scirs2_core/gpu/kernels/transform/
fft.rs1use std::collections::HashMap;
6
7use crate::gpu::kernels::{
8 BaseKernel, DataType, GpuKernel, KernelMetadata, KernelParams, OperationType,
9};
10use crate::gpu::{GpuBackend, GpuError};
11
12#[derive(Debug, Clone, Copy, PartialEq, Eq)]
14pub enum FftDirection {
15 Forward,
17 Inverse,
19}
20
21#[derive(Debug, Clone, Copy, PartialEq, Eq)]
23pub enum FftDimension {
24 One,
26 Two,
28 Three,
30}
31
32pub struct FftKernel {
34 base: BaseKernel,
35 direction: FftDirection,
36 dimension: FftDimension,
37}
38
39impl FftKernel {
40 pub fn new() -> Self {
42 Self::with_params(FftDirection::Forward, FftDimension::One)
43 }
44
45 pub fn with_params(direction: FftDirection, dimension: FftDimension) -> Self {
47 let metadata = KernelMetadata {
48 workgroup_size: [256, 1, 1],
49 local_memory_usage: 8192, supports_tensor_cores: false,
51 operationtype: OperationType::ComputeIntensive,
52 backend_metadata: HashMap::new(),
53 };
54
55 let name = match (direction, dimension) {
56 (FftDirection::Forward, FftDimension::One) => "fft_1d_forward",
57 (FftDirection::Inverse, FftDimension::One) => "fft_1d_inverse",
58 (FftDirection::Forward, FftDimension::Two) => "fft_2d_forward",
59 (FftDirection::Inverse, FftDimension::Two) => "fft_2d_inverse",
60 (FftDirection::Forward, FftDimension::Three) => "fft_3d_forward",
61 (FftDirection::Inverse, FftDimension::Three) => "fft_3d_inverse",
62 };
63
64 let cuda_source = r#"
69// CUDA implementation of FFT
70// In a real implementation, we would likely use cuFFT library calls
71// or implement the Cooley-Tukey algorithm for powers of 2
72extern "C" __global__ void fft_1d_forward(
73 const float2* __restrict__ input,
74 float2* __restrict__ output,
75 int n
76) {
77 // Implementation would go here
78 // This is just a placeholder
79 int i = blockIdx.x * blockDim.x + threadIdx.x;
80 if (i < n) {
81 output[i] = input[i]; // Placeholder, not a real FFT
82 }
83}
84"#
85 .to_string();
86
87 let wgpu_source = r#"
88// WebGPU implementation of FFT
89// Placeholder for actual implementation
90struct Complex {
91 real: f32,
92 imag: f32,
93};
94
95struct Uniforms {
96 n: u32,
97};
98
99@group(0) @binding(0) var<uniform> uniforms: Uniforms;
100@group(0) @binding(1) var<storage, read> input: array<Complex>;
101@group(0) @binding(2) var<storage, write> output: array<Complex>;
102
103@compute @workgroup_size(256)
104#[allow(dead_code)]
105fn fft_1d_forward(@builtin(global_invocation_id) global_id: vec3<u32>) {
106 let i = global_id.x;
107
108 if (i < uniforms.n) {
109 // This is just a placeholder, not a real FFT
110 output[i] = input[i];
111 }
112}
113"#
114 .to_string();
115
116 let metal_source = r#"
117// Metal implementation of FFT
118// Placeholder for actual implementation
119#include <metal_stdlib>
120using namespace metal;
121
122struct Complex {
123 float real;
124 float imag;
125};
126
127kernel void fft_1d_forward(
128 const device Complex* input [[buffer(0)]],
129 device Complex* output [[buffer(1)]],
130 constant uint& n [[buffer(2)]],
131 uint global_id [[thread_position_in_grid]])
132{
133 if (global_id < n) {
134 // This is just a placeholder, not a real FFT
135 output[global_id] = input[global_id];
136 }
137}
138"#
139 .to_string();
140
141 let opencl_source = r#"
142// OpenCL implementation of FFT
143// Placeholder for actual implementation
144typedef struct {
145 float real;
146 float imag;
147} Complex;
148
149__kernel void fft_1d_forward(
150 __global const Complex* input,
151 __global Complex* output,
152 const int n)
153{
154 int i = get_global_id(0);
155
156 if (i < n) {
157 // This is just a placeholder, not a real FFT
158 output[i] = input[i];
159 }
160}
161"#
162 .to_string();
163
164 let rocm_source = cuda_source.clone();
166
167 Self {
168 base: BaseKernel::new(
169 name,
170 &cuda_source,
171 &rocm_source,
172 &wgpu_source,
173 &metal_source,
174 &opencl_source,
175 metadata,
176 ),
177 direction,
178 dimension,
179 }
180 }
181
182 #[allow(dead_code)]
184 fn specialized_for_size(&self, size: usize) -> Result<FftKernel, GpuError> {
185 Ok(FftKernel::with_params(self.direction, self.dimension))
190 }
191}
192
193impl GpuKernel for FftKernel {
194 fn name(&self) -> &str {
195 self.base.name()
196 }
197
198 fn source_for_backend(&self, backend: GpuBackend) -> Result<String, GpuError> {
199 self.base.source_for_backend(backend)
200 }
201
202 fn metadata(&self) -> KernelMetadata {
203 self.base.metadata()
204 }
205
206 fn can_specialize(&self, params: &KernelParams) -> bool {
207 match params.datatype {
209 DataType::Float32 | DataType::Float64 => {
210 !params.input_dims.is_empty()
212 }
213 _ => false,
214 }
215 }
216
217 fn specialize(&self, params: &KernelParams) -> Result<Box<dyn GpuKernel>, GpuError> {
218 if !self.can_specialize(params) {
219 return Err(GpuError::SpecializationNotSupported);
220 }
221
222 let _size = *params
224 .input_dims
225 .first()
226 .ok_or_else(|| GpuError::InvalidParameter("input_dims cannot be empty".to_string()))?;
227
228 let direction = if let Some(dir) = params.string_params.get("direction") {
230 match dir.as_str() {
231 "forward" => FftDirection::Forward,
232 "inverse" => FftDirection::Inverse,
233 _ => return Err(GpuError::InvalidParameter("direction".to_string())),
234 }
235 } else {
236 self.direction
237 };
238
239 let dimension = if let Some(dim) = params.string_params.get("dimension") {
241 match dim.as_str() {
242 "1d" => FftDimension::One,
243 "2d" => FftDimension::Two,
244 "3d" => FftDimension::Three,
245 _ => return Err(GpuError::InvalidParameter("dimension".to_string())),
246 }
247 } else {
248 self.dimension
249 };
250
251 let specialized = FftKernel::with_params(direction, dimension);
253
254 Ok(Box::new(specialized))
255 }
256}
257
258impl Default for FftKernel {
259 fn default() -> Self {
260 Self::new()
261 }
262}