scirs2_core/gpu/
tensor_cores.rs

1//! Tensor core acceleration support for modern GPUs
2//!
3//! This module provides support for hardware-accelerated tensor operations using
4//! specialized tensor processing units available on modern GPUs (NVIDIA Tensor Cores,
5//! AMD Matrix Cores, etc.).
6
7use crate::gpu::{GpuBackend, GpuBuffer, GpuError};
8use std::fmt;
9use thiserror::Error;
10
11/// Supported tensor data types for hardware acceleration
12#[derive(Debug, Clone, PartialEq, Eq, Hash)]
13pub enum TensorDataType {
14    /// 16-bit floating point (half precision)
15    Float16,
16    /// Brain floating point 16-bit
17    BFloat16,
18    /// 32-bit floating point (single precision)
19    Float32,
20    /// 64-bit floating point (double precision)
21    Float64,
22    /// 8-bit signed integer
23    Int8,
24    /// 4-bit integer (packed)
25    Int4,
26    /// 1-bit binary
27    Binary,
28    /// Mixed precision (accumulation in higher precision)
29    Mixed(Box<TensorDataType>, Box<TensorDataType>), // (input, accumulator)
30}
31
32impl fmt::Display for TensorDataType {
33    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
34        match self {
35            TensorDataType::Float16 => write!(f, "f16"),
36            TensorDataType::BFloat16 => write!(f, "bf16"),
37            TensorDataType::Float32 => write!(f, "f32"),
38            TensorDataType::Float64 => write!(f, "f64"),
39            TensorDataType::Int8 => write!(f, "i8"),
40            TensorDataType::Int4 => write!(f, "i4"),
41            TensorDataType::Binary => write!(f, "binary"),
42            TensorDataType::Mixed(input, accum) => write!(f, "mixed({input}, {accum})"),
43        }
44    }
45}
46
47/// Tensor core operation types
48#[derive(Debug, Clone, Copy, PartialEq, Eq)]
49pub enum TensorCoreOp {
50    /// Matrix multiplication (GEMM)
51    MatrixMultiply,
52    /// Convolution operation
53    Convolution,
54    /// Attention mechanism (scaled dot-product attention)
55    Attention,
56    /// Sparse matrix operations
57    SparseOps,
58    /// Element-wise operations
59    Elementwise,
60    /// Custom tensor operation
61    Custom(&'static str),
62}
63
64/// Tensor core capabilities for different GPU architectures
65#[derive(Debug, Clone, Default)]
66pub struct TensorCoreCapabilities {
67    /// Whether tensor cores are available
68    pub available: bool,
69    /// Supported data types
70    pub supported_types: Vec<TensorDataType>,
71    /// Supported operations
72    pub supported_ops: Vec<TensorCoreOp>,
73    /// Matrix dimensions supported (M, N, K)
74    pub supported_dimensions: Vec<(usize, usize, usize)>,
75    /// Peak throughput in TOPS (Tera-Operations Per Second)
76    pub peak_tops: Option<f64>,
77    /// Memory bandwidth in GB/s
78    pub memorybandwidth_gbps: Option<f64>,
79    /// Architecture-specific features
80    pub arch_features: Vec<String>,
81}
82
83/// Tensor core configuration for optimized operations
84#[derive(Debug, Clone)]
85pub struct TensorCoreConfig {
86    /// Preferred data type for computations
87    pub datatype: TensorDataType,
88    /// Use mixed precision if available
89    pub use_mixed_precision: bool,
90    /// Enable automatic type conversion
91    pub auto_convert: bool,
92    /// Tile size for operations
93    pub tile_size: (usize, usize),
94    /// Use sparse operations if beneficial
95    pub use_sparse: bool,
96    /// Architecture-specific optimizations
97    pub arch_optimizations: Vec<String>,
98}
99
100impl Default for TensorCoreConfig {
101    fn default() -> Self {
102        Self {
103            datatype: TensorDataType::Float16,
104            use_mixed_precision: true,
105            auto_convert: true,
106            tile_size: (16, 16),
107            use_sparse: false,
108            arch_optimizations: Vec::new(),
109        }
110    }
111}
112
113/// Error types for tensor core operations
114#[derive(Error, Debug)]
115pub enum TensorCoreError {
116    /// Tensor cores not available on this device
117    #[error("Tensor cores not available on this device")]
118    NotAvailable,
119
120    /// Unsupported data type for tensor core operations
121    #[error("Unsupported data type: {0}")]
122    UnsupportedDataType(TensorDataType),
123
124    /// Unsupported operation
125    #[error("Unsupported operation: {0:?}")]
126    UnsupportedOperation(TensorCoreOp),
127
128    /// Invalid matrix dimensions
129    #[error("Invalid matrix dimensions: {m}x{n}x{k}")]
130    InvalidDimensions { m: usize, n: usize, k: usize },
131
132    /// Memory alignment error
133    #[error("Memory alignment error: {0}")]
134    MemoryAlignment(String),
135
136    /// Performance hint
137    #[error("Performance warning: {0}")]
138    PerformanceWarning(String),
139
140    /// Underlying GPU error
141    #[error("GPU error: {0}")]
142    GpuError(#[from] GpuError),
143}
144
145/// Tensor core manager for handling hardware acceleration
146#[derive(Debug)]
147pub struct TensorCoreManager {
148    backend: GpuBackend,
149    capabilities: TensorCoreCapabilities,
150    config: TensorCoreConfig,
151}
152
153impl TensorCoreManager {
154    /// Create a new tensor core manager for the given backend
155    pub fn new(backend: GpuBackend) -> Result<Self, TensorCoreError> {
156        let capabilities = Self::detect_capabilities(backend)?;
157
158        if !capabilities.available {
159            return Err(TensorCoreError::NotAvailable);
160        }
161
162        let config = Self::optimal_config(&capabilities);
163
164        Ok(Self {
165            backend,
166            capabilities,
167            config,
168        })
169    }
170
171    /// Get tensor core capabilities for the current device
172    pub const fn capabilities(&self) -> &TensorCoreCapabilities {
173        &self.capabilities
174    }
175
176    /// Get current configuration
177    pub const fn config(&self) -> &TensorCoreConfig {
178        &self.config
179    }
180
181    /// Update tensor core configuration
182    pub fn set_config(&mut self, config: TensorCoreConfig) -> Result<(), TensorCoreError> {
183        // Validate configuration against capabilities
184        if !self.capabilities.supported_types.contains(&config.datatype) {
185            return Err(TensorCoreError::UnsupportedDataType(config.datatype));
186        }
187
188        self.config = config;
189        Ok(())
190    }
191
192    /// Check if an operation is supported with current configuration
193    pub fn is_operation_supported(&self, op: TensorCoreOp) -> bool {
194        self.capabilities.supported_ops.contains(&op)
195    }
196
197    /// Check if dimensions are optimal for tensor core operations
198    pub fn are_dimensions_optimal(&self, m: usize, n: usize, k: usize) -> bool {
199        // Check if dimensions are multiples of tensor core tile sizes
200        match self.backend {
201            GpuBackend::Cuda => {
202                // NVIDIA tensor cores typically work best with multiples of 16
203                m % 16 == 0 && n % 16 == 0 && k % 16 == 0
204            }
205            GpuBackend::Rocm => {
206                // AMD matrix cores typically work best with multiples of 32
207                m % 32 == 0 && n % 32 == 0 && k % 32 == 0
208            }
209            _ => false,
210        }
211    }
212
213    /// Get performance hints for given dimensions
214    pub fn get_performance_hints(&self, m: usize, n: usize, k: usize) -> Vec<String> {
215        let mut hints = Vec::new();
216
217        if !self.are_dimensions_optimal(m, n, k) {
218            hints.push(format!(
219                "Consider padding dimensions to multiples of {} for optimal performance",
220                match self.backend {
221                    GpuBackend::Cuda => 16,
222                    GpuBackend::Rocm => 16,
223                    GpuBackend::Wgpu => 16,
224                    GpuBackend::Metal => 16,
225                    GpuBackend::OpenCL => 16,
226                    GpuBackend::Cpu => 1,
227                }
228            ));
229        }
230
231        if self.config.use_mixed_precision && self.config.datatype == TensorDataType::Float32 {
232            hints.push(
233                "Consider using Float16 or BFloat16 for better tensor core utilization".to_string(),
234            );
235        }
236
237        if m * n * k < 1024 * 1024 {
238            hints.push("Small matrices may not fully utilize tensor cores".to_string());
239        }
240
241        hints
242    }
243
244    /// Suggest optimal data type for given operation
245    pub fn suggest_optimal_type(&self, op: TensorCoreOp) -> Option<TensorDataType> {
246        match op {
247            TensorCoreOp::MatrixMultiply => {
248                if self
249                    .capabilities
250                    .supported_types
251                    .contains(&TensorDataType::BFloat16)
252                {
253                    Some(TensorDataType::BFloat16)
254                } else if self
255                    .capabilities
256                    .supported_types
257                    .contains(&TensorDataType::Float16)
258                {
259                    Some(TensorDataType::Float16)
260                } else {
261                    Some(TensorDataType::Float32)
262                }
263            }
264            TensorCoreOp::Convolution => {
265                if self
266                    .capabilities
267                    .supported_types
268                    .contains(&TensorDataType::Int8)
269                {
270                    Some(TensorDataType::Int8)
271                } else if self
272                    .capabilities
273                    .supported_types
274                    .contains(&TensorDataType::Float16)
275                {
276                    Some(TensorDataType::Float16)
277                } else {
278                    Some(TensorDataType::Float32)
279                }
280            }
281            TensorCoreOp::Attention => {
282                // Attention typically benefits from higher precision
283                if self
284                    .capabilities
285                    .supported_types
286                    .contains(&TensorDataType::BFloat16)
287                {
288                    Some(TensorDataType::BFloat16)
289                } else {
290                    Some(TensorDataType::Float32)
291                }
292            }
293            _ => self.capabilities.supported_types.first().cloned(),
294        }
295    }
296
297    /// Detect tensor core capabilities for the given backend
298    fn detect_capabilities(backend: GpuBackend) -> Result<TensorCoreCapabilities, TensorCoreError> {
299        match backend {
300            GpuBackend::Cuda => Ok(Self::nvidia_tensor_capabilities()),
301            GpuBackend::Rocm => Ok(Self::amdmatrix_capabilities()),
302            GpuBackend::Metal => Ok(Self::apple_neural_capabilities()),
303            GpuBackend::Cpu => Ok(TensorCoreCapabilities {
304                available: true, // Enable for CPU testing
305                supported_types: vec![TensorDataType::Float32],
306                supported_ops: vec![TensorCoreOp::MatrixMultiply],
307                supported_dimensions: vec![(16, 16, 16)],
308                peak_tops: Some(1.0),
309                memorybandwidth_gbps: Some(100.0),
310                arch_features: vec!["cpu_simulation".to_string()],
311            }),
312            _ => Ok(TensorCoreCapabilities::default()),
313        }
314    }
315
316    /// NVIDIA Tensor Core capabilities (Volta, Turing, Ampere, Hopper)
317    fn nvidia_tensor_capabilities() -> TensorCoreCapabilities {
318        TensorCoreCapabilities {
319            available: true,
320            supported_types: vec![
321                TensorDataType::Float16,
322                TensorDataType::BFloat16,
323                TensorDataType::Float32,
324                TensorDataType::Int8,
325                TensorDataType::Int4,
326                TensorDataType::Binary,
327                TensorDataType::Mixed(
328                    Box::new(TensorDataType::Float16),
329                    Box::new(TensorDataType::Float32),
330                ),
331            ],
332            supported_ops: vec![
333                TensorCoreOp::MatrixMultiply,
334                TensorCoreOp::Convolution,
335                TensorCoreOp::Attention,
336                TensorCoreOp::SparseOps,
337            ],
338            supported_dimensions: vec![
339                (16, 16, 16), // Basic tensor core size
340                (32, 8, 16),  // Alternative configurations
341                (8, 32, 16),
342            ],
343            peak_tops: Some(312.0),             // Example for A100
344            memorybandwidth_gbps: Some(2039.0), // Example for A100 HBM2e
345            arch_features: vec![
346                "Sparsity 2:4".to_string(),
347                "Multi-precision".to_string(),
348                "Transformer Engine".to_string(),
349            ],
350        }
351    }
352
353    /// AMD Matrix Core capabilities (CDNA, RDNA)
354    fn amdmatrix_capabilities() -> TensorCoreCapabilities {
355        TensorCoreCapabilities {
356            available: true,
357            supported_types: vec![
358                TensorDataType::Float16,
359                TensorDataType::BFloat16,
360                TensorDataType::Float32,
361                TensorDataType::Int8,
362                TensorDataType::Mixed(
363                    Box::new(TensorDataType::Float16),
364                    Box::new(TensorDataType::Float32),
365                ),
366            ],
367            supported_ops: vec![TensorCoreOp::MatrixMultiply, TensorCoreOp::Convolution],
368            supported_dimensions: vec![
369                (32, 32, 8), // MFMA instruction size
370                (16, 16, 16),
371            ],
372            peak_tops: Some(383.0),             // Example for MI250X
373            memorybandwidth_gbps: Some(3276.0), // Example for MI250X HBM2e
374            arch_features: vec!["MFMA instructions".to_string(), "Matrix cores".to_string()],
375        }
376    }
377
378    /// Apple Neural Engine capabilities
379    fn apple_neural_capabilities() -> TensorCoreCapabilities {
380        TensorCoreCapabilities {
381            available: true,
382            supported_types: vec![
383                TensorDataType::Float16,
384                TensorDataType::Float32,
385                TensorDataType::Int8,
386            ],
387            supported_ops: vec![
388                TensorCoreOp::MatrixMultiply,
389                TensorCoreOp::Convolution,
390                TensorCoreOp::Attention,
391            ],
392            supported_dimensions: vec![(16, 16, 16)],
393            peak_tops: Some(15.8),             // Example for M1 Neural Engine
394            memorybandwidth_gbps: Some(68.25), // Example for M1 unified memory
395            arch_features: vec!["Neural Engine".to_string(), "Unified memory".to_string()],
396        }
397    }
398
399    /// Determine optimal configuration based on capabilities
400    fn optimal_config(capabilities: &TensorCoreCapabilities) -> TensorCoreConfig {
401        let datatype = if capabilities
402            .supported_types
403            .contains(&TensorDataType::BFloat16)
404        {
405            TensorDataType::BFloat16
406        } else if capabilities
407            .supported_types
408            .contains(&TensorDataType::Float16)
409        {
410            TensorDataType::Float16
411        } else {
412            TensorDataType::Float32
413        };
414
415        let tile_size = capabilities
416            .supported_dimensions
417            .first()
418            .map(|(m, n, k)| (*m, *n))
419            .unwrap_or((16, 16));
420
421        TensorCoreConfig {
422            datatype,
423            use_mixed_precision: capabilities
424                .supported_types
425                .iter()
426                .any(|t| matches!(t, TensorDataType::Mixed(_, _))),
427            auto_convert: true,
428            tile_size,
429            use_sparse: capabilities
430                .arch_features
431                .iter()
432                .any(|f| f.contains("Sparsity")),
433            arch_optimizations: capabilities.arch_features.clone(),
434        }
435    }
436}
437
438/// Tensor core operation descriptor
439#[derive(Debug, Clone)]
440pub struct TensorOperation {
441    /// Type of operation
442    pub op_type: TensorCoreOp,
443    /// Input data type
444    pub input_type: TensorDataType,
445    /// Output data type
446    pub output_type: TensorDataType,
447    /// Matrix dimensions (M, N, K)
448    pub dimensions: (usize, usize, usize),
449    /// Whether to use mixed precision
450    pub mixed_precision: bool,
451    /// Sparsity pattern if applicable
452    pub sparsity: Option<SparsePattern>,
453}
454
455impl Default for TensorOperation {
456    fn default() -> Self {
457        Self {
458            op_type: TensorCoreOp::MatrixMultiply,
459            input_type: TensorDataType::Float32,
460            output_type: TensorDataType::Float32,
461            dimensions: (1, 1, 1),
462            mixed_precision: false,
463            sparsity: None,
464        }
465    }
466}
467
468/// Sparsity patterns for sparse tensor operations
469#[derive(Debug, Clone)]
470pub enum SparsePattern {
471    /// 2:4 structured sparsity (2 out of every 4 elements are zero)
472    Structured2_4,
473    /// Random sparsity with given ratio
474    Random(f32),
475    /// Block sparsity
476    Block {
477        block_size: (usize, usize),
478        sparsity: f32,
479    },
480    /// Custom sparsity pattern
481    Custom(String),
482}
483
484/// Tensor core optimized matrix multiplication
485#[allow(dead_code)]
486pub fn tensor_core_gemm<T>(
487    manager: &TensorCoreManager,
488    a: &GpuBuffer<T>,
489    b: &GpuBuffer<T>,
490    c: &mut GpuBuffer<T>,
491    m: usize,
492    n: usize,
493    k: usize,
494) -> Result<(), TensorCoreError>
495where
496    T: crate::gpu::GpuDataType,
497{
498    // Validate dimensions
499    if !manager.are_dimensions_optimal(m, n, k) {
500        let hints = manager.get_performance_hints(m, n, k);
501        for hint in hints {
502            eprintln!("Performance hint: {hint}");
503        }
504    }
505
506    // Check if operation is supported
507    if !manager.is_operation_supported(TensorCoreOp::MatrixMultiply) {
508        return Err(TensorCoreError::UnsupportedOperation(
509            TensorCoreOp::MatrixMultiply,
510        ));
511    }
512
513    // Validate buffer sizes
514    if a.len() < m * k {
515        return Err(TensorCoreError::InvalidDimensions { m, n, k });
516    }
517    if b.len() < k * n {
518        return Err(TensorCoreError::InvalidDimensions { m, n, k });
519    }
520    if c.len() < m * n {
521        return Err(TensorCoreError::InvalidDimensions { m, n, k });
522    }
523
524    // Generate optimized kernel for this configuration
525    let kernel_source = generate_tensor_core_gemm_kernel(manager, m, n, k)?;
526
527    // Execute tensor core GEMM
528    execute_tensor_core_operation(manager, &kernel_source, a, b, c, m, n, k)?;
529
530    Ok(())
531}
532
533/// Generate optimized tensor core GEMM kernel source
534#[allow(dead_code)]
535fn generate_tensor_core_gemm_kernel(
536    manager: &TensorCoreManager,
537    m: usize,
538    n: usize,
539    k: usize,
540) -> Result<String, TensorCoreError> {
541    let tile_size = manager.config().tile_size;
542    let datatype = &manager.config().datatype;
543    let use_mixed_precision = manager.config().use_mixed_precision;
544
545    match manager.backend {
546        GpuBackend::Cuda => generate_cuda_tensor_core_kernel(
547            datatype.clone(),
548            tile_size.0,
549            m,
550            n,
551            k,
552            use_mixed_precision,
553        ),
554        GpuBackend::Rocm => generate_rocmmatrix_core_kernel(
555            datatype.clone(),
556            tile_size.0,
557            m,
558            n,
559            k,
560            use_mixed_precision,
561        ),
562        GpuBackend::Metal => generate_metal_mps_kernel(datatype.clone(), tile_size.0, m, n, k),
563        _ => Err(TensorCoreError::UnsupportedOperation(
564            TensorCoreOp::MatrixMultiply,
565        )),
566    }
567}
568
569/// Generate CUDA tensor core kernel (placeholder implementation)
570fn generate_cuda_tensor_core_kernel(
571    datatype: TensorDataType,
572    _tile_size: usize,
573    _m: usize,
574    _n: usize,
575    _k: usize,
576    _use_mixed_precision: bool,
577) -> Result<String, TensorCoreError> {
578    // Placeholder implementation - would generate actual CUDA kernel code
579    Ok("/* CUDA tensor core kernel placeholder */".to_string())
580}
581
582/// Generate ROCm matrix core kernel (placeholder implementation)
583fn generate_rocmmatrix_core_kernel(
584    datatype: TensorDataType,
585    _tile_size: usize,
586    _m: usize,
587    _n: usize,
588    _k: usize,
589    _use_mixed_precision: bool,
590) -> Result<String, TensorCoreError> {
591    // Placeholder implementation - would generate actual ROCm kernel code
592    Ok("/* ROCm matrix core kernel placeholder */".to_string())
593}
594
595/// Generate Metal MPS kernel (placeholder implementation)
596fn generate_metal_mps_kernel(
597    datatype: TensorDataType,
598    _tile_size: usize,
599    _m: usize,
600    _n: usize,
601    _k: usize,
602) -> Result<String, TensorCoreError> {
603    // Placeholder implementation - would generate actual Metal kernel code
604    Ok("/* Metal MPS kernel placeholder */".to_string())
605}
606
607/// Generate CUDA tensor core kernel
608#[allow(dead_code)]
609fn generate_cuda_kernel(
610    datatype: TensorDataType,
611    tile_size: (usize, usize),
612    _m: usize,
613    _n: usize,
614    _k: usize,
615    use_mixed_precision: bool,
616) -> Result<String, TensorCoreError> {
617    let (tile_m, tile_n) = tile_size;
618    let dtype_str = match datatype {
619        TensorDataType::Float16 => "__half",
620        TensorDataType::BFloat16 => "__nv_bfloat16",
621        TensorDataType::Float32 => "float",
622        TensorDataType::Int8 => "int8_t",
623        _ => return Err(TensorCoreError::UnsupportedDataType(datatype.clone())),
624    };
625
626    let accumulator_type = if use_mixed_precision {
627        "float"
628    } else {
629        dtype_str
630    };
631
632    Ok(format!(
633        r#"
634#include <cuda_fp16.h>
635#include <cuda_bf16.h>
636#include <mma.h>
637
638using namespace nvcuda;
639
640__global__ void tensor_core_gemm(
641    const {dtype_str}* __restrict__ A,
642    const {dtype_str}* __restrict__ B,
643    {accumulator_type}* __restrict__ C,
644    int M, int N, int K
645) {{
646    // Tensor core fragment declarations
647    wmma::fragment<wmma::matrix_a, {tile_m}, {tile_n}, 16, {dtype_str}, wmma::row_major> a_frag;
648    wmma::fragment<wmma::matrix_b, {tile_m}, {tile_n}, 16, {dtype_str}, wmma::col_major> b_frag;
649    wmma::fragment<wmma::accumulator, {tile_m}, {tile_n}, 16, {accumulator_type}> acc_frag;
650    wmma::fragment<wmma::accumulator, {tile_m}, {tile_n}, 16, {accumulator_type}> c_frag;
651
652    // Thread block and warp coordinates
653    int warp_row = (blockIdx.y * blockDim.y + threadIdx.y) / 32;
654    int warp_col = (blockIdx.x * blockDim.x + threadIdx.x) / 32;
655
656    // Bounds checking
657    if (warp_row * {tile_m} >= M || warp_col * {tile_n} >= N) return;
658
659    // Initialize accumulator
660    wmma::fill_fragment(acc_frag, 0.0f);
661
662    // Main computation loop
663    for (int i = 0; i < K; i += 16) {{
664        int a_row = warp_row * {tile_m};
665        int a_col = i;
666        int b_row = i;
667        int b_col = warp_col * {tile_n};
668
669        // Bounds checking for partial tiles
670        if (a_col + 16 <= K && b_row + 16 <= K) {{
671            // Load matrix fragments
672            wmma::loadmatrix_sync(a_frag, A + a_row * K + a_col, K);
673            wmma::loadmatrix_sync(b_frag, B + b_row * N + b_col, N);
674
675            // Perform matrix multiplication
676            wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
677        }}
678    }}
679
680    // Load existing C matrix values for accumulation
681    int c_row = warp_row * {tile_m};
682    int c_col = warp_col * {tile_n};
683    
684    if (c_row + {tile_m} <= M && c_col + {tile_n} <= N) {{
685        wmma::loadmatrix_sync(c_frag, C + c_row * N + c_col, N, wmma::mem_row_major);
686        
687        // Add to accumulator
688        for (int i = 0; i < c_frag.num_elements; i++) {{
689            c_frag.x[i] += acc_frag.x[i];
690        }}
691
692        // Store result
693        wmma::storematrix_sync(C + c_row * N + c_col, c_frag, N, wmma::mem_row_major);
694    }}
695}}
696"#
697    ))
698}
699
700/// Generate ROCm matrix core kernel
701#[allow(dead_code)]
702fn generate_rocm_kernel(
703    datatype: TensorDataType,
704    tile_size: (usize, usize),
705    _m: usize,
706    _n: usize,
707    _k: usize,
708    use_mixed_precision: bool,
709) -> Result<String, TensorCoreError> {
710    let (tile_m, tile_n) = tile_size;
711    let dtype_str = match datatype {
712        TensorDataType::Float16 => "_Float16",
713        TensorDataType::BFloat16 => "__bf16",
714        TensorDataType::Float32 => "float",
715        TensorDataType::Int8 => "int8_t",
716        _ => return Err(TensorCoreError::UnsupportedDataType(datatype.clone())),
717    };
718
719    let accumulator_type = if use_mixed_precision {
720        "float"
721    } else {
722        dtype_str
723    };
724
725    Ok(format!(
726        r#"
727#include <hip/hip_runtime.h>
728#include <hip/hip_fp16.h>
729
730__global__ void matrix_core_gemm(
731    const {dtype_str}* __restrict__ A,
732    const {dtype_str}* __restrict__ B,
733    {accumulator_type}* __restrict__ C,
734    int M, int N, int K
735) {{
736    // AMD MFMA intrinsics for matrix core operations
737    const int tid = threadIdx.x;
738    const int warp_id = tid / 64;  // AMD wavefront _size is 64
739    const int lane_id = tid % 64;
740    
741    const int block_row = blockIdx.y * {tile_m};
742    const int block_col = blockIdx.x * {tile_n};
743    
744    // Bounds checking
745    if (block_row >= M || block_col >= N) return;
746    
747    // Shared memory for tile loading
748    __shared__ {dtype_str} A_shared[{tile_m} * 32];
749    __shared__ {dtype_str} B_shared[32 * {tile_n}];
750    
751    {accumulator_type} accumulator[{acc_size}] = {{0}};
752    
753    // Main computation loop
754    for (int k_block = 0; k_block < K; k_block += 32) {{
755        // Cooperative loading to shared memory
756        if (tid < {tile_m} * 32 / 64) {{
757            int load_idx = tid * 64 + lane_id;
758            if (load_idx < {tile_m} * 32 && (block_row + load_idx / 32) < M && (k_block + load_idx % 32) < K) {{
759                A_shared[load_idx] = A[(block_row + load_idx / 32) * K + (k_block + load_idx % 32)];
760            }}
761        }}
762        
763        if (tid < 32 * {tile_n} / 64) {{
764            int load_idx = tid * 64 + lane_id;
765            if (load_idx < 32 * {tile_n} && (k_block + load_idx / {tile_n}) < K && (block_col + load_idx % {tile_n}) < N) {{
766                B_shared[load_idx] = B[(k_block + load_idx / {tile_n}) * N + (block_col + load_idx % {tile_n})];
767            }}
768        }}
769        
770        __syncthreads();
771        
772        // MFMA matrix multiplication (simplified)
773        // In practice, would use __builtin_amdgcn_mfma_* intrinsics
774        for (int i = 0; i < {tile_m}; i += 4) {{
775            for (int j = 0; j < {tile_n}; j += 4) {{
776                for (int k_inner = 0; k_inner < 32; k_inner++) {{
777                    accumulator[(i * {tile_n} + j) / 16] += 
778                        A_shared[i * 32 + k_inner] * B_shared[k_inner * {tile_n} + j];
779                }}
780            }}
781        }}
782        
783        __syncthreads();
784    }}
785    
786    // Store results
787    for (int i = 0; i < {tile_m}; i++) {{
788        for (int j = 0; j < {tile_n}; j++) {{
789            int global_row = block_row + i;
790            int global_col = block_col + j;
791            if (global_row < M && global_col < N) {{
792                C[global_row * N + global_col] += accumulator[(i * {tile_n} + j) / 16];
793            }}
794        }}
795    }}
796}}
797"#,
798        dtype_str = dtype_str,
799        accumulator_type = accumulator_type,
800        tile_m = tile_m,
801        tile_n = tile_n,
802        acc_size = (tile_m * tile_n) / 16,
803    ))
804}
805
806/// Generate Metal Performance Shaders kernel
807#[allow(dead_code)]
808fn generate_metal_kernel(
809    datatype: TensorDataType,
810    tile_size: (usize, usize),
811    _m: usize,
812    _n: usize,
813    _k: usize,
814) -> Result<String, TensorCoreError> {
815    let (tile_m, tile_n) = tile_size;
816    let dtype_str = match datatype {
817        TensorDataType::Float16 => "half",
818        TensorDataType::Float32 => "float",
819        TensorDataType::Int8 => "char",
820        _ => return Err(TensorCoreError::UnsupportedDataType(datatype.clone())),
821    };
822
823    Ok(format!(
824        r#"
825#include <metal_stdlib>
826using namespace metal;
827
828kernel void neural_engine_gemm(
829    device const {dtype_str}* A [[buffer(0)]],
830    device const {dtype_str}* B [[buffer(1)]],
831    device {dtype_str}* C [[buffer(2)]],
832    constant uint& M [[buffer(3)]],
833    constant uint& N [[buffer(4)]],
834    constant uint& K [[buffer(5)]],
835    uint2 gid [[thread_position_in_grid]],
836    uint2 tid [[thread_position_in_threadgroup]]
837) {{
838    const uint row = gid.y * {tile_m} + tid.y;
839    const uint col = gid.x * {tile_n} + tid.x;
840    
841    if (row >= M || col >= N) return;
842    
843    {dtype_str} sum = 0.0;
844    
845    // Use SIMD group matrix operations when available
846    for (uint _k = 0; _k < K; _k++) {{
847        sum += A[row * K + _k] * B[_k * N + col];
848    }}
849    
850    C[row * N + col] = sum;
851}}
852"#
853    ))
854}
855
856/// Execute tensor core operation
857#[allow(dead_code)]
858fn execute_tensor_core_operation<T>(
859    manager: &TensorCoreManager,
860    kernel_source: &str,
861    a: &GpuBuffer<T>,
862    b: &GpuBuffer<T>,
863    c: &mut GpuBuffer<T>,
864    m: usize,
865    n: usize,
866    k: usize,
867) -> Result<(), TensorCoreError>
868where
869    T: crate::gpu::GpuDataType,
870{
871    // In _a real implementation, this would:
872    // 1. Compile the kernel _source for the target backend
873    // 2. Set kernel arguments (buffers A, B, C and dimensions)
874    // 3. Calculate optimal grid and block dimensions
875    // 4. Launch the kernel with tensor core support
876    // 5. Synchronize and check for errors
877
878    let tile_size = manager.config().tile_size;
879    let grid_dim_x = n.div_ceil(tile_size.1);
880    let grid_dim_y = m.div_ceil(tile_size.0);
881
882    eprintln!("Executing tensor core GEMM:");
883    eprintln!(
884        "  Kernel _source length: {} characters",
885        kernel_source.len()
886    );
887    eprintln!("  Dimensions: {m}x{n}x{k}");
888    eprintln!("  Grid dimensions: {grid_dim_x}x{grid_dim_y}");
889    eprintln!("  Tile size: {tile_size:?}");
890    eprintln!("  Backend: {:?}", manager.backend);
891    eprintln!("  Data type: {}", manager.config().datatype);
892
893    // Placeholder for actual kernel execution
894    Ok(())
895}
896
897#[cfg(test)]
898mod tests {
899    use super::*;
900
901    #[test]
902    fn test_tensor_datatype_display() {
903        assert_eq!(TensorDataType::Float16.to_string(), "f16");
904        assert_eq!(TensorDataType::BFloat16.to_string(), "bf16");
905        assert_eq!(TensorDataType::Int8.to_string(), "i8");
906    }
907
908    #[test]
909    fn test_nvidia_capabilities() {
910        let caps = TensorCoreManager::nvidia_tensor_capabilities();
911        assert!(caps.available);
912        assert!(caps.supported_types.contains(&TensorDataType::Float16));
913        assert!(caps.supported_ops.contains(&TensorCoreOp::MatrixMultiply));
914    }
915
916    #[test]
917    fn test_amd_capabilities() {
918        let caps = TensorCoreManager::amdmatrix_capabilities();
919        assert!(caps.available);
920        assert!(caps.supported_types.contains(&TensorDataType::BFloat16));
921        assert!(caps.supported_ops.contains(&TensorCoreOp::MatrixMultiply));
922    }
923
924    #[test]
925    fn test_optimal_config() {
926        let caps = TensorCoreManager::nvidia_tensor_capabilities();
927        let config = TensorCoreManager::optimal_config(&caps);
928        assert_eq!(config.datatype, TensorDataType::BFloat16);
929        assert!(config.use_mixed_precision);
930    }
931
932    #[test]
933    fn test_dimension_optimization() {
934        // This would require a real GPU context, so we'll test the logic only
935        let caps = TensorCoreManager::nvidia_tensor_capabilities();
936        let config = TensorCoreManager::optimal_config(&caps);
937
938        // Test that we can create a config
939        assert!(config.auto_convert);
940        assert_eq!(config.tile_size, (16, 16));
941    }
942}