scirs2_core/gpu/kernels/transform/
convolution.rs

1//! Convolution kernels for GPU
2//!
3//! Implements various convolution operations for signal processing and neural networks.
4
5use std::collections::HashMap;
6
7use crate::gpu::kernels::{
8    BaseKernel, DataType, GpuKernel, KernelMetadata, KernelParams, OperationType,
9};
10use crate::gpu::{GpuBackend, GpuError};
11
12/// 1D convolution kernel
13pub struct Conv1dKernel {
14    base: BaseKernel,
15}
16
17impl Conv1dKernel {
18    /// Create a new 1D convolution kernel
19    pub fn new() -> Self {
20        let metadata = KernelMetadata {
21            workgroup_size: [256, 1, 1],
22            local_memory_usage: 2048, // Kernel data cache
23            supports_tensor_cores: false,
24            operationtype: OperationType::ComputeIntensive,
25            backend_metadata: HashMap::new(),
26        };
27
28        let (cuda_source, rocm_source, wgpu_source, metal_source, opencl_source) =
29            Self::get_kernel_sources();
30
31        Self {
32            base: BaseKernel::new(
33                "conv1d",
34                &cuda_source,
35                &rocm_source,
36                &wgpu_source,
37                &metal_source,
38                &opencl_source,
39                metadata,
40            ),
41        }
42    }
43
44    /// Get kernel sources for different backends
45    fn get_kernel_sources() -> (String, String, String, String, String) {
46        // CUDA kernel for 1D convolution
47        let cuda_source = r#"
48extern "C" __global__ void conv1d(
49    const float* __restrict__ input,
50    const float* __restrict__ kernel,
51    float* __restrict__ output,
52    int input_length,
53    int kernel_length,
54    int output_length,
55    int stride,
56    int padding
57) {
58    int out_idx = blockIdx.x * blockDim.x + threadIdx.x;
59    
60    if (out_idx >= output_length) {
61        return;
62    }
63    
64    float sum = 0.0f;
65    
66    for (int k = 0; k < kernel_length; k++) {
67        int input_idx = out_idx * stride + k - padding;
68        
69        if (input_idx >= 0 && input_idx < input_length) {
70            sum += input[input_idx] * kernel[k];
71        }
72    }
73    
74    output[out_idx] = sum;
75}
76"#
77        .to_string();
78
79        // WebGPU kernel for 1D convolution
80        let wgpu_source = r#"
81struct Uniforms {
82    input_length: u32,
83    kernel_length: u32,
84    output_length: u32,
85    stride: u32,
86    padding: u32,
87};
88
89@group(0) @binding(0) var<uniform> uniforms: Uniforms;
90@group(0) @binding(1) var<storage, read> input: array<f32>;
91@group(0) @binding(2) var<storage, read> kernel_data: array<f32>;
92@group(0) @binding(3) var<storage, write> output: array<f32>;
93
94@compute @workgroup_size(256)
95#[allow(dead_code)]
96fn conv1d(@builtin(global_invocation_id) global_id: vec3<u32>) {
97    let out_idx = global_id.x;
98    
99    if (out_idx >= uniforms.output_length) {
100        return;
101    }
102    
103    var sum = 0.0;
104    
105    for (var k = 0u; k < uniforms.kernel_length; k = k + 1u) {
106        let input_idx = i32(out_idx * uniforms.stride + k) - i32(uniforms.padding);
107        
108        if (input_idx >= 0 && input_idx < i32(uniforms.input_length)) {
109            sum += input[input_idx] * kernel_data[k];
110        }
111    }
112    
113    output[out_idx] = sum;
114}
115"#
116        .to_string();
117
118        // Metal kernel for 1D convolution
119        let metal_source = r#"
120#include <metal_stdlib>
121using namespace metal;
122
123kernel void conv1d(
124    const device float* input [[buffer(0)]],
125    const device float* kernel_data [[buffer(1)]],
126    device float* output [[buffer(2)]],
127    constant uint& input_length [[buffer(3)]],
128    constant uint& kernel_length [[buffer(4)]],
129    constant uint& output_length [[buffer(5)]],
130    constant uint& stride [[buffer(6)]],
131    constant uint& padding [[buffer(7)]],
132    uint gid [[thread_position_in_grid]])
133{
134    if (gid >= output_length) {
135        return;
136    }
137    
138    float sum = 0.0f;
139    
140    for (uint k = 0; k < kernel_length; k++) {
141        int input_idx = int(gid * stride + k) - int(padding);
142        
143        if (input_idx >= 0 && input_idx < int(input_length)) {
144            sum += input[input_idx] * kernel_data[k];
145        }
146    }
147    
148    output[gid] = sum;
149}
150"#
151        .to_string();
152
153        // OpenCL kernel for 1D convolution
154        let opencl_source = r#"
155__kernel void conv1d(
156    __global const float* input__global const float* kernel_data__global float* output,
157    const int input_length,
158    const int kernel_length,
159    const int output_length,
160    const int stride,
161    const int padding)
162{
163    int out_idx = get_global_id(0);
164    
165    if (out_idx >= output_length) {
166        return;
167    }
168    
169    float sum = 0.0f;
170    
171    for (int k = 0; k < kernel_length; k++) {
172        int input_idx = out_idx * stride + k - padding;
173        
174        if (input_idx >= 0 && input_idx < input_length) {
175            sum += input[input_idx] * kernel_data[k];
176        }
177    }
178    
179    output[out_idx] = sum;
180}
181"#
182        .to_string();
183
184        // ROCm (HIP) kernel - similar to CUDA
185        let rocm_source = cuda_source.clone();
186
187        (
188            cuda_source,
189            rocm_source,
190            wgpu_source,
191            metal_source,
192            opencl_source,
193        )
194    }
195}
196
197impl GpuKernel for Conv1dKernel {
198    fn name(&self) -> &str {
199        self.base.name()
200    }
201
202    fn source_for_backend(&self, backend: GpuBackend) -> Result<String, GpuError> {
203        self.base.source_for_backend(backend)
204    }
205
206    fn metadata(&self) -> KernelMetadata {
207        self.base.metadata()
208    }
209
210    fn can_specialize(&self, params: &KernelParams) -> bool {
211        matches!(params.datatype, DataType::Float32 | DataType::Float64)
212    }
213
214    fn specialize(&self, params: &KernelParams) -> Result<Box<dyn GpuKernel>, GpuError> {
215        if !self.can_specialize(params) {
216            return Err(GpuError::SpecializationNotSupported);
217        }
218
219        Ok(Box::new(Self::new()))
220    }
221}
222
223impl Default for Conv1dKernel {
224    fn default() -> Self {
225        Self::new()
226    }
227}
228
229/// 2D convolution kernel for image processing and CNNs
230pub struct Conv2dKernel {
231    base: BaseKernel,
232}
233
234impl Conv2dKernel {
235    /// Create a new 2D convolution kernel
236    pub fn new() -> Self {
237        let metadata = KernelMetadata {
238            workgroup_size: [16, 16, 1],
239            local_memory_usage: 4096,    // Kernel and input tile cache
240            supports_tensor_cores: true, // 2D convolutions can use tensor cores
241            operationtype: OperationType::ComputeIntensive,
242            backend_metadata: HashMap::new(),
243        };
244
245        let (cuda_source, rocm_source, wgpu_source, metal_source, opencl_source) =
246            Self::get_kernel_sources();
247
248        Self {
249            base: BaseKernel::new(
250                "conv2d",
251                &cuda_source,
252                &rocm_source,
253                &wgpu_source,
254                &metal_source,
255                &opencl_source,
256                metadata,
257            ),
258        }
259    }
260
261    /// Get kernel sources for different backends
262    fn get_kernel_sources() -> (String, String, String, String, String) {
263        // CUDA kernel for 2D convolution
264        let cuda_source = r#"
265extern "C" __global__ void conv2d(
266    const float* __restrict__ input,
267    const float* __restrict__ kernel,
268    float* __restrict__ output,
269    int batch_size,
270    int in_channels,
271    int out_channels,
272    int input_height,
273    int input_width,
274    int output_height,
275    int output_width,
276    int kernel_height,
277    int kernel_width,
278    int stride_y,
279    int stride_x,
280    int padding_y,
281    int padding_x
282) {
283    int batch_idx = blockIdx.z;
284    int out_channel = blockIdx.y;
285    int out_y = blockIdx.x * blockDim.x + threadIdx.x;
286    int out_x = threadIdx.y;
287
288    if (batch_idx >= batch_size || out_channel >= out_channels || 
289        out_y >= output_height || out_x >= output_width) {
290        return;
291    }
292
293    float sum = 0.0f;
294
295    // Input and output offsets
296    int input_batch_offset = batch_idx * in_channels * input_height * input_width;
297    int output_batch_offset = batch_idx * out_channels * output_height * output_width;
298    int kernel_offset = out_channel * in_channels * kernel_height * kernel_width;
299
300    // Convolution computation
301    for (int in_ch = 0; in_ch < in_channels; in_ch++) {
302        for (int ky = 0; ky < kernel_height; ky++) {
303            for (int kx = 0; kx < kernel_width; kx++) {
304                int input_y = out_y * stride_y + ky - padding_y;
305                int input_x = out_x * stride_x + kx - padding_x;
306
307                if (input_y >= 0 && input_y < input_height && 
308                    input_x >= 0 && input_x < input_width) {
309                    
310                    int input_idx = input_batch_offset + 
311                                   in_ch * input_height * input_width + 
312                                   input_y * input_width + input_x;
313                    
314                    int kernel_idx = kernel_offset + 
315                                    in_ch * kernel_height * kernel_width + 
316                                    ky * kernel_width + kx;
317                    
318                    sum += input[input_idx] * kernel[kernel_idx];
319                }
320            }
321        }
322    }
323
324    int output_idx = output_batch_offset + 
325                     out_channel * output_height * output_width + 
326                     out_y * output_width + out_x;
327    output[output_idx] = sum;
328}
329"#
330        .to_string();
331
332        // WebGPU kernel for 2D convolution (simplified)
333        let wgpu_source = r#"
334struct Uniforms {
335    batch_size: u32,
336    in_channels: u32,
337    out_channels: u32,
338    input_height: u32,
339    input_width: u32,
340    output_height: u32,
341    output_width: u32,
342    kernel_height: u32,
343    kernel_width: u32,
344    stride_y: u32,
345    stride_x: u32,
346    padding_y: u32,
347    padding_x: u32,
348};
349
350@group(0) @binding(0) var<uniform> uniforms: Uniforms;
351@group(0) @binding(1) var<storage, read> input: array<f32>;
352@group(0) @binding(2) var<storage, read> kernel_data: array<f32>;
353@group(0) @binding(3) var<storage, write> output: array<f32>;
354
355@compute @workgroup_size(16, 16)
356#[allow(dead_code)]
357fn conv2d(@builtin(global_invocation_id) global_id: vec3<u32>) {
358    let batch_idx = global_id.z;
359    let out_channel = global_id.y % uniforms.out_channels;
360    let out_y = global_id.x;
361    let out_x = global_id.y / uniforms.out_channels;
362
363    if (batch_idx >= uniforms.batch_size || out_channel >= uniforms.out_channels || 
364        out_y >= uniforms.output_height || out_x >= uniforms.output_width) {
365        return;
366    }
367
368    var sum = 0.0;
369
370    // Simplified convolution - would need optimization
371    for (var in_ch = 0u; in_ch < uniforms.in_channels; in_ch = in_ch + 1u) {
372        for (var ky = 0u; ky < uniforms.kernel_height; ky = ky + 1u) {
373            for (var kx = 0u; kx < uniforms.kernel_width; kx = kx + 1u) {
374                let input_y = i32(out_y * uniforms.stride_y + ky) - i32(uniforms.padding_y);
375                let input_x = i32(out_x * uniforms.stride_x + kx) - i32(uniforms.padding_x);
376
377                if (input_y >= 0 && input_y < i32(uniforms.input_height) && 
378                    input_x >= 0 && input_x < i32(uniforms.input_width)) {
379                    
380                    let input_idx = batch_idx * uniforms.in_channels * uniforms.input_height * uniforms.input_width + 
381                                   in_ch * uniforms.input_height * uniforms.input_width + 
382                                   u32(input_y) * uniforms.input_width + u32(input_x);
383                    
384                    let kernel_idx = out_channel * uniforms.in_channels * uniforms.kernel_height * uniforms.kernel_width + 
385                                    in_ch * uniforms.kernel_height * uniforms.kernel_width + 
386                                    ky * uniforms.kernel_width + kx;
387                    
388                    sum += input[input_idx] * kernel_data[kernel_idx];
389                }
390            }
391        }
392    }
393
394    let output_idx = batch_idx * uniforms.out_channels * uniforms.output_height * uniforms.output_width + 
395                     out_channel * uniforms.output_height * uniforms.output_width + 
396                     out_y * uniforms.output_width + out_x;
397    output[output_idx] = sum;
398}
399"#
400        .to_string();
401
402        // Metal and OpenCL implementations would be similar but adapted for their respective syntaxes
403        let metal_source = r#"
404// Metal 2D convolution implementation (simplified)
405#include <metal_stdlib>
406using namespace metal;
407
408kernel void conv2d(
409    const device float* input [[buffer(0)]],
410    const device float* kernel_data [[buffer(1)]],
411    device float* output [[buffer(2)]],
412    constant uint& batch_size [[buffer(3)]],
413    constant uint& in_channels [[buffer(4)]],
414    constant uint& out_channels [[buffer(5)]],
415    constant uint& input_height [[buffer(6)]],
416    constant uint& input_width [[buffer(7)]],
417    constant uint& output_height [[buffer(8)]],
418    constant uint& output_width [[buffer(9)]],
419    constant uint& kernel_height [[buffer(10)]],
420    constant uint& kernel_width [[buffer(11)]],
421    constant uint& stride_y [[buffer(12)]],
422    constant uint& stride_x [[buffer(13)]],
423    constant uint& padding_y [[buffer(14)]],
424    constant uint& padding_x [[buffer(15)]],
425    uint3 global_id [[thread_position_in_grid]])
426{
427    // Similar implementation to CUDA kernel
428}
429"#
430        .to_string();
431
432        let opencl_source = r#"
433// OpenCL 2D convolution implementation (simplified)
434__kernel void conv2d(
435    __global const float* input__global const float* kernel_data__global float* output,
436    const int batch_size,
437    const int in_channels,
438    const int out_channels,
439    const int input_height,
440    const int input_width,
441    const int output_height,
442    const int output_width,
443    const int kernel_height,
444    const int kernel_width,
445    const int stride_y,
446    const int stride_x,
447    const int padding_y,
448    const int padding_x)
449{
450    // Similar implementation to CUDA kernel
451}
452"#
453        .to_string();
454
455        // ROCm (HIP) kernel - similar to CUDA
456        let rocm_source = cuda_source.clone();
457
458        (
459            cuda_source,
460            rocm_source,
461            wgpu_source,
462            metal_source,
463            opencl_source,
464        )
465    }
466}
467
468impl GpuKernel for Conv2dKernel {
469    fn name(&self) -> &str {
470        self.base.name()
471    }
472
473    fn source_for_backend(&self, backend: GpuBackend) -> Result<String, GpuError> {
474        self.base.source_for_backend(backend)
475    }
476
477    fn metadata(&self) -> KernelMetadata {
478        self.base.metadata()
479    }
480
481    fn can_specialize(&self, params: &KernelParams) -> bool {
482        matches!(
483            params.datatype,
484            DataType::Float32 | DataType::Float64 | DataType::Float16 | DataType::BFloat16
485        )
486    }
487
488    fn specialize(&self, params: &KernelParams) -> Result<Box<dyn GpuKernel>, GpuError> {
489        if !self.can_specialize(params) {
490            return Err(GpuError::SpecializationNotSupported);
491        }
492
493        // In a real implementation, we would generate optimized kernels based on:
494        // - Kernel size (3x3, 5x5, etc.)
495        // - Number of channels
496        // - Tensor core usage for appropriate data types
497        // - Memory layout optimizations
498
499        Ok(Box::new(Self::new()))
500    }
501}
502
503impl Default for Conv2dKernel {
504    fn default() -> Self {
505        Self::new()
506    }
507}