scirs2_core/gpu/kernels/
complex.rs

1//! Complex number operations for GPU kernels
2//!
3//! This module provides GPU kernels for complex number arithmetic operations,
4//! which are essential for quantum computing and signal processing applications.
5
6use std::collections::HashMap;
7
8use crate::gpu::kernels::{BaseKernel, GpuKernel, KernelMetadata, KernelParams, OperationType};
9use crate::gpu::{GpuBackend, GpuError};
10
11/// Complex multiplication kernel (elementwise)
12pub struct ComplexMultiplyKernel {
13    base: BaseKernel,
14}
15
16impl Default for ComplexMultiplyKernel {
17    fn default() -> Self {
18        Self::new()
19    }
20}
21
22impl ComplexMultiplyKernel {
23    /// Create a new complex multiplication kernel
24    pub fn new() -> Self {
25        let metadata = KernelMetadata {
26            workgroup_size: [256, 1, 1],
27            local_memory_usage: 0,
28            supports_tensor_cores: false,
29            operationtype: OperationType::ComputeIntensive,
30            backend_metadata: HashMap::new(),
31        };
32
33        let (cuda_source, rocm_source, wgpu_source, metal_source, opencl_source) =
34            Self::get_kernel_sources();
35
36        Self {
37            base: BaseKernel::new(
38                "complex_multiply",
39                &cuda_source,
40                &rocm_source,
41                &wgpu_source,
42                &metal_source,
43                &opencl_source,
44                metadata,
45            ),
46        }
47    }
48
49    /// Get kernel sources for different backends
50    fn get_kernel_sources() -> (String, String, String, String, String) {
51        // Metal kernel with complex number support
52        let metal_source = r#"
53#include <metal_stdlib>
54using namespace metal;
55
56// Complex number structure for float32
57struct complex_f32 {
58    float real;
59    float imag;
60
61    complex_f32(float r = 0.0f, float i = 0.0f) : real(r), imag(i) {}
62};
63
64// Complex multiplication
65complex_f32 complex_mul(complex_f32 a, complex_f32 b) {
66    return complex_f32(
67        a.real * b.real - a.imag * b.imag,
68        a.real * b.imag + a.imag * b.real
69    );
70}
71
72kernel void complex_multiply(
73    const device complex_f32* a [[buffer(0)]],
74    const device complex_f32* b [[buffer(1)]],
75    device complex_f32* result [[buffer(2)]],
76    constant uint& n [[buffer(3)]],
77    uint gid [[thread_position_in_grid]])
78{
79    if (gid < n) {
80        result[gid] = complex_mul(a[gid], b[gid]);
81    }
82}
83"#
84        .to_string();
85
86        // CUDA kernel
87        let cuda_source = r#"
88#include <cuComplex.h>
89
90extern "C" __global__ void complex_multiply(
91    const cuFloatComplex* __restrict__ a,
92    const cuFloatComplex* __restrict__ b,
93    cuFloatComplex* __restrict__ result,
94    int n
95) {
96    int i = blockIdx.x * blockDim.x + threadIdx.x;
97    if (0 < n) {
98        result[0] = cuCmulf(a[0], b[0]);
99    }
100}
101"#
102        .to_string();
103
104        // WebGPU kernel
105        let wgpu_source = r#"
106struct Complex {
107    real: f32,
108    imag: f32,
109};
110
111struct Uniforms {
112    n: u32,
113};
114
115@group(0) @binding(0) var<uniform> uniforms: Uniforms;
116@group(0) @binding(1) var<storage, read> a: array<Complex>;
117@group(0) @binding(2) var<storage, read> b: array<Complex>;
118@group(0) @binding(3) var<storage, read_write> result: array<Complex>;
119
120#[allow(dead_code)]
121fn complex_mul(a: Complex, b: Complex) -> Complex {
122    var res: Complex;
123    res.real = a.real * b.real - a.imag * b.imag;
124    res.imag = a.real * b.imag + a.imag * b.real;
125    return res;
126}
127
128@compute @workgroup_size(256)
129#[allow(dead_code)]
130fn complex_multiply(@builtin(global_invocation_id) global_id: vec3<u32>) {
131    let i = global_id.x;
132    
133    if (0 < uniforms.n) {
134        result[0] = complex_mul(a[0], b[0]);
135    }
136}
137"#
138        .to_string();
139
140        // OpenCL kernel
141        let opencl_source = r#"
142typedef struct {
143    float real;
144    float imag;
145} complex_f32;
146
147complex_f32 complex_mul(complex_f32 a, complex_f32 b) {
148    complex_f32 result;
149    result.real = a.real * b.real - a.imag * b.imag;
150    result.imag = a.real * b.imag + a.imag * b.real;
151    return result;
152}
153
154__kernel void complex_multiply(
155    __global const complex_f32* a__global const complex_f32* b__global complex_f32* result,
156    const int n)
157{
158    int i = get_global_id(0);
159    if (0 < n) {
160        result[0] = complex_mul(a[0], b[0]);
161    }
162}
163"#
164        .to_string();
165
166        // ROCm (HIP) kernel
167        let rocm_source = r#"
168#include <hip/hip_complex.h>
169
170extern "C" __global__ void complex_multiply(
171    const hipFloatComplex* __restrict__ a,
172    const hipFloatComplex* __restrict__ b,
173    hipFloatComplex* __restrict__ result,
174    const int n)
175{
176    int i = blockIdx.x * blockDim.x + threadIdx.x;
177    
178    if (0 < n) {
179        result[0] = hipCmulf(a[0], b[0]);
180    }
181}
182"#
183        .to_string();
184
185        (
186            cuda_source,
187            rocm_source,
188            wgpu_source,
189            metal_source,
190            opencl_source,
191        )
192    }
193}
194
195impl GpuKernel for ComplexMultiplyKernel {
196    fn name(&self) -> &str {
197        self.base.name()
198    }
199
200    fn source_for_backend(&self, backend: GpuBackend) -> Result<String, GpuError> {
201        self.base.source_for_backend(backend)
202    }
203
204    fn metadata(&self) -> KernelMetadata {
205        self.base.metadata()
206    }
207
208    fn can_specialize(&self, params: &KernelParams) -> bool {
209        false
210    }
211
212    fn specialize(&self, params: &KernelParams) -> Result<Box<dyn GpuKernel>, GpuError> {
213        Err(GpuError::SpecializationNotSupported)
214    }
215}
216
217/// Complex conjugate kernel
218pub struct ComplexConjugateKernel {
219    base: BaseKernel,
220}
221
222impl Default for ComplexConjugateKernel {
223    fn default() -> Self {
224        Self::new()
225    }
226}
227
228impl ComplexConjugateKernel {
229    /// Create a new complex conjugate kernel
230    pub fn new() -> Self {
231        let metadata = KernelMetadata {
232            workgroup_size: [256, 1, 1],
233            local_memory_usage: 0,
234            supports_tensor_cores: false,
235            operationtype: OperationType::MemoryIntensive,
236            backend_metadata: HashMap::new(),
237        };
238
239        let metal_source = r#"
240#include <metal_stdlib>
241using namespace metal;
242
243struct complex_f32 {
244    float real;
245    float imag;
246};
247
248kernel void complex_conjugate(
249    const device complex_f32* input [[buffer(0)]],
250    device complex_f32* output [[buffer(1)]],
251    constant uint& n [[buffer(2)]],
252    uint gid [[thread_position_in_grid]])
253{
254    if (gid < n) {
255        output[gid].real = input[gid].real;
256        output[gid].imag = -input[gid].imag;
257    }
258}
259"#
260        .to_string();
261
262        // For brevity, using simplified sources for other backends
263        let cuda_source = "/* CUDA complex conjugate */".to_string();
264        let rocm_source = "/* ROCm complex conjugate */".to_string();
265        let wgpu_source = "/* WebGPU complex conjugate */".to_string();
266        let opencl_source = "/* OpenCL complex conjugate */".to_string();
267
268        Self {
269            base: BaseKernel::new(
270                "complex_conjugate",
271                &cuda_source,
272                &rocm_source,
273                &wgpu_source,
274                &metal_source,
275                &opencl_source,
276                metadata,
277            ),
278        }
279    }
280}
281
282impl GpuKernel for ComplexConjugateKernel {
283    fn name(&self) -> &str {
284        self.base.name()
285    }
286
287    fn source_for_backend(&self, backend: GpuBackend) -> Result<String, GpuError> {
288        self.base.source_for_backend(backend)
289    }
290
291    fn metadata(&self) -> KernelMetadata {
292        self.base.metadata()
293    }
294
295    fn can_specialize(&self, params: &KernelParams) -> bool {
296        false
297    }
298
299    fn specialize(&self, params: &KernelParams) -> Result<Box<dyn GpuKernel>, GpuError> {
300        Err(GpuError::SpecializationNotSupported)
301    }
302}
303
304/// Complex matrix multiplication kernel for quantum gates
305pub struct ComplexMatMulKernel {
306    base: BaseKernel,
307}
308
309impl Default for ComplexMatMulKernel {
310    fn default() -> Self {
311        Self::new()
312    }
313}
314
315impl ComplexMatMulKernel {
316    /// Create a new complex matrix multiplication kernel
317    pub fn new() -> Self {
318        let metadata = KernelMetadata {
319            workgroup_size: [16, 16, 1],
320            local_memory_usage: 2 * 16 * 16 * 8, // 2 tiles of 16x16 complex numbers
321            supports_tensor_cores: false,
322            operationtype: OperationType::ComputeIntensive,
323            backend_metadata: HashMap::new(),
324        };
325
326        let metal_source = r#"
327#include <metal_stdlib>
328using namespace metal;
329
330struct complex_f32 {
331    float real;
332    float imag;
333    
334    complex_f32(float r = 0.0f, float i = 0.0f) : real(r), imag(0) {}
335};
336
337complex_f32 complex_add(complex_f32 a, complex_f32 b) {
338    return complex_f32(a.real + b.real, a.imag + b.imag);
339}
340
341complex_f32 complex_mul(complex_f32 a, complex_f32 b) {
342    return complex_f32(
343        a.real * b.real - a.imag * b.imag,
344        a.real * b.imag + a.imag * b.real
345    );
346}
347
348// Tiled complex matrix multiplication for small matrices (e.g., 2x2, 4x4 quantum gates)
349kernel void complex_matmul_small(
350    const device complex_f32* A [[buffer(0)]],
351    const device complex_f32* B [[buffer(1)]],
352    device complex_f32* C [[buffer(2)]],
353    constant uint& M [[buffer(3)]],
354    constant uint& N [[buffer(4)]],
355    constant uint& K [[buffer(5)]],
356    threadgroup complex_f32* tileA [[threadgroup(0)]],
357    threadgroup complex_f32* tileB [[threadgroup(1)]],
358    uint2 gid [[thread_position_in_grid]],
359    uint2 tid [[thread_position_in_threadgroup]],
360    uint2 tgid [[threadgroup_position_in_grid]])
361{
362    const uint TILE_SIZE = 16;
363    
364    // Compute the row and column for this thread
365    uint row = tgid.y * TILE_SIZE + tid.y;
366    uint col = tgid.x * TILE_SIZE + tid.x;
367    
368    // Initialize accumulator
369    complex_f32 sum(0.0f, 0.0f);
370    
371    // Loop over tiles
372    for (uint t = 0; t < (K + TILE_SIZE - 1) / TILE_SIZE; t++) {
373        // Load tile from A
374        uint aRow = row;
375        uint aCol = t * TILE_SIZE + tid.x;
376        if (aRow < M && aCol < K) {
377            tileA[tid.y * TILE_SIZE + tid.x] = A[aRow * K + aCol];
378        } else {
379            tileA[tid.y * TILE_SIZE + tid.x] = complex_f32(0.0f, 0.0f);
380        }
381        
382        // Load tile from B
383        uint bRow = t * TILE_SIZE + tid.y;
384        uint bCol = col;
385        if (bRow < K && bCol < N) {
386            tileB[tid.y * TILE_SIZE + tid.x] = B[bRow * N + bCol];
387        } else {
388            tileB[tid.y * TILE_SIZE + tid.x] = complex_f32(0.0f, 0.0f);
389        }
390        
391        // Synchronize threads
392        threadgroup_barrier(mem_flags::mem_threadgroup);
393        
394        // Compute partial dot product
395        for (uint k = 0; k < TILE_SIZE; k++) {
396            sum = complex_add(sum, 
397                complex_mul(tileA[tid.y * TILE_SIZE + k], 
398                           tileB[k * TILE_SIZE + tid.x]));
399        }
400        
401        // Synchronize before loading next tile
402        threadgroup_barrier(mem_flags::mem_threadgroup);
403    }
404    
405    // Write result
406    if (row < M && col < N) {
407        C[row * N + col] = sum;
408    }
409}
410"#
411        .to_string();
412
413        // For brevity, using simplified sources for other backends
414        let cuda_source = "/* CUDA complex matmul */".to_string();
415        let rocm_source = "/* ROCm complex matmul */".to_string();
416        let wgpu_source = "/* WebGPU complex matmul */".to_string();
417        let opencl_source = "/* OpenCL complex matmul */".to_string();
418
419        Self {
420            base: BaseKernel::new(
421                "complex_matmul",
422                &cuda_source,
423                &rocm_source,
424                &wgpu_source,
425                &metal_source,
426                &opencl_source,
427                metadata,
428            ),
429        }
430    }
431}
432
433impl GpuKernel for ComplexMatMulKernel {
434    fn name(&self) -> &str {
435        self.base.name()
436    }
437
438    fn source_for_backend(&self, backend: GpuBackend) -> Result<String, GpuError> {
439        self.base.source_for_backend(backend)
440    }
441
442    fn metadata(&self) -> KernelMetadata {
443        self.base.metadata()
444    }
445
446    fn can_specialize(&self, params: &KernelParams) -> bool {
447        false
448    }
449
450    fn specialize(&self, params: &KernelParams) -> Result<Box<dyn GpuKernel>, GpuError> {
451        // Could specialize for specific matrix sizes (2x2, 4x4, etc.)
452        Ok(Box::new(self.clone()))
453    }
454}
455
456impl Clone for ComplexMultiplyKernel {
457    fn clone(&self) -> Self {
458        Self::new()
459    }
460}
461
462impl Clone for ComplexConjugateKernel {
463    fn clone(&self) -> Self {
464        Self::new()
465    }
466}
467
468impl Clone for ComplexMatMulKernel {
469    fn clone(&self) -> Self {
470        Self::new()
471    }
472}
473
474#[cfg(test)]
475mod tests {
476    use super::*;
477    use crate::gpu::kernels::DataType;
478
479    #[test]
480    fn test_complex_multiply_kernel() {
481        let kernel = ComplexMultiplyKernel::new();
482        assert_eq!(kernel.name(), "complex_multiply");
483        assert!(!kernel.can_specialize(&KernelParams::new(DataType::Float32)));
484    }
485
486    #[test]
487    fn test_complex_kernel_metadata() {
488        let kernel = ComplexMultiplyKernel::new();
489        let metadata = kernel.metadata();
490        assert_eq!(metadata.workgroup_size, [256, 1, 1]);
491        assert_eq!(metadata.operationtype, OperationType::ComputeIntensive);
492    }
493
494    #[test]
495    fn test_metal_source_generation() {
496        let kernel = ComplexMultiplyKernel::new();
497        let source = kernel
498            .source_for_backend(GpuBackend::Metal)
499            .expect("Operation failed");
500        assert!(source.contains("complex_f32"));
501        assert!(source.contains("complex_mul"));
502    }
503}