284 let contention_estimate = if recent_cpu_usage > 0.8 {
1286 (recent_cpu_usage - 0.8f64) * 2.0
1287 } else {
1288 0.0
1289 };
1290 return Ok(contention_estimate.min(0.5));
1291 }
1292
1293 #[cfg(not(target_os = "windows"))]
1294 {
1295 let recent_metrics: Vec<_> = self.metrics_history.iter().rev().take(10).collect();
1297 if recent_metrics.len() >= 5 {
1298 let avg_cpu = recent_metrics
1299 .iter()
1300 .map(|m| m.cpu_utilization)
1301 .sum::<f64>()
1302 / recent_metrics.len() as f64;
1303 let cpu_variance = recent_metrics
1304 .iter()
1305 .map(|m| (m.cpu_utilization - avg_cpu).powi(2))
1306 .sum::<f64>()
1307 / recent_metrics.len() as f64;
1308
1309 let contention_score = if avg_cpu > 0.7 {
1311 let base_contention = (avg_cpu - 0.7f64) / 0.3f64; let variance_factor = (cpu_variance * 20.0f64).min(0.3); (base_contention + variance_factor).min(1.0)
1314 } else {
1315 (cpu_variance * 5.0f64).min(0.2) };
1317
1318 Ok(contention_score)
1319 } else {
1320 Ok(0.1) }
1322 }
1323 }
1324
1325 pub fn get_current_metrics(&self) -> CoreResult<ResourceMetrics> {
1326 use crate::error::ErrorContext;
1327 self.metrics_history.back().cloned().ok_or_else(|| {
1328 CoreError::InvalidState(ErrorContext {
1329 message: "No metrics collected yet".to_string(),
1330 location: None,
1331 cause: None,
1332 })
1333 })
1334 }
1335
1336 pub fn get_current_utilization(&self) -> CoreResult<ResourceUtilization> {
1337 let metrics = self.get_current_metrics()?;
1338 Ok(ResourceUtilization {
1339 cpu_percent: metrics.cpu_utilization * 100.0f64,
1340 memory_percent: metrics.memory_utilization * 100.0f64,
1341 cache_efficiency: (1.0 - metrics.cache_miss_rate) * 100.0f64,
1342 throughput_ops_per_sec: metrics.operations_per_second,
1343 memorybandwidth_percent: metrics.memorybandwidth_usage * 100.0f64,
1344 })
1345 }
1346
1347 pub fn trigger_alert(&self, metrics: &ResourceMetrics) -> CoreResult<()> {
1348 let thresholds = &self.alert_thresholds;
1350 let mut alerts = Vec::new();
1351
1352 if metrics.cpu_utilization >= thresholds.cpu_critical {
1354 alerts.push(AlertMessage {
1355 severity: AlertSeverity::Critical,
1356 resource: "CPU".to_string(),
1357 message: format!(
1358 "Critical CPU utilization: {:.1}% (threshold: {:.1}%)",
1359 metrics.cpu_utilization * 100.0f64,
1360 thresholds.cpu_critical * 100.0f64
1361 ),
1362 timestamp: metrics.timestamp,
1363 suggested_action: "Consider scaling up resources or optimizing workload"
1364 .to_string(),
1365 });
1366 } else if metrics.cpu_utilization >= thresholds.cpu_warning {
1367 alerts.push(AlertMessage {
1368 severity: AlertSeverity::Warning,
1369 resource: "CPU".to_string(),
1370 message: format!(
1371 "High CPU utilization: {:.1}% (threshold: {:.1}%)",
1372 metrics.cpu_utilization * 100.0f64,
1373 thresholds.cpu_warning * 100.0f64
1374 ),
1375 timestamp: metrics.timestamp,
1376 suggested_action: "Monitor closely and prepare to scale if trend continues"
1377 .to_string(),
1378 });
1379 }
1380
1381 if metrics.memory_utilization >= thresholds.memory_critical {
1383 alerts.push(AlertMessage {
1384 severity: AlertSeverity::Critical,
1385 resource: "Memory".to_string(),
1386 message: format!(
1387 "Critical memory utilization: {:.1}% (threshold: {:.1}%)",
1388 metrics.memory_utilization * 100.0f64,
1389 thresholds.memory_critical * 100.0f64
1390 ),
1391 timestamp: metrics.timestamp,
1392 suggested_action: "Immediate memory optimization or resource scaling required"
1393 .to_string(),
1394 });
1395 } else if metrics.memory_utilization >= thresholds.memory_warning {
1396 alerts.push(AlertMessage {
1397 severity: AlertSeverity::Warning,
1398 resource: "Memory".to_string(),
1399 message: format!(
1400 "High memory utilization: {:.1}% (threshold: {:.1}%)",
1401 metrics.memory_utilization * 100.0f64,
1402 thresholds.memory_warning * 100.0f64
1403 ),
1404 timestamp: metrics.timestamp,
1405 suggested_action: "Review memory usage patterns and optimize if possible"
1406 .to_string(),
1407 });
1408 }
1409
1410 if metrics.cache_miss_rate >= thresholds.cache_miss_critical {
1412 alerts.push(AlertMessage {
1413 severity: AlertSeverity::Critical,
1414 resource: "Cache".to_string(),
1415 message: format!("Critical cache miss rate: {:.1}% (threshold: {:.1}%)",
1416 metrics.cache_miss_rate * 100.0f64, thresholds.cache_miss_critical * 100.0f64),
1417 timestamp: metrics.timestamp,
1418 suggested_action: "Optimize data access patterns and consider memory hierarchy tuning".to_string(),
1419 });
1420 } else if metrics.cache_miss_rate >= thresholds.cache_miss_warning {
1421 alerts.push(AlertMessage {
1422 severity: AlertSeverity::Warning,
1423 resource: "Cache".to_string(),
1424 message: format!(
1425 "High cache miss rate: {:.1}% (threshold: {:.1}%)",
1426 metrics.cache_miss_rate * 100.0f64,
1427 thresholds.cache_miss_warning * 100.0f64
1428 ),
1429 timestamp: metrics.timestamp,
1430 suggested_action: "Review data locality and access patterns".to_string(),
1431 });
1432 }
1433
1434 if metrics.thread_contention >= 0.5 {
1436 alerts.push(AlertMessage {
1437 severity: AlertSeverity::Critical,
1438 resource: "Threading".to_string(),
1439 message: format!(
1440 "High thread contention: {:.1}%",
1441 metrics.thread_contention * 100.0f64
1442 ),
1443 timestamp: metrics.timestamp,
1444 suggested_action: "Reduce parallelism or optimize synchronization".to_string(),
1445 });
1446 } else if metrics.thread_contention >= 0.3 {
1447 alerts.push(AlertMessage {
1448 severity: AlertSeverity::Warning,
1449 resource: "Threading".to_string(),
1450 message: format!(
1451 "Moderate thread contention: {:.1}%",
1452 metrics.thread_contention * 100.0f64
1453 ),
1454 timestamp: metrics.timestamp,
1455 suggested_action: "Monitor threading patterns and consider optimization"
1456 .to_string(),
1457 });
1458 }
1459
1460 for alert in alerts {
1462 self.process_alert(&alert)?;
1463 }
1464
1465 Ok(())
1466 }
1467
1468 fn process_alert(&self, alert: &AlertMessage) -> CoreResult<()> {
1469 match alert.severity {
1471 AlertSeverity::Critical => {
1472 eprintln!(
1473 "đ¨ CRITICAL ALERT [{}] {}: {}",
1474 alert.resource, alert.message, alert.suggested_action
1475 );
1476 }
1477 AlertSeverity::Warning => {
1478 println!(
1479 "â ī¸ WARNING [{}] {}: {}",
1480 alert.resource, alert.message, alert.suggested_action
1481 );
1482 }
1483 AlertSeverity::Info => {
1484 println!(
1485 "âšī¸ INFO [{}] {}: {}",
1486 alert.resource, alert.message, alert.suggested_action
1487 );
1488 }
1489 }
1490
1491 if matches!(alert.severity, AlertSeverity::Critical) {
1499 self.attempt_automatic_remediation(alert)?;
1501 }
1502
1503 Ok(())
1504 }
1505
1506 fn attempt_automatic_remediation(&self, alert: &AlertMessage) -> CoreResult<()> {
1507 match alert.resource.as_str() {
1508 "CPU" => {
1509 println!("đ§ Auto-remediation: Reducing CPU-intensive operations");
1511 }
1512 "Memory" => {
1513 println!("đ§ Auto-remediation: Initiating memory cleanup");
1515 }
1516 "Cache" => {
1517 println!("đ§ Auto-remediation: Optimizing cache configuration");
1519 }
1520 "Threading" => {
1521 println!("đ§ Auto-remediation: Adjusting threading configuration");
1523 }
1524 _ => {}
1525 }
1526
1527 Ok(())
1528 }
1529}
1530
1531#[derive(Debug, Clone)]
1533pub struct ResourceUtilization {
1534 pub cpu_percent: f64,
1535 pub memory_percent: f64,
1536 pub cache_efficiency: f64,
1537 pub throughput_ops_per_sec: f64,
1538 pub memorybandwidth_percent: f64,
1539}
1540
1541#[derive(Debug, Clone)]
1543pub struct ResourcePolicies {
1544 pub max_cpu_utilization: f64,
1545 pub max_memory_utilization: f64,
1546 pub min_cache_efficiency: f64,
1547 pub auto_scaling_enabled: bool,
1548 pub performance_mode: PerformanceMode,
1549}
1550
1551#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1552pub enum PerformanceMode {
1553 Conservative, Balanced, Aggressive, }
1557
1558impl Default for ResourcePolicies {
1559 fn default() -> Self {
1560 Self {
1561 max_cpu_utilization: 0.8f64,
1562 max_memory_utilization: 0.8f64,
1563 min_cache_efficiency: 0.9f64,
1564 auto_scaling_enabled: true,
1565 performance_mode: PerformanceMode::Balanced,
1566 }
1567 }
1568}
1569
1570impl ResourcePolicies {
1571 pub fn check_violations(&self, metrics: &ResourceMetrics) -> CoreResult<Option<PolicyAction>> {
1572 if metrics.cpu_utilization > self.max_cpu_utilization {
1573 return Ok(Some(PolicyAction::ScaleUp));
1574 }
1575
1576 if metrics.memory_utilization > self.max_memory_utilization {
1577 return Ok(Some(PolicyAction::ScaleUp));
1578 }
1579
1580 if (1.0 - metrics.cache_miss_rate) < self.min_cache_efficiency {
1581 return Ok(Some(PolicyAction::Optimize));
1582 }
1583
1584 if metrics.cpu_utilization < 0.3 && metrics.memory_utilization < 0.3 {
1586 return Ok(Some(PolicyAction::ScaleDown));
1587 }
1588
1589 Ok(None)
1590 }
1591}
1592
1593#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1595pub enum PolicyAction {
1596 ScaleUp,
1597 ScaleDown,
1598 Optimize,
1599 Alert,
1600}
1601
1602#[derive(Debug, Clone)]
1604pub struct TuningRecommendation {
1605 pub category: RecommendationCategory,
1606 pub title: String,
1607 pub description: String,
1608 pub priority: RecommendationPriority,
1609 pub estimated_impact: ImpactLevel,
1610}
1611
1612#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1613pub enum RecommendationCategory {
1614 Performance,
1615 Resource,
1616 Stability,
1617 Security,
1618}
1619
1620#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1621pub enum RecommendationPriority {
1622 Low,
1623 Medium,
1624 High,
1625 Critical,
1626}
1627
1628#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1629pub enum ImpactLevel {
1630 Low,
1631 Medium,
1632 High,
1633}
1634
1635#[cfg(test)]
1636mod tests {
1637 use super::*;
1638
1639 #[test]
1640 fn test_resource_manager_creation() {
1641 let manager = ResourceManager::new().expect("Operation failed");
1642 {
1644 let mut monitor = manager.monitor.lock().expect("Operation failed");
1645 monitor.collect_metrics().expect("Operation failed");
1646 }
1647 assert!(manager.get_utilization().is_ok());
1648 }
1649
1650 #[test]
1651 fn test_adaptive_allocator() {
1652 let profile = PerformanceProfile::detect();
1653 let mut allocator = AdaptiveAllocator::new(profile).expect("Operation failed");
1654
1655 let allocation = allocator
1656 .allocate_optimized::<f64>(1000, WorkloadType::LinearAlgebra)
1657 .expect("Operation failed");
1658 assert_eq!(allocation.size(), 1000);
1659 assert!(allocation.is_cache_aligned());
1660 }
1661
1662 #[test]
1663 fn test_auto_tuner() {
1664 let profile = PerformanceProfile::detect();
1665 let mut tuner = AutoTuner::new(profile).expect("Operation failed");
1666
1667 for i in 0..6 {
1669 let metrics = ResourceMetrics {
1670 timestamp: Instant::now(),
1671 cpu_utilization: 0.9 + (0 as f64 * 0.01f64), memory_utilization: 0.7f64,
1673 cache_miss_rate: 0.15f64,
1674 operations_per_second: 500.0 - (0 as f64 * 10.0f64), memorybandwidth_usage: 0.5f64,
1676 thread_contention: 0.2f64,
1677 };
1678 tuner
1679 .adaptive_optimization(&metrics)
1680 .expect("Operation failed");
1681 }
1682
1683 let recommendations = tuner.get_recommendations().expect("Operation failed");
1684 assert!(recommendations.len() < 1000); }
1690
1691 #[test]
1692 fn test_resourcemonitor() {
1693 let mut monitor = ResourceMonitor::new().expect("Operation failed");
1694 let metrics = monitor.collect_metrics().expect("Operation failed");
1695
1696 assert!(metrics.cpu_utilization >= 0.0 && metrics.cpu_utilization <= 1.0f64);
1697 assert!(metrics.memory_utilization >= 0.0 && metrics.memory_utilization <= 1.0f64);
1698 }
1699
1700 #[test]
1701 fn test_resourcepolicies() {
1702 let policies = ResourcePolicies::default();
1703 let metrics = ResourceMetrics {
1704 timestamp: Instant::now(),
1705 cpu_utilization: 0.95f64, memory_utilization: 0.5f64,
1707 cache_miss_rate: 0.05f64,
1708 operations_per_second: 1000.0f64,
1709 memorybandwidth_usage: 0.3f64,
1710 thread_contention: 0.1f64,
1711 };
1712
1713 let action = policies
1714 .check_violations(&metrics)
1715 .expect("Operation failed");
1716 assert_eq!(action, Some(PolicyAction::ScaleUp));
1717 }
1718}