scirs2_core/gpu/kernels/transform/
fft.rs

1//! Fast Fourier Transform (FFT) GPU kernels
2//!
3//! Implements GPU-accelerated FFT for various sizes and dimensions.
4
5use std::collections::HashMap;
6
7use crate::gpu::kernels::{
8    BaseKernel, DataType, GpuKernel, KernelMetadata, KernelParams, OperationType,
9};
10use crate::gpu::{GpuBackend, GpuError};
11
12/// FFT direction
13#[derive(Debug, Clone, Copy, PartialEq, Eq)]
14pub enum FftDirection {
15    /// Forward FFT (time to frequency)
16    Forward,
17    /// Inverse FFT (frequency to time)
18    Inverse,
19}
20
21/// FFT dimension
22#[derive(Debug, Clone, Copy, PartialEq, Eq)]
23pub enum FftDimension {
24    /// 1D FFT
25    One,
26    /// 2D FFT
27    Two,
28    /// 3D FFT
29    Three,
30}
31
32/// Fast Fourier Transform kernel
33pub struct FftKernel {
34    base: BaseKernel,
35    direction: FftDirection,
36    dimension: FftDimension,
37}
38
39impl FftKernel {
40    /// Create a new FFT kernel with default settings (1D forward FFT)
41    pub fn new() -> Self {
42        Self::with_params(FftDirection::Forward, FftDimension::One)
43    }
44
45    /// Create a new FFT kernel with specified parameters
46    pub fn with_params(direction: FftDirection, dimension: FftDimension) -> Self {
47        let metadata = KernelMetadata {
48            workgroup_size: [256, 1, 1],
49            local_memory_usage: 8192, // Varies based on implementation
50            supports_tensor_cores: false,
51            operationtype: OperationType::ComputeIntensive,
52            backend_metadata: HashMap::new(),
53        };
54
55        let name = match (direction, dimension) {
56            (FftDirection::Forward, FftDimension::One) => "fft_1d_forward",
57            (FftDirection::Inverse, FftDimension::One) => "fft_1d_inverse",
58            (FftDirection::Forward, FftDimension::Two) => "fft_2d_forward",
59            (FftDirection::Inverse, FftDimension::Two) => "fft_2d_inverse",
60            (FftDirection::Forward, FftDimension::Three) => "fft_3d_forward",
61            (FftDirection::Inverse, FftDimension::Three) => "fft_3d_inverse",
62        };
63
64        // For a real implementation, we would have different optimized kernels
65        // for each combination of direction and dimension.
66        // Here we'll just provide a placeholder for the 1D forward FFT.
67
68        let cuda_source = r#"
69// CUDA implementation of FFT
70// In a real implementation, we would likely use cuFFT library calls
71// or implement the Cooley-Tukey algorithm for powers of 2
72extern "C" __global__ void fft_1d_forward(
73    const float2* __restrict__ input,
74    float2* __restrict__ output,
75    int n
76) {
77    // Implementation would go here
78    // This is just a placeholder
79    int i = blockIdx.x * blockDim.x + threadIdx.x;
80    if (i < n) {
81        output[i] = input[i];  // Placeholder, not a real FFT
82    }
83}
84"#
85        .to_string();
86
87        let wgpu_source = r#"
88// WebGPU implementation of FFT
89// Placeholder for actual implementation
90struct Complex {
91    real: f32,
92    imag: f32,
93};
94
95struct Uniforms {
96    n: u32,
97};
98
99@group(0) @binding(0) var<uniform> uniforms: Uniforms;
100@group(0) @binding(1) var<storage, read> input: array<Complex>;
101@group(0) @binding(2) var<storage, write> output: array<Complex>;
102
103@compute @workgroup_size(256)
104#[allow(dead_code)]
105fn fft_1d_forward(@builtin(global_invocation_id) global_id: vec3<u32>) {
106    let i = global_id.x;
107
108    if (i < uniforms.n) {
109        // This is just a placeholder, not a real FFT
110        output[i] = input[i];
111    }
112}
113"#
114        .to_string();
115
116        let metal_source = r#"
117// Metal implementation of FFT
118// Placeholder for actual implementation
119#include <metal_stdlib>
120using namespace metal;
121
122struct Complex {
123    float real;
124    float imag;
125};
126
127kernel void fft_1d_forward(
128    const device Complex* input [[buffer(0)]],
129    device Complex* output [[buffer(1)]],
130    constant uint& n [[buffer(2)]],
131    uint global_id [[thread_position_in_grid]])
132{
133    if (global_id < n) {
134        // This is just a placeholder, not a real FFT
135        output[global_id] = input[global_id];
136    }
137}
138"#
139        .to_string();
140
141        let opencl_source = r#"
142// OpenCL implementation of FFT
143// Placeholder for actual implementation
144typedef struct {
145    float real;
146    float imag;
147} Complex;
148
149__kernel void fft_1d_forward(
150    __global const Complex* input,
151    __global Complex* output,
152    const int n)
153{
154    int i = get_global_id(0);
155
156    if (i < n) {
157        // This is just a placeholder, not a real FFT
158        output[i] = input[i];
159    }
160}
161"#
162        .to_string();
163
164        // ROCm (HIP) kernel - similar to CUDA
165        let rocm_source = cuda_source.clone();
166
167        Self {
168            base: BaseKernel::new(
169                name,
170                &cuda_source,
171                &rocm_source,
172                &wgpu_source,
173                &metal_source,
174                &opencl_source,
175                metadata,
176            ),
177            direction,
178            dimension,
179        }
180    }
181
182    /// Generate a kernel specialized for a specific size
183    #[allow(dead_code)]
184    fn specialized_for_size(&self, size: usize) -> Result<FftKernel, GpuError> {
185        // In a real implementation, we would generate different kernels
186        // optimized for different sizes (especially powers of 2)
187
188        // For now, just return a new instance with the same parameters
189        Ok(FftKernel::with_params(self.direction, self.dimension))
190    }
191}
192
193impl GpuKernel for FftKernel {
194    fn name(&self) -> &str {
195        self.base.name()
196    }
197
198    fn source_for_backend(&self, backend: GpuBackend) -> Result<String, GpuError> {
199        self.base.source_for_backend(backend)
200    }
201
202    fn metadata(&self) -> KernelMetadata {
203        self.base.metadata()
204    }
205
206    fn can_specialize(&self, params: &KernelParams) -> bool {
207        // We can specialize for complex types
208        match params.datatype {
209            DataType::Float32 | DataType::Float64 => {
210                // We need input dimensions to specialize
211                !params.input_dims.is_empty()
212            }
213            _ => false,
214        }
215    }
216
217    fn specialize(&self, params: &KernelParams) -> Result<Box<dyn GpuKernel>, GpuError> {
218        if !self.can_specialize(params) {
219            return Err(GpuError::SpecializationNotSupported);
220        }
221
222        // Extract FFT size from input dimensions
223        let _size = *params
224            .input_dims
225            .first()
226            .ok_or_else(|| GpuError::InvalidParameter("input_dims cannot be empty".to_string()))?;
227
228        // Check for direction in parameters
229        let direction = if let Some(dir) = params.string_params.get("direction") {
230            match dir.as_str() {
231                "forward" => FftDirection::Forward,
232                "inverse" => FftDirection::Inverse,
233                _ => return Err(GpuError::InvalidParameter("direction".to_string())),
234            }
235        } else {
236            self.direction
237        };
238
239        // Check for dimension in parameters
240        let dimension = if let Some(dim) = params.string_params.get("dimension") {
241            match dim.as_str() {
242                "1d" => FftDimension::One,
243                "2d" => FftDimension::Two,
244                "3d" => FftDimension::Three,
245                _ => return Err(GpuError::InvalidParameter("dimension".to_string())),
246            }
247        } else {
248            self.dimension
249        };
250
251        // Create specialized kernel
252        let specialized = FftKernel::with_params(direction, dimension);
253
254        Ok(Box::new(specialized))
255    }
256}
257
258impl Default for FftKernel {
259    fn default() -> Self {
260        Self::new()
261    }
262}