scirs2_core/
ml_pipeline.rs

1//! Machine Learning Pipeline Integration and Real-Time Processing
2//!
3//! This module provides a comprehensive ML pipeline framework for SciRS2, enabling
4//! real-time data processing, model serving, feature engineering, and automated
5//! training workflows.
6//!
7//! Features:
8//! - Real-time streaming data processing
9//! - DAG-based pipeline orchestration
10//! - Model serving and inference endpoints
11//! - Feature extraction and transformation pipelines
12//! - Automated model training and evaluation
13//! - Performance monitoring and A/B testing
14//! - Integration with distributed computing and cloud storage
15
16use crate::error::{CoreError, ErrorContext, ErrorLocation};
17use std::collections::{HashMap, VecDeque};
18use std::sync::{Arc, Mutex, RwLock};
19use std::time::{Duration, Instant, SystemTime};
20use thiserror::Error;
21
22#[cfg(feature = "parallel")]
23#[allow(unused_imports)]
24use crate::parallel_ops::*;
25
26#[cfg(feature = "async")]
27#[allow(unused_imports)]
28use tokio::sync::{mpsc, oneshot};
29
30/// ML pipeline error types
31#[derive(Error, Debug)]
32pub enum MLPipelineError {
33    /// Pipeline configuration error
34    #[error("Pipeline configuration error: {0}")]
35    ConfigurationError(String),
36
37    /// Pipeline execution error
38    #[error("Pipeline execution failed: {0}")]
39    ExecutionError(String),
40
41    /// Model loading/saving error
42    #[error("Model error: {0}")]
43    ModelError(String),
44
45    /// Feature processing error
46    #[error("Feature processing error: {0}")]
47    FeatureError(String),
48
49    /// Data validation error
50    #[error("Data validation error: {0}")]
51    ValidationError(String),
52
53    /// Resource exhausted error
54    #[error("Resource exhausted: {0}")]
55    ResourceExhausted(String),
56
57    /// Inference error
58    #[error("Inference error: {0}")]
59    InferenceError(String),
60
61    /// Training error
62    #[error("Training error: {0}")]
63    TrainingError(String),
64
65    /// Monitoring error
66    #[error("Monitoring error: {0}")]
67    MonitoringError(String),
68
69    /// Dependency error
70    #[error("Dependency error: {0}")]
71    DependencyError(String),
72}
73
74impl From<MLPipelineError> for CoreError {
75    fn from(err: MLPipelineError) -> Self {
76        match err {
77            MLPipelineError::ValidationError(msg) => CoreError::ValidationError(
78                ErrorContext::new(format!("{msg}"))
79                    .with_location(ErrorLocation::new(file!(), line!())),
80            ),
81            MLPipelineError::ResourceExhausted(msg) => CoreError::ComputationError(
82                ErrorContext::new(format!("{msg}"))
83                    .with_location(ErrorLocation::new(file!(), line!())),
84            ),
85            _ => CoreError::ComputationError(
86                ErrorContext::new(format!("{err}"))
87                    .with_location(ErrorLocation::new(file!(), line!())),
88            ),
89        }
90    }
91}
92
93/// Data types supported by the ML pipeline
94#[derive(Debug, Clone, PartialEq)]
95pub enum DataType {
96    /// 32-bit floating point
97    Float32,
98    /// 64-bit floating point
99    Float64,
100    /// 32-bit signed integer
101    Int32,
102    /// 64-bit signed integer
103    Int64,
104    /// String/text data
105    String,
106    /// Boolean data
107    Boolean,
108    /// Categorical data with mapping
109    Categorical(Vec<String>),
110    /// Array of values
111    Array(Box<DataType>),
112    /// Structured data with named fields
113    Struct(HashMap<String, DataType>),
114}
115
116/// Feature metadata and schema information
117#[derive(Debug, Clone)]
118pub struct FeatureSchema {
119    /// Feature name
120    pub name: String,
121    /// Data type
122    pub datatype: DataType,
123    /// Whether the feature is required
124    pub required: bool,
125    /// Default value if missing
126    pub defaultvalue: Option<FeatureValue>,
127    /// Feature description
128    pub description: Option<String>,
129    /// Validation constraints
130    pub constraints: Vec<FeatureConstraint>,
131}
132
133/// Feature constraint types
134#[derive(Debug, Clone)]
135pub enum FeatureConstraint {
136    /// Minimum value (for numeric types)
137    MinValue(f64),
138    /// Maximum value (for numeric types)
139    MaxValue(f64),
140    /// Valid values (for categorical types)
141    ValidValues(Vec<String>),
142    /// Regular expression pattern (for string types)
143    Pattern(String),
144    /// Custom validation function
145    Custom(String), // Function name or expression
146}
147
148/// Feature value types
149#[derive(Debug, Clone, PartialEq)]
150pub enum FeatureValue {
151    Float32(f32),
152    Float64(f64),
153    Int32(i32),
154    Int64(i64),
155    String(String),
156    Boolean(bool),
157    Array(Vec<FeatureValue>),
158    Struct(HashMap<String, FeatureValue>),
159    Null,
160}
161
162impl FeatureValue {
163    /// Convert to f64 if possible
164    pub fn as_f64(&self) -> Option<f64> {
165        match self {
166            FeatureValue::Float32(v) => Some(*v as f64),
167            FeatureValue::Float64(v) => Some(*v),
168            FeatureValue::Int32(v) => Some(*v as f64),
169            FeatureValue::Int64(v) => Some(*v as f64),
170            _ => None,
171        }
172    }
173
174    /// Convert to string
175    pub fn as_string(&self) -> String {
176        match self {
177            FeatureValue::String(s) => s.clone(),
178            FeatureValue::Float32(v) => v.to_string(),
179            FeatureValue::Float64(v) => v.to_string(),
180            FeatureValue::Int32(v) => v.to_string(),
181            FeatureValue::Int64(v) => v.to_string(),
182            FeatureValue::Boolean(v) => v.to_string(),
183            FeatureValue::Null => "null".to_string(),
184            _ => format!("{self:?}"),
185        }
186    }
187
188    /// Check if value is null
189    pub fn is_null(&self) -> bool {
190        matches!(self, FeatureValue::Null)
191    }
192}
193
194/// Data sample containing features and optional target
195#[derive(Debug, Clone)]
196pub struct DataSample {
197    /// Sample ID
198    pub id: String,
199    /// Feature values
200    pub features: HashMap<String, FeatureValue>,
201    /// Target value (for training)
202    pub target: Option<FeatureValue>,
203    /// Timestamp
204    pub timestamp: SystemTime,
205    /// Metadata
206    pub metadata: HashMap<String, String>,
207}
208
209/// Batch of data samples for efficient processing
210#[derive(Debug, Clone)]
211pub struct DataBatch {
212    /// Samples in the batch
213    pub samples: Vec<DataSample>,
214    /// Batch metadata
215    pub metadata: HashMap<String, String>,
216    /// Batch creation timestamp
217    pub created_at: SystemTime,
218}
219
220impl DataBatch {
221    /// Create a new empty batch
222    pub fn new() -> Self {
223        Self {
224            samples: Vec::new(),
225            metadata: HashMap::new(),
226            created_at: SystemTime::now(),
227        }
228    }
229
230    /// Add a sample to the batch
231    pub fn add_sample(&mut self, sample: DataSample) {
232        self.samples.push(sample);
233    }
234
235    /// Get batch size
236    pub fn size(&self) -> usize {
237        self.samples.len()
238    }
239
240    /// Check if batch is empty
241    pub fn is_empty(&self) -> bool {
242        self.samples.is_empty()
243    }
244
245    /// Extract feature matrix for ML processing
246    pub fn extract_featurematrix(
247        &self,
248        featurenames: &[String],
249    ) -> Result<Vec<Vec<f64>>, MLPipelineError> {
250        let mut matrix = Vec::new();
251
252        for sample in &self.samples {
253            let mut row = Vec::new();
254            for feature_name in featurenames {
255                if let Some(value) = sample.features.get(feature_name) {
256                    if let Some(numeric_value) = value.as_f64() {
257                        row.push(numeric_value);
258                    } else {
259                        return Err(MLPipelineError::FeatureError(format!(
260                            "Feature '{}' is not numeric",
261                            feature_name
262                        )));
263                    }
264                } else {
265                    return Err(MLPipelineError::FeatureError(format!(
266                        "Feature '{}' not found in sample",
267                        feature_name
268                    )));
269                }
270            }
271            matrix.push(row);
272        }
273
274        Ok(matrix)
275    }
276}
277
278impl Default for DataBatch {
279    fn default() -> Self {
280        Self::new()
281    }
282}
283
284/// Pipeline node trait for processing components
285pub trait PipelineNode: Send + Sync {
286    /// Get node name
287    fn name(&self) -> &str;
288
289    /// Get input schema
290    fn input_schema(&self) -> &[FeatureSchema];
291
292    /// Get output schema
293    fn output_schema(&self) -> &[FeatureSchema];
294
295    /// Process a batch of data
296    fn process(&self, batch: DataBatch) -> Result<DataBatch, MLPipelineError>;
297
298    /// Validate configuration
299    fn validate(&self) -> Result<(), MLPipelineError>;
300
301    /// Get node metrics
302    fn metrics(&self) -> HashMap<String, f64>;
303}
304
305/// Feature transformer for data preprocessing
306#[derive(Debug, Clone)]
307pub struct FeatureTransformer {
308    name: String,
309    transform_type: TransformType,
310    input_features: Vec<String>,
311    output_features: Vec<String>,
312    parameters: HashMap<String, FeatureValue>,
313    metrics: Arc<Mutex<HashMap<String, f64>>>,
314}
315
316/// Types of feature transformations
317#[derive(Debug, Clone)]
318pub enum TransformType {
319    /// Scale features to [0, 1] range
320    MinMaxScaler,
321    /// Standardize features (zero mean, unit variance)
322    StandardScaler,
323    /// One-hot encode categorical features
324    OneHotEncoder,
325    /// Label encode categorical features
326    LabelEncoder,
327    /// Apply log transformation
328    LogTransform,
329    /// Apply power transformation
330    PowerTransform { power: f64 },
331    /// Principal Component Analysis
332    PCA { n_components: usize },
333    /// Custom transformation function
334    Custom(String),
335}
336
337impl FeatureTransformer {
338    /// Create a new feature transformer
339    pub fn new(
340        name: String,
341        transform_type: TransformType,
342        input_features: Vec<String>,
343        output_features: Vec<String>,
344    ) -> Self {
345        Self {
346            name,
347            transform_type,
348            input_features,
349            output_features,
350            parameters: HashMap::new(),
351            metrics: Arc::new(Mutex::new(HashMap::new())),
352        }
353    }
354
355    /// Set transformation parameters
356    pub fn set_parameter(&mut self, key: String, value: FeatureValue) {
357        self.parameters.insert(key, value);
358    }
359
360    /// Fit transformer to data (for stateful transformations)
361    pub fn fit(&mut self, batch: &DataBatch) -> Result<(), MLPipelineError> {
362        match &self.transform_type {
363            TransformType::MinMaxScaler => self.fit_minmax_scaler(batch),
364            TransformType::StandardScaler => self.fit_standard_scaler(batch),
365            TransformType::OneHotEncoder => self.fit_onehot_encoder(batch),
366            TransformType::LabelEncoder => self.fit_label_encoder(batch),
367            _ => Ok(()), // No fitting required for stateless transforms
368        }
369    }
370
371    /// Apply transformation to data
372    pub fn transform(&self, batch: DataBatch) -> Result<DataBatch, MLPipelineError> {
373        let start_time = Instant::now();
374
375        let mut transformed_batch = DataBatch::new();
376        transformed_batch.metadata = batch.metadata;
377
378        for sample in batch.samples {
379            let mut transformed_sample = sample.clone();
380
381            match &self.transform_type {
382                TransformType::MinMaxScaler => {
383                    self.apply_minmax_transform(&mut transformed_sample)?;
384                }
385                TransformType::StandardScaler => {
386                    self.apply_standard_transform(&mut transformed_sample)?;
387                }
388                TransformType::LogTransform => {
389                    self.applylog_transform(&mut transformed_sample)?;
390                }
391                TransformType::PowerTransform { power } => {
392                    self.apply_power_transform(&mut transformed_sample, *power)?;
393                }
394                _ => {
395                    return Err(MLPipelineError::FeatureError(format!(
396                        "Transform type {:?} not implemented",
397                        self.transform_type
398                    )));
399                }
400            }
401
402            transformed_batch.add_sample(transformed_sample);
403        }
404
405        // Update metrics
406        let processing_time = start_time.elapsed().as_millis() as f64;
407        self.metrics
408            .lock()
409            .expect("Operation failed")
410            .insert("processing_time_ms".to_string(), processing_time);
411        self.metrics.lock().expect("Operation failed").insert(
412            "samples_processed".to_string(),
413            transformed_batch.size() as f64,
414        );
415
416        Ok(transformed_batch)
417    }
418
419    /// Fit min-max scaler parameters
420    fn fit_minmax_scaler(&mut self, batch: &DataBatch) -> Result<(), MLPipelineError> {
421        for feature_name in &self.input_features {
422            let mut min_val = f64::INFINITY;
423            let mut max_val = f64::NEG_INFINITY;
424
425            for sample in &batch.samples {
426                if let Some(value) = sample.features.get(feature_name) {
427                    if let Some(numeric_value) = value.as_f64() {
428                        min_val = min_val.min(numeric_value);
429                        max_val = max_val.max(numeric_value);
430                    }
431                }
432            }
433
434            self.parameters.insert(
435                format!("{}_min", feature_name),
436                FeatureValue::Float64(min_val),
437            );
438            self.parameters.insert(
439                format!("{}_max", feature_name),
440                FeatureValue::Float64(max_val),
441            );
442        }
443
444        Ok(())
445    }
446
447    /// Fit standard scaler parameters
448    fn fit_standard_scaler(&mut self, batch: &DataBatch) -> Result<(), MLPipelineError> {
449        for feature_name in &self.input_features {
450            let mut values = Vec::new();
451
452            for sample in &batch.samples {
453                if let Some(value) = sample.features.get(feature_name) {
454                    if let Some(numeric_value) = value.as_f64() {
455                        values.push(numeric_value);
456                    }
457                }
458            }
459
460            if !values.is_empty() {
461                let mean = values.iter().sum::<f64>() / values.len() as f64;
462                let variance =
463                    values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
464                let std_dev = variance.sqrt();
465
466                self.parameters.insert(
467                    format!("{}_mean", feature_name),
468                    FeatureValue::Float64(mean),
469                );
470                self.parameters.insert(
471                    format!("{}_std", feature_name),
472                    FeatureValue::Float64(std_dev),
473                );
474            }
475        }
476
477        Ok(())
478    }
479
480    /// Fit one-hot encoder parameters
481    fn fit_onehot_encoder(&mut self, batch: &DataBatch) -> Result<(), MLPipelineError> {
482        for feature_name in &self.input_features {
483            let mut unique_values = std::collections::HashSet::new();
484
485            for sample in &batch.samples {
486                if let Some(value) = sample.features.get(feature_name) {
487                    unique_values.insert(value.as_string());
488                }
489            }
490
491            let categories: Vec<_> = unique_values.into_iter().collect();
492            self.parameters.insert(
493                format!("{}_categories", feature_name),
494                FeatureValue::Array(categories.into_iter().map(FeatureValue::String).collect()),
495            );
496        }
497
498        Ok(())
499    }
500
501    /// Fit label encoder parameters
502    fn fit_label_encoder(&mut self, batch: &DataBatch) -> Result<(), MLPipelineError> {
503        for feature_name in &self.input_features {
504            let mut unique_values = std::collections::HashSet::new();
505
506            for sample in &batch.samples {
507                if let Some(value) = sample.features.get(feature_name) {
508                    unique_values.insert(value.as_string());
509                }
510            }
511
512            let mut categories: Vec<_> = unique_values.into_iter().collect();
513            categories.sort(); // Ensure consistent encoding
514
515            let label_map: HashMap<String, i64> = categories
516                .into_iter()
517                .enumerate()
518                .map(|(i, cat)| (cat, i as i64))
519                .collect();
520
521            for (category, label) in &label_map {
522                self.parameters.insert(
523                    format!("{}_{}_label", feature_name, category),
524                    FeatureValue::Int64(*label),
525                );
526            }
527        }
528
529        Ok(())
530    }
531
532    /// Apply min-max scaling
533    fn apply_minmax_transform(&self, sample: &mut DataSample) -> Result<(), MLPipelineError> {
534        for feature_name in &self.input_features {
535            if let Some(value) = sample.features.get(feature_name).cloned() {
536                if let Some(numeric_value) = value.as_f64() {
537                    let min_key = format!("{}_min", feature_name);
538                    let max_key = format!("{}_max", feature_name);
539
540                    let min_val = self
541                        .parameters
542                        .get(&min_key)
543                        .and_then(|v| v.as_f64())
544                        .unwrap_or(0.0);
545                    let max_val = self
546                        .parameters
547                        .get(&max_key)
548                        .and_then(|v| v.as_f64())
549                        .unwrap_or(1.0);
550
551                    let scaled_value = if max_val > min_val {
552                        (numeric_value - min_val) / (max_val - min_val)
553                    } else {
554                        0.0
555                    };
556
557                    sample
558                        .features
559                        .insert(feature_name.clone(), FeatureValue::Float64(scaled_value));
560                }
561            }
562        }
563
564        Ok(())
565    }
566
567    /// Apply standard scaling
568    fn apply_standard_transform(&self, sample: &mut DataSample) -> Result<(), MLPipelineError> {
569        for feature_name in &self.input_features {
570            if let Some(value) = sample.features.get(feature_name).cloned() {
571                if let Some(numeric_value) = value.as_f64() {
572                    let mean_key = format!("{}_mean", feature_name);
573                    let std_key = format!("{}_std", feature_name);
574
575                    let mean = self
576                        .parameters
577                        .get(&mean_key)
578                        .and_then(|v| v.as_f64())
579                        .unwrap_or(0.0);
580                    let std_dev = self
581                        .parameters
582                        .get(&std_key)
583                        .and_then(|v| v.as_f64())
584                        .unwrap_or(1.0);
585
586                    let standardized_value = if std_dev > 0.0 {
587                        (numeric_value - mean) / std_dev
588                    } else {
589                        0.0
590                    };
591
592                    sample.features.insert(
593                        feature_name.clone(),
594                        FeatureValue::Float64(standardized_value),
595                    );
596                }
597            }
598        }
599
600        Ok(())
601    }
602
603    /// Apply log transformation
604    fn applylog_transform(&self, sample: &mut DataSample) -> Result<(), MLPipelineError> {
605        for feature_name in &self.input_features {
606            if let Some(value) = sample.features.get(feature_name).cloned() {
607                if let Some(numeric_value) = value.as_f64() {
608                    if numeric_value > 0.0 {
609                        let log_value = numeric_value.ln();
610                        sample
611                            .features
612                            .insert(feature_name.clone(), FeatureValue::Float64(log_value));
613                    } else {
614                        return Err(MLPipelineError::FeatureError(format!(
615                            "Cannot apply log transform to non-positive value: {}",
616                            numeric_value
617                        )));
618                    }
619                }
620            }
621        }
622
623        Ok(())
624    }
625
626    /// Apply power transformation
627    fn apply_power_transform(
628        &self,
629        sample: &mut DataSample,
630        power: f64,
631    ) -> Result<(), MLPipelineError> {
632        for feature_name in &self.input_features {
633            if let Some(value) = sample.features.get(feature_name).cloned() {
634                if let Some(numeric_value) = value.as_f64() {
635                    let transformed_value = numeric_value.powf(power);
636                    sample.features.insert(
637                        feature_name.clone(),
638                        FeatureValue::Float64(transformed_value),
639                    );
640                }
641            }
642        }
643
644        Ok(())
645    }
646}
647
648impl PipelineNode for FeatureTransformer {
649    fn name(&self) -> &str {
650        &self.name
651    }
652
653    fn input_schema(&self) -> &[FeatureSchema] {
654        // This would typically be populated with actual schemas
655        &[]
656    }
657
658    fn output_schema(&self) -> &[FeatureSchema] {
659        // This would typically be populated with actual schemas
660        &[]
661    }
662
663    fn process(&self, batch: DataBatch) -> Result<DataBatch, MLPipelineError> {
664        self.transform(batch)
665    }
666
667    fn validate(&self) -> Result<(), MLPipelineError> {
668        if self.input_features.is_empty() {
669            return Err(MLPipelineError::ConfigurationError(
670                "No input features specified".to_string(),
671            ));
672        }
673
674        Ok(())
675    }
676
677    fn metrics(&self) -> HashMap<String, f64> {
678        self.metrics.lock().expect("Operation failed").clone()
679    }
680}
681
682/// Model predictor for inference
683pub struct ModelPredictor {
684    name: String,
685    model_type: ModelType,
686    input_features: Vec<String>,
687    output_features: Vec<String>,
688    model_data: Vec<u8>, // Serialized model
689    metrics: Arc<Mutex<HashMap<String, f64>>>,
690}
691
692/// Types of ML models supported
693#[derive(Debug, Clone)]
694pub enum ModelType {
695    /// Linear regression
696    LinearRegression,
697    /// Logistic regression
698    LogisticRegression,
699    /// Random forest
700    RandomForest,
701    /// Neural network
702    NeuralNetwork,
703    /// Support vector machine
704    SVM,
705    /// Custom model
706    Custom(String),
707}
708
709impl ModelPredictor {
710    /// Create a new model predictor
711    pub fn new(
712        name: String,
713        model_type: ModelType,
714        input_features: Vec<String>,
715        output_features: Vec<String>,
716        model_data: Vec<u8>,
717    ) -> Self {
718        Self {
719            name,
720            model_type,
721            input_features,
722            output_features,
723            model_data,
724            metrics: Arc::new(Mutex::new(HashMap::new())),
725        }
726    }
727
728    /// Load model from serialized data
729    pub fn loadmodel(&mut self, modeldata: Vec<u8>) -> Result<(), MLPipelineError> {
730        self.model_data = modeldata;
731        // In a real implementation, this would deserialize the model
732        Ok(())
733    }
734
735    /// Make predictions on a batch
736    pub fn predict(&self, batch: DataBatch) -> Result<DataBatch, MLPipelineError> {
737        let start_time = Instant::now();
738
739        let mut prediction_batch = DataBatch::new();
740        prediction_batch.metadata = batch.metadata;
741
742        for sample in batch.samples {
743            let mut prediction_sample = sample.clone();
744
745            // Extract features for prediction
746            let feature_values: Vec<f64> = self
747                .input_features
748                .iter()
749                .map(|feature_name| {
750                    sample
751                        .features
752                        .get(feature_name)
753                        .and_then(|v| v.as_f64())
754                        .unwrap_or(0.0)
755                })
756                .collect();
757
758            // Make prediction (simplified implementation)
759            let prediction = self.make_prediction(&feature_values)?;
760
761            // Add prediction to sample
762            for (i, output_feature) in self.output_features.iter().enumerate() {
763                let pred_value = prediction.get(i).copied().unwrap_or(0.0);
764                prediction_sample
765                    .features
766                    .insert(output_feature.clone(), FeatureValue::Float64(pred_value));
767            }
768
769            prediction_batch.add_sample(prediction_sample);
770        }
771
772        // Update metrics
773        let processing_time = start_time.elapsed().as_millis() as f64;
774        self.metrics
775            .lock()
776            .expect("Operation failed")
777            .insert("inference_time_ms".to_string(), processing_time);
778        self.metrics.lock().expect("Operation failed").insert(
779            "samples_predicted".to_string(),
780            prediction_batch.size() as f64,
781        );
782
783        Ok(prediction_batch)
784    }
785
786    /// Make prediction for a single feature vector
787    fn make_prediction(&self, features: &[f64]) -> Result<Vec<f64>, MLPipelineError> {
788        // Simplified prediction logic - in practice this would use the actual model
789        match &self.model_type {
790            ModelType::LinearRegression => {
791                // Simple linear combination
792                let prediction = features.iter().sum::<f64>() / features.len() as f64;
793                Ok(vec![prediction])
794            }
795            ModelType::LogisticRegression => {
796                // Sigmoid activation
797                let linear_output = features.iter().sum::<f64>();
798                let prediction = 1.0 / (1.0 + (-linear_output).exp());
799                Ok(vec![prediction])
800            }
801            ModelType::RandomForest => {
802                // Mock ensemble prediction
803                let prediction =
804                    features.iter().map(|&x| x.abs()).sum::<f64>() / features.len() as f64;
805                Ok(vec![prediction])
806            }
807            _ => Err(MLPipelineError::InferenceError(format!(
808                "Model type {:?} not implemented",
809                self.model_type
810            ))),
811        }
812    }
813}
814
815impl PipelineNode for ModelPredictor {
816    fn name(&self) -> &str {
817        &self.name
818    }
819
820    fn input_schema(&self) -> &[FeatureSchema] {
821        &[]
822    }
823
824    fn output_schema(&self) -> &[FeatureSchema] {
825        &[]
826    }
827
828    fn process(&self, batch: DataBatch) -> Result<DataBatch, MLPipelineError> {
829        self.predict(batch)
830    }
831
832    fn validate(&self) -> Result<(), MLPipelineError> {
833        if self.input_features.is_empty() {
834            return Err(MLPipelineError::ConfigurationError(
835                "No input features specified for model".to_string(),
836            ));
837        }
838
839        if self.output_features.is_empty() {
840            return Err(MLPipelineError::ConfigurationError(
841                "No output features specified for model".to_string(),
842            ));
843        }
844
845        if self.model_data.is_empty() {
846            return Err(MLPipelineError::ModelError(
847                "No model data loaded".to_string(),
848            ));
849        }
850
851        Ok(())
852    }
853
854    fn metrics(&self) -> HashMap<String, f64> {
855        self.metrics.lock().expect("Operation failed").clone()
856    }
857}
858
859/// ML Pipeline orchestrator
860pub struct MLPipeline {
861    name: String,
862    nodes: Vec<Box<dyn PipelineNode>>,
863    node_dependencies: HashMap<String, Vec<String>>,
864    pipeline_metrics: Arc<RwLock<PipelineMetrics>>,
865    config: PipelineConfig,
866}
867
868/// Pipeline configuration
869#[derive(Debug, Clone)]
870pub struct PipelineConfig {
871    /// Maximum batch size for processing
872    pub max_batchsize: usize,
873    /// Timeout for node processing
874    pub node_timeout: Duration,
875    /// Whether to enable parallel processing
876    pub parallel_processing: bool,
877    /// Error handling strategy
878    pub error_strategy: ErrorStrategy,
879    /// Monitoring configuration
880    pub monitoring: MonitoringConfig,
881}
882
883impl Default for PipelineConfig {
884    fn default() -> Self {
885        Self {
886            max_batchsize: 1000,
887            node_timeout: Duration::from_secs(30),
888            parallel_processing: true,
889            error_strategy: ErrorStrategy::FailFast,
890            monitoring: MonitoringConfig::default(),
891        }
892    }
893}
894
895/// Error handling strategies
896#[derive(Debug, Clone)]
897pub enum ErrorStrategy {
898    /// Stop pipeline on first error
899    FailFast,
900    /// Continue processing, skip failed samples
901    SkipErrors,
902    /// Retry failed operations
903    RetryWithBackoff {
904        maxretries: u32,
905        basedelay: Duration,
906    },
907}
908
909/// Monitoring configuration
910#[derive(Debug, Clone)]
911pub struct MonitoringConfig {
912    /// Enable performance metrics collection
913    pub enable_metrics: bool,
914    /// Metrics collection interval
915    pub metrics_interval: Duration,
916    /// Enable health checks
917    pub enable_health_checks: bool,
918    /// Health check interval
919    pub health_check_interval: Duration,
920}
921
922impl Default for MonitoringConfig {
923    fn default() -> Self {
924        Self {
925            enable_metrics: true,
926            metrics_interval: Duration::from_secs(60),
927            enable_health_checks: true,
928            health_check_interval: Duration::from_secs(30),
929        }
930    }
931}
932
933/// Pipeline execution metrics
934#[derive(Debug, Clone)]
935pub struct PipelineMetrics {
936    /// Total samples processed
937    pub samples_processed: u64,
938    /// Total processing time
939    pub total_processing_time: Duration,
940    /// Error count
941    pub error_count: u64,
942    /// Success rate
943    pub success_rate: f64,
944    /// Throughput (samples per second)
945    pub throughput: f64,
946    /// Per-node metrics
947    pub node_metrics: HashMap<String, HashMap<String, f64>>,
948    /// Last update timestamp
949    pub last_updated: SystemTime,
950}
951
952impl Default for PipelineMetrics {
953    fn default() -> Self {
954        Self {
955            samples_processed: 0,
956            total_processing_time: Duration::default(),
957            error_count: 0,
958            success_rate: 0.0,
959            throughput: 0.0,
960            node_metrics: HashMap::default(),
961            last_updated: SystemTime::UNIX_EPOCH,
962        }
963    }
964}
965
966impl MLPipeline {
967    /// Create a new ML pipeline
968    pub fn new(name: String, config: PipelineConfig) -> Self {
969        Self {
970            name,
971            nodes: Vec::new(),
972            node_dependencies: HashMap::new(),
973            pipeline_metrics: Arc::new(RwLock::new(PipelineMetrics::default())),
974            config,
975        }
976    }
977
978    /// Add a processing node to the pipeline
979    pub fn add_node(&mut self, node: Box<dyn PipelineNode>) -> Result<(), MLPipelineError> {
980        node.validate()?;
981        self.nodes.push(node);
982        Ok(())
983    }
984
985    /// Set dependencies between nodes
986    pub fn set_dependencies(&mut self, nodename: String, dependencies: Vec<String>) {
987        self.node_dependencies.insert(nodename, dependencies);
988    }
989
990    /// Execute the pipeline on a batch of data
991    pub fn execute(&self, mut batch: DataBatch) -> Result<DataBatch, MLPipelineError> {
992        let start_time = Instant::now();
993        let initial_size = batch.size();
994
995        // Validate batch size
996        if batch.size() > self.config.max_batchsize {
997            return Err(MLPipelineError::ValidationError(format!(
998                "Batch size {} exceeds maximum {}",
999                batch.size(),
1000                self.config.max_batchsize
1001            )));
1002        }
1003
1004        // Execute nodes in dependency order
1005        let execution_order = self.get_execution_order()?;
1006
1007        for node_name in execution_order {
1008            if let Some(node) = self.nodes.iter().find(|n| n.name() == node_name) {
1009                let node_start = Instant::now();
1010
1011                let batch_clone = batch.clone();
1012                batch = match node.process(batch) {
1013                    Ok(processed_batch) => {
1014                        // Update node metrics
1015                        let node_time = node_start.elapsed();
1016                        self.update_node_metrics(&node_name, node_time, processed_batch.size());
1017                        processed_batch
1018                    }
1019                    Err(e) => match &self.config.error_strategy {
1020                        ErrorStrategy::FailFast => return Err(e),
1021                        ErrorStrategy::SkipErrors => {
1022                            eprintln!("Node {} failed: {}, continuing...", node_name, e);
1023                            batch_clone
1024                        }
1025                        ErrorStrategy::RetryWithBackoff {
1026                            maxretries,
1027                            basedelay,
1028                        } => {
1029                            let mut retries = 0;
1030                            loop {
1031                                if retries >= *maxretries {
1032                                    return Err(e);
1033                                }
1034
1035                                std::thread::sleep(*basedelay * 2_u32.pow(retries));
1036
1037                                match node.process(batch_clone.clone()) {
1038                                    Ok(processed_batch) => {
1039                                        break processed_batch;
1040                                    }
1041                                    Err(_) => {
1042                                        retries += 1;
1043                                    }
1044                                }
1045                            }
1046                        }
1047                    },
1048                }
1049            }
1050        }
1051
1052        // Update pipeline metrics
1053        let total_time = start_time.elapsed();
1054        self.update_pipeline_metrics(total_time, true, initial_size, total_time);
1055
1056        Ok(batch)
1057    }
1058
1059    /// Get node execution order based on dependencies
1060    fn get_execution_order(&self) -> Result<Vec<String>, MLPipelineError> {
1061        let mut order = Vec::new();
1062        let mut visited = std::collections::HashSet::new();
1063        let mut visiting = std::collections::HashSet::new();
1064
1065        for node in &self.nodes {
1066            if !visited.contains(node.name()) {
1067                self.dfs_visit(node.name(), &mut order, &mut visited, &mut visiting)?;
1068            }
1069        }
1070
1071        Ok(order)
1072    }
1073
1074    /// Depth-first search for topological sorting
1075    fn dfs_visit(
1076        &self,
1077        node_name: &str,
1078        order: &mut Vec<String>,
1079        visited: &mut std::collections::HashSet<String>,
1080        visiting: &mut std::collections::HashSet<String>,
1081    ) -> Result<(), MLPipelineError> {
1082        if visiting.contains(node_name) {
1083            return Err(MLPipelineError::DependencyError(
1084                "Circular dependency detected".to_string(),
1085            ));
1086        }
1087
1088        if visited.contains(node_name) {
1089            return Ok(());
1090        }
1091
1092        visiting.insert(node_name.to_string());
1093
1094        if let Some(dependencies) = self.node_dependencies.get(node_name) {
1095            for dep in dependencies {
1096                self.dfs_visit(dep, order, visited, visiting)?;
1097            }
1098        }
1099
1100        visiting.remove(node_name);
1101        visited.insert(node_name.to_string());
1102        order.push(node_name.to_string());
1103
1104        Ok(())
1105    }
1106
1107    /// Update node-specific metrics
1108    fn update_node_metrics(&self, node_name: &str, processing_time: Duration, batchsize: usize) {
1109        if let Ok(mut metrics) = self.pipeline_metrics.write() {
1110            let node_metrics = metrics
1111                .node_metrics
1112                .entry(node_name.to_string())
1113                .or_insert_with(HashMap::new);
1114            node_metrics.insert(
1115                "processing_time_ms".to_string(),
1116                processing_time.as_millis() as f64,
1117            );
1118            node_metrics.insert("batchsize".to_string(), batchsize as f64);
1119            node_metrics.insert(
1120                "throughput".to_string(),
1121                batchsize as f64 / processing_time.as_secs_f64(),
1122            );
1123        }
1124    }
1125
1126    /// Update overall pipeline metrics
1127    fn update_pipeline_metrics(
1128        &self,
1129        duration: Duration,
1130        success: bool,
1131        batchsize: usize,
1132        processing_time: Duration,
1133    ) {
1134        if let Ok(mut metrics) = self.pipeline_metrics.write() {
1135            metrics.samples_processed += batchsize as u64;
1136            metrics.total_processing_time += processing_time;
1137
1138            if !success {
1139                metrics.error_count += 1;
1140            }
1141
1142            let total_executions = metrics.samples_processed as f64 / batchsize as f64;
1143            metrics.success_rate =
1144                (total_executions - metrics.error_count as f64) / total_executions;
1145            metrics.throughput =
1146                metrics.samples_processed as f64 / metrics.total_processing_time.as_secs_f64();
1147            metrics.last_updated = SystemTime::now();
1148        }
1149    }
1150
1151    /// Get current pipeline metrics
1152    pub fn get_metrics(&self) -> PipelineMetrics {
1153        self.pipeline_metrics
1154            .read()
1155            .expect("Operation failed")
1156            .clone()
1157    }
1158
1159    /// Get pipeline configuration
1160    pub fn config(&self) -> &PipelineConfig {
1161        &self.config
1162    }
1163
1164    /// Validate the entire pipeline
1165    pub fn validate(&self) -> Result<(), MLPipelineError> {
1166        // Validate each node
1167        for node in &self.nodes {
1168            node.validate()?;
1169        }
1170
1171        // Validate dependencies
1172        self.get_execution_order()?;
1173
1174        Ok(())
1175    }
1176}
1177
1178/// Real-time streaming processor
1179#[cfg(feature = "async")]
1180pub struct StreamingProcessor {
1181    pipeline: Arc<MLPipeline>,
1182    input_buffer: Arc<Mutex<VecDeque<DataSample>>>,
1183    output_buffer: Arc<Mutex<VecDeque<DataSample>>>,
1184    batchsize: usize,
1185    processing_interval: Duration,
1186    is_running: Arc<Mutex<bool>>,
1187}
1188
1189#[cfg(feature = "async")]
1190impl StreamingProcessor {
1191    /// Create a new streaming processor
1192    pub fn with_interval(
1193        processing_interval: Duration,
1194        batchsize: usize,
1195        pipeline: Arc<MLPipeline>,
1196    ) -> Self {
1197        Self {
1198            pipeline,
1199            input_buffer: Arc::new(Mutex::new(VecDeque::new())),
1200            output_buffer: Arc::new(Mutex::new(VecDeque::new())),
1201            batchsize,
1202            processing_interval,
1203            is_running: Arc::new(Mutex::new(false)),
1204        }
1205    }
1206
1207    /// Start streaming processing
1208    pub async fn start(&self) -> Result<(), MLPipelineError> {
1209        {
1210            let mut running = self.is_running.lock().expect("Operation failed");
1211            if *running {
1212                return Err(MLPipelineError::ExecutionError(
1213                    "Processor already running".to_string(),
1214                ));
1215            }
1216            *running = true;
1217        }
1218
1219        let pipeline = self.pipeline.clone();
1220        let input_buffer = self.input_buffer.clone();
1221        let output_buffer = self.output_buffer.clone();
1222        let batchsize = self.batchsize;
1223        let processing_interval = self.processing_interval;
1224        let is_running = self.is_running.clone();
1225
1226        tokio::spawn(async move {
1227            let mut interval = tokio::time::interval(processing_interval);
1228
1229            loop {
1230                interval.tick().await;
1231
1232                if !*is_running.lock().expect("Operation failed") {
1233                    break;
1234                }
1235
1236                // Process available data
1237                let mut batch = DataBatch::new();
1238                {
1239                    let mut input = input_buffer.lock().expect("Operation failed");
1240                    let mut count = 0;
1241                    while count < batchsize && !input.is_empty() {
1242                        if let Some(sample) = input.pop_front() {
1243                            batch.add_sample(sample);
1244                            count += 1;
1245                        }
1246                    }
1247                }
1248
1249                if !batch.is_empty() {
1250                    match pipeline.execute(batch) {
1251                        Ok(processed_batch) => {
1252                            let mut output = output_buffer.lock().expect("Operation failed");
1253                            for sample in processed_batch.samples {
1254                                output.push_back(sample);
1255                            }
1256                        }
1257                        Err(e) => {
1258                            eprintln!("Streaming processing error: {}", e);
1259                        }
1260                    }
1261                }
1262            }
1263        });
1264
1265        Ok(())
1266    }
1267
1268    /// Stop streaming processing
1269    pub fn stop(&self) {
1270        *self.is_running.lock().expect("Operation failed") = false;
1271    }
1272
1273    /// Add a sample to the input buffer
1274    pub fn add_sample(&self, sample: DataSample) {
1275        self.input_buffer
1276            .lock()
1277            .expect("Operation failed")
1278            .push_back(sample);
1279    }
1280
1281    /// Get processed samples from output buffer
1282    pub fn get_samples(&self, maxcount: usize) -> Vec<DataSample> {
1283        let mut output = self.output_buffer.lock().expect("Operation failed");
1284        let mut samples = Vec::new();
1285        let mut _count = 0;
1286
1287        while _count < maxcount && !output.is_empty() {
1288            if let Some(sample) = output.pop_front() {
1289                samples.push(sample);
1290                _count += 1;
1291            }
1292        }
1293
1294        samples
1295    }
1296
1297    /// Get current buffer sizes
1298    pub fn get_buffer_stats(&self) -> (usize, usize) {
1299        let input_size = self.input_buffer.lock().expect("Operation failed").len();
1300        let output_size = self.output_buffer.lock().expect("Operation failed").len();
1301        (input_size, output_size)
1302    }
1303}
1304
1305/// Convenience functions for common ML pipeline operations
1306pub mod utils {
1307    use super::*;
1308
1309    /// Create a simple preprocessing pipeline
1310    pub fn with_preprocessing(featurenames: Vec<String>) -> MLPipeline {
1311        let mut pipeline = MLPipeline::new("preprocessing".to_string(), PipelineConfig::default());
1312
1313        // Add standard scaler
1314        let scaler = FeatureTransformer::new(
1315            "standard_scaler".to_string(),
1316            TransformType::StandardScaler,
1317            featurenames.clone(),
1318            featurenames.clone(),
1319        );
1320        pipeline
1321            .add_node(Box::new(scaler))
1322            .expect("Operation failed");
1323
1324        pipeline
1325    }
1326
1327    /// Create a simple prediction pipeline
1328    pub fn with_model_type(
1329        model_name: String,
1330        model_type: ModelType,
1331        input_features: Vec<String>,
1332        output_features: Vec<String>,
1333    ) -> MLPipeline {
1334        let mut pipeline = MLPipeline::new("prediction".to_string(), PipelineConfig::default());
1335
1336        // Add model predictor
1337        let predictor = ModelPredictor::new(
1338            model_name,
1339            model_type,
1340            input_features,
1341            output_features,
1342            vec![], // Empty model data for now
1343        );
1344        pipeline
1345            .add_node(Box::new(predictor))
1346            .expect("Operation failed");
1347
1348        pipeline
1349    }
1350
1351    /// Create a sample data batch for testing
1352    pub fn create_sample_batch(featurenames: &[String], size: usize) -> DataBatch {
1353        let mut batch = DataBatch::new();
1354
1355        for i in 0..size {
1356            let mut features = HashMap::new();
1357            for (j, feature_name) in featurenames.iter().enumerate() {
1358                let value = (i * 10 + j) as f64 / 100.0; // Generate some sample data
1359                features.insert(feature_name.clone(), FeatureValue::Float64(value));
1360            }
1361
1362            let sample = DataSample {
1363                id: format!("{i}"),
1364                features,
1365                target: Some(FeatureValue::Float64((i as f64) % 2.0)), // Binary target
1366                timestamp: SystemTime::now(),
1367                metadata: HashMap::new(),
1368            };
1369
1370            batch.add_sample(sample);
1371        }
1372
1373        batch
1374    }
1375
1376    /// Calculate feature statistics for a batch
1377    pub fn calculate_feature_statistics(
1378        batch: &DataBatch,
1379        feature_name: &str,
1380    ) -> Option<(f64, f64, f64, f64)> {
1381        let mut values = Vec::new();
1382
1383        for sample in &batch.samples {
1384            if let Some(value) = sample.features.get(feature_name) {
1385                if let Some(numeric_value) = value.as_f64() {
1386                    values.push(numeric_value);
1387                }
1388            }
1389        }
1390
1391        if values.is_empty() {
1392            return None;
1393        }
1394
1395        values.sort_by(|a, b| a.partial_cmp(b).expect("Operation failed"));
1396
1397        let mean = values.iter().sum::<f64>() / values.len() as f64;
1398        let variance = values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
1399        let std_dev = variance.sqrt();
1400        let min = values[0];
1401        let max = values[values.len() - 1];
1402
1403        Some((mean, std_dev, min, max))
1404    }
1405}
1406
1407#[cfg(test)]
1408mod tests {
1409    use super::*;
1410
1411    #[test]
1412    fn test_feature_value_conversions() {
1413        let float_val = FeatureValue::Float64(3.15);
1414        assert_eq!(float_val.as_f64(), Some(3.15));
1415        assert_eq!(float_val.as_string(), "3.15");
1416
1417        let int_val = FeatureValue::Int32(42);
1418        assert_eq!(int_val.as_f64(), Some(42.0));
1419        assert_eq!(int_val.as_string(), "42");
1420
1421        let null_val = FeatureValue::Null;
1422        assert!(null_val.is_null());
1423        assert_eq!(null_val.as_f64(), None);
1424    }
1425
1426    #[test]
1427    fn test_data_batch_operations() {
1428        let mut batch = DataBatch::new();
1429        assert!(batch.is_empty());
1430
1431        let sample = DataSample {
1432            id: "test1".to_string(),
1433            features: {
1434                let mut features = HashMap::new();
1435                features.insert("feature1".to_string(), FeatureValue::Float64(1.0));
1436                features.insert("feature2".to_string(), FeatureValue::Float64(2.0));
1437                features
1438            },
1439            target: Some(FeatureValue::Float64(1.0)),
1440            timestamp: SystemTime::now(),
1441            metadata: HashMap::new(),
1442        };
1443
1444        batch.add_sample(sample);
1445        assert_eq!(batch.size(), 1);
1446        assert!(!batch.is_empty());
1447
1448        // Test feature matrix extraction
1449        let featurenames = vec!["feature1".to_string(), "feature2".to_string()];
1450        let matrix = batch
1451            .extract_featurematrix(&featurenames)
1452            .expect("Operation failed");
1453        assert_eq!(matrix.len(), 1);
1454        assert_eq!(matrix[0], vec![1.0, 2.0]);
1455    }
1456
1457    #[test]
1458    fn test_feature_transformer_creation() {
1459        let transformer = FeatureTransformer::new(
1460            "test_scaler".to_string(),
1461            TransformType::StandardScaler,
1462            vec!["feature1".to_string()],
1463            vec!["feature1_scaled".to_string()],
1464        );
1465
1466        assert_eq!(transformer.name(), "test_scaler");
1467        assert!(transformer.validate().is_ok());
1468    }
1469
1470    #[test]
1471    fn test_model_predictor_creation() {
1472        let predictor = ModelPredictor::new(
1473            "test_model".to_string(),
1474            ModelType::LinearRegression,
1475            vec!["feature1".to_string(), "feature2".to_string()],
1476            vec!["prediction".to_string()],
1477            vec![1, 2, 3, 4], // Mock model data
1478        );
1479
1480        assert_eq!(predictor.name(), "test_model");
1481        assert!(predictor.validate().is_ok());
1482    }
1483
1484    #[test]
1485    fn test_pipeline_creation_and_validation() {
1486        let mut pipeline = MLPipeline::new("test_pipeline".to_string(), PipelineConfig::default());
1487
1488        let transformer = FeatureTransformer::new(
1489            "scaler".to_string(),
1490            TransformType::StandardScaler,
1491            vec!["feature1".to_string()],
1492            vec!["feature1_scaled".to_string()],
1493        );
1494
1495        pipeline
1496            .add_node(Box::new(transformer))
1497            .expect("Operation failed");
1498        assert!(pipeline.validate().is_ok());
1499    }
1500
1501    #[test]
1502    fn test_pipeline_execution_order() {
1503        let mut pipeline = MLPipeline::new("test_pipeline".to_string(), PipelineConfig::default());
1504
1505        // Add nodes
1506        let node1 = FeatureTransformer::new(
1507            "node1".to_string(),
1508            TransformType::StandardScaler,
1509            vec!["feature1".to_string()],
1510            vec!["feature1_scaled".to_string()],
1511        );
1512        let node2 = FeatureTransformer::new(
1513            "node2".to_string(),
1514            TransformType::MinMaxScaler,
1515            vec!["feature1_scaled".to_string()],
1516            vec!["feature1_normalized".to_string()],
1517        );
1518
1519        pipeline
1520            .add_node(Box::new(node1))
1521            .expect("Operation failed");
1522        pipeline
1523            .add_node(Box::new(node2))
1524            .expect("Operation failed");
1525
1526        // Set dependencies
1527        pipeline.set_dependencies("node2".to_string(), vec!["node1".to_string()]);
1528
1529        let execution_order = pipeline.get_execution_order().expect("Operation failed");
1530        assert_eq!(execution_order, vec!["node1", "node2"]);
1531    }
1532
1533    #[test]
1534    fn test_utils_sample_batch_creation() {
1535        let featurenames = vec!["feature1".to_string(), "feature2".to_string()];
1536        let batch = utils::create_sample_batch(&featurenames, 10);
1537
1538        assert_eq!(batch.size(), 10);
1539        assert!(!batch.is_empty());
1540
1541        // Check that all samples have the required features
1542        for sample in &batch.samples {
1543            assert!(sample.features.contains_key("feature1"));
1544            assert!(sample.features.contains_key("feature2"));
1545            assert!(sample.target.is_some());
1546        }
1547    }
1548
1549    #[test]
1550    fn test_feature_statistics() {
1551        let featurenames = vec!["feature1".to_string()];
1552        let batch = utils::create_sample_batch(&featurenames, 100);
1553
1554        let stats =
1555            utils::calculate_feature_statistics(&batch, "feature1").expect("Operation failed");
1556        let (mean, std_dev, min, max) = stats;
1557
1558        assert!(mean >= 0.0);
1559        assert!(std_dev >= 0.0);
1560        assert!(min <= max);
1561    }
1562
1563    #[test]
1564    fn test_pipeline_config_default() {
1565        let config = PipelineConfig::default();
1566        assert_eq!(config.max_batchsize, 1000);
1567        assert_eq!(config.node_timeout, Duration::from_secs(30));
1568        assert!(config.parallel_processing);
1569        assert!(matches!(config.error_strategy, ErrorStrategy::FailFast));
1570    }
1571}