scirs2_core/gpu/
heterogeneous.rs

1//! Heterogeneous computing support for CPU-GPU hybrid operations
2//!
3//! This module provides capabilities for efficiently distributing work between
4//! CPU and GPU resources, including automatic workload balancing, data migration,
5//! and coordinated execution strategies.
6
7use crate::gpu::{async_execution::*, GpuBackend, GpuError};
8use std::collections::HashMap;
9use std::sync::{Arc, Mutex};
10use std::time::{Duration, Instant};
11use thiserror::Error;
12
13/// Error types for heterogeneous computing operations
14#[derive(Error, Debug)]
15pub enum HeterogeneousError {
16    /// No suitable compute device found
17    #[error("No suitable compute device found for workload")]
18    NoSuitableDevice,
19
20    /// Workload balancing failed
21    #[error("Workload balancing failed: {0}")]
22    BalancingFailed(String),
23
24    /// Data migration error
25    #[error("Data migration error: {0}")]
26    DataMigration(String),
27
28    /// Execution coordination error
29    #[error("Execution coordination error: {0}")]
30    ExecutionCoordination(String),
31
32    /// Resource exhaustion
33    #[error("Resource exhausted: {0}")]
34    ResourceExhausted(String),
35
36    /// Underlying GPU error
37    #[error("GPU error: {0}")]
38    GpuError(#[from] GpuError),
39}
40
41/// Compute device types in a heterogeneous system
42#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
43pub enum ComputeDevice {
44    /// CPU device
45    Cpu,
46    /// GPU device with specific backend
47    Gpu(GpuBackend),
48    /// Neural processing unit
49    Npu,
50    /// Field-programmable gate array
51    Fpga,
52    /// Digital signal processor
53    Dsp,
54}
55
56impl ComputeDevice {
57    /// Check if the device is available on the current system
58    pub fn is_available(&self) -> bool {
59        match self {
60            ComputeDevice::Cpu => true,
61            ComputeDevice::Gpu(backend) => backend.is_available(),
62            ComputeDevice::Npu => false, // Would need specific detection
63            ComputeDevice::Fpga => false, // Would need specific detection
64            ComputeDevice::Dsp => false, // Would need specific detection
65        }
66    }
67
68    /// Get the relative performance factor for different operation types
69    pub fn performance_factor(&self, optype: &WorkloadType) -> f64 {
70        match (self, optype) {
71            (ComputeDevice::Cpu, WorkloadType::Sequential) => 1.0,
72            (ComputeDevice::Cpu, WorkloadType::Parallel) => 0.3,
73            (ComputeDevice::Cpu, WorkloadType::VectorizedMath) => 0.2,
74            (ComputeDevice::Cpu, WorkloadType::MatrixOperations) => 0.1,
75            (ComputeDevice::Cpu, WorkloadType::ConvolutionalNN) => 0.05,
76
77            (ComputeDevice::Gpu(_), WorkloadType::Sequential) => 0.1,
78            (ComputeDevice::Gpu(_), WorkloadType::Parallel) => 1.0,
79            (ComputeDevice::Gpu(_), WorkloadType::VectorizedMath) => 1.0,
80            (ComputeDevice::Gpu(_), WorkloadType::MatrixOperations) => 1.0,
81            (ComputeDevice::Gpu(_), WorkloadType::ConvolutionalNN) => 1.0,
82
83            (ComputeDevice::Npu, WorkloadType::ConvolutionalNN) => 1.5,
84            (ComputeDevice::Npu, WorkloadType::MatrixOperations) => 1.2,
85            (ComputeDevice::Npu, _) => 0.8,
86            _ => 0.5, // Default conservative estimate
87        }
88    }
89}
90
91/// Types of computational workloads
92#[derive(Debug, Clone, PartialEq, Eq, Hash)]
93pub enum WorkloadType {
94    /// Sequential operations
95    Sequential,
96    /// Embarrassingly parallel operations
97    Parallel,
98    /// Vectorized mathematical operations
99    VectorizedMath,
100    /// Dense matrix operations
101    MatrixOperations,
102    /// Sparse matrix operations
103    SparseOperations,
104    /// Convolutional neural network operations
105    ConvolutionalNN,
106    /// Memory-intensive operations
107    MemoryIntensive,
108    /// Custom workload type
109    Custom(String),
110}
111
112/// Workload characteristics for heterogeneous scheduling
113#[derive(Debug, Clone)]
114pub struct WorkloadCharacteristics {
115    /// Type of workload
116    pub workload_type: WorkloadType,
117    /// Problem size (number of elements or operations)
118    pub problemsize: usize,
119    /// Memory requirements in bytes
120    pub memory_requirement: usize,
121    /// Computational intensity (operations per memory access)
122    pub computational_intensity: f64,
123    /// Data locality score (0.0 = random access, 1.0 = sequential)
124    pub data_locality: f64,
125    /// Parallelization factor (how well it scales with cores)
126    pub parallelization_factor: f64,
127    /// Preferred data types
128    pub preferred_datatypes: Vec<String>,
129}
130
131impl WorkloadCharacteristics {
132    /// Create characteristics for a matrix multiplication workload
133    pub fn matrix_multiply(m: usize, n: usize, k: usize) -> Self {
134        Self {
135            workload_type: WorkloadType::MatrixOperations,
136            problemsize: m * n * k,
137            memory_requirement: (m * k + k * n + m * n) * 8, // Assume f64
138            computational_intensity: (2.0 * k as f64) / 3.0, // 2*K ops per 3 memory accesses
139            data_locality: 0.7,                              // Good with proper blocking
140            parallelization_factor: 0.9,                     // Scales well with many cores
141            preferred_datatypes: vec!["f32".to_string(), "f16".to_string()],
142        }
143    }
144
145    /// Create characteristics for a convolution workload
146    pub fn size(
147        batch_size: usize,
148        channels: usize,
149        height: usize,
150        width: usize,
151        kernel_size: usize,
152    ) -> Self {
153        let input_size = batch_size * channels * height * width;
154        let output_size = batch_size * channels * height * width; // Simplified
155
156        Self {
157            workload_type: WorkloadType::ConvolutionalNN,
158            problemsize: input_size * kernel_size * kernel_size,
159            memory_requirement: (input_size + output_size) * 4, // Assume f32
160            computational_intensity: (kernel_size * kernel_size * 2) as f64,
161            data_locality: 0.8,           // Good spatial locality in convolutions
162            parallelization_factor: 0.95, // Excellent parallelization
163            preferred_datatypes: vec!["f16".to_string(), "i8".to_string()],
164        }
165    }
166
167    /// Create characteristics for an element-wise operation
168    pub fn element(size: usize, ops_perelement: usize) -> Self {
169        Self {
170            workload_type: WorkloadType::VectorizedMath,
171            problemsize: size,
172            memory_requirement: size * 8, // Assume f64
173            computational_intensity: ops_perelement as f64 / 2.0, // Read + write
174            data_locality: 1.0,           // Perfect sequential access
175            parallelization_factor: 1.0,  // Perfect parallelization
176            preferred_datatypes: vec!["f32".to_string(), "f64".to_string()],
177        }
178    }
179}
180
181/// Device performance characteristics
182#[derive(Debug, Clone)]
183pub struct DeviceCharacteristics {
184    /// Device type
185    pub device: ComputeDevice,
186    /// Peak computational throughput (GFLOPS)
187    pub peak_gflops: f64,
188    /// Memory bandwidth (GB/s)
189    pub memorybandwidth: f64,
190    /// Available memory (bytes)
191    pub available_memory: usize,
192    /// Number of compute units
193    pub compute_units: usize,
194    /// Power consumption (watts)
195    pub power_consumption: f64,
196    /// Data transfer overhead to/from device
197    pub transfer_overhead: Duration,
198}
199
200impl DeviceCharacteristics {
201    /// Create characteristics for a typical CPU
202    pub fn typical_cpu() -> Self {
203        Self {
204            device: ComputeDevice::Cpu,
205            peak_gflops: 200.0,                         // Modern CPU with AVX
206            memorybandwidth: 50.0,                      // DDR4-3200
207            available_memory: 16 * 1024 * 1024 * 1024,  // 16 GB
208            compute_units: 8,                           // 8 cores
209            power_consumption: 95.0,                    // 95W TDP
210            transfer_overhead: Duration::from_nanos(0), // No transfer needed
211        }
212    }
213
214    /// Create characteristics for a typical discrete GPU
215    pub fn typical_gpu() -> Self {
216        Self {
217            device: ComputeDevice::Gpu(GpuBackend::Cuda),
218            peak_gflops: 10000.0,                         // High-end GPU
219            memorybandwidth: 900.0,                       // GDDR6X
220            available_memory: 12 * 1024 * 1024 * 1024,    // 12 GB VRAM
221            compute_units: 80,                            // Streaming multiprocessors
222            power_consumption: 350.0,                     // 350W TGP
223            transfer_overhead: Duration::from_micros(10), // PCIe transfer
224        }
225    }
226
227    /// Estimate execution time for a workload
228    pub fn estimateexecution_time(&self, workload: &WorkloadCharacteristics) -> Duration {
229        let performance_factor = self.device.performance_factor(&workload.workload_type);
230
231        // Simple performance model combining compute and memory bounds
232        let compute_time =
233            (workload.problemsize as f64) / (self.peak_gflops * 1e9 * performance_factor);
234
235        let memory_time = (workload.memory_requirement as f64) / (self.memorybandwidth * 1e9);
236
237        // Take the maximum (bottleneck) and add transfer overhead
238        let execution_time = compute_time.max(memory_time) + self.transfer_overhead.as_secs_f64();
239
240        Duration::from_secs_f64(execution_time)
241    }
242}
243
244/// Heterogeneous execution strategy
245#[derive(Debug, Clone)]
246pub enum ExecutionStrategy {
247    /// Execute entirely on CPU
248    CpuOnly,
249    /// Execute entirely on GPU
250    GpuOnly(GpuBackend),
251    /// Split workload between CPU and GPU
252    CpuGpuSplit {
253        cpu_fraction: f64,
254        gpu_backend: GpuBackend,
255    },
256    /// Use multiple devices with custom distribution
257    MultiDevice(HashMap<ComputeDevice, f64>),
258    /// Automatic selection based on characteristics
259    Automatic,
260}
261
262/// Heterogeneous compute scheduler
263pub struct HeterogeneousScheduler {
264    available_devices: Vec<DeviceCharacteristics>,
265    performance_history: Arc<Mutex<HashMap<String, Duration>>>,
266    #[allow(dead_code)]
267    async_manager: AsyncGpuManager,
268}
269
270impl HeterogeneousScheduler {
271    /// Create a new heterogeneous scheduler
272    pub fn new() -> Self {
273        let mut available_devices = vec![DeviceCharacteristics::typical_cpu()];
274
275        // Detect available GPUs
276        for backend in [GpuBackend::Cuda, GpuBackend::Rocm, GpuBackend::Metal] {
277            if backend.is_available() {
278                let mut gpu_chars = DeviceCharacteristics::typical_gpu();
279                gpu_chars.device = ComputeDevice::Gpu(backend);
280                available_devices.push(gpu_chars);
281            }
282        }
283
284        Self {
285            available_devices,
286            performance_history: Arc::new(Mutex::new(HashMap::new())),
287            async_manager: AsyncGpuManager::new(),
288        }
289    }
290
291    /// Get available compute devices
292    pub fn available_devices(&self) -> &[DeviceCharacteristics] {
293        &self.available_devices
294    }
295
296    /// Select optimal execution strategy for a workload
297    pub fn select_strategy(
298        &self,
299        workload: &WorkloadCharacteristics,
300    ) -> Result<ExecutionStrategy, HeterogeneousError> {
301        if self.available_devices.is_empty() {
302            return Err(HeterogeneousError::NoSuitableDevice);
303        }
304
305        // Estimate execution time on each device
306        let mut device_times: Vec<_> = self
307            .available_devices
308            .iter()
309            .map(|device| {
310                let time = device.estimateexecution_time(workload);
311                (device.device, time)
312            })
313            .collect();
314
315        // Sort by execution time
316        device_times.sort_by_key(|(_, time)| *time);
317
318        let best_device = device_times[0].0;
319        let best_time = device_times[0].1;
320
321        // Check if splitting between CPU and GPU would be beneficial
322        if device_times.len() >= 2 {
323            let second_best_time = device_times[1].1;
324
325            // If the times are close, consider splitting
326            if best_time.as_secs_f64() * 1.5 > second_best_time.as_secs_f64() {
327                if let (ComputeDevice::Cpu, ComputeDevice::Gpu(backend)) =
328                    (device_times[0].0, device_times[1].0)
329                {
330                    return Ok(ExecutionStrategy::CpuGpuSplit {
331                        cpu_fraction: 0.3,
332                        gpu_backend: backend,
333                    });
334                } else if let (ComputeDevice::Gpu(backend), ComputeDevice::Cpu) =
335                    (device_times[0].0, device_times[1].0)
336                {
337                    return Ok(ExecutionStrategy::CpuGpuSplit {
338                        cpu_fraction: 0.3,
339                        gpu_backend: backend,
340                    });
341                }
342            }
343        }
344
345        // Default to best single device
346        match best_device {
347            ComputeDevice::Cpu => Ok(ExecutionStrategy::CpuOnly),
348            ComputeDevice::Gpu(backend) => Ok(ExecutionStrategy::GpuOnly(backend)),
349            ComputeDevice::Npu => Ok(ExecutionStrategy::CpuOnly), // Fallback to CPU
350            ComputeDevice::Fpga => Ok(ExecutionStrategy::CpuOnly), // Fallback to CPU
351            ComputeDevice::Dsp => Ok(ExecutionStrategy::CpuOnly), // Fallback to CPU
352        }
353    }
354
355    /// Execute a workload using the specified strategy
356    pub fn execute_workload<F, R>(
357        &self,
358        workload: &WorkloadCharacteristics,
359        strategy: ExecutionStrategy,
360        work_fn: F,
361    ) -> Result<R, HeterogeneousError>
362    where
363        F: FnOnce(&ExecutionStrategy) -> Result<R, HeterogeneousError>,
364    {
365        let start_time = Instant::now();
366
367        let result = work_fn(&strategy)?;
368
369        let execution_time = start_time.elapsed();
370
371        // Store performance history for future optimization
372        let key = format!(
373            "{workload_type:?}_{problemsize}",
374            workload_type = workload.workload_type,
375            problemsize = workload.problemsize
376        );
377        self.performance_history
378            .lock()
379            .expect("Operation failed")
380            .insert(key, execution_time);
381
382        Ok(result)
383    }
384
385    /// Get performance statistics
386    pub fn get_performance_stats(&self) -> HeterogeneousStats {
387        let history = self.performance_history.lock().expect("Operation failed");
388
389        let total_executions = history.len();
390        let avgexecution_time = if total_executions > 0 {
391            let total_time: Duration = history.values().sum();
392            total_time / total_executions as u32
393        } else {
394            Duration::ZERO
395        };
396
397        HeterogeneousStats {
398            available_devices: self.available_devices.len(),
399            total_executions,
400            avgexecution_time,
401            device_utilization: self.calculate_device_utilization(),
402        }
403    }
404
405    /// Calculate device utilization statistics
406    fn calculate_device_utilization(&self) -> HashMap<ComputeDevice, f64> {
407        // In a real implementation, this would track actual device usage
408        // For now, return mock data
409        let mut utilization = HashMap::new();
410        for device in &self.available_devices {
411            utilization.insert(device.device, 0.0);
412        }
413        utilization
414    }
415
416    /// Optimize execution strategy based on historical performance
417    pub fn optimize_strategy(
418        &self,
419        workload: &WorkloadCharacteristics,
420        current_strategy: ExecutionStrategy,
421    ) -> ExecutionStrategy {
422        let key = format!(
423            "{workload_type:?}_{problemsize}",
424            workload_type = workload.workload_type,
425            problemsize = workload.problemsize
426        );
427        let history = self.performance_history.lock().expect("Operation failed");
428
429        // If we have historical data, use it to refine the _strategy
430        if let Some(&_historical_time) = history.get(&key) {
431            // Simple heuristic: if historical time is much better than estimated,
432            // stick with the historical _strategy
433            // This is a simplified version - real implementation would be more sophisticated
434            return current_strategy;
435        }
436
437        current_strategy
438    }
439}
440
441impl Default for HeterogeneousScheduler {
442    fn default() -> Self {
443        Self::new()
444    }
445}
446
447/// Statistics for heterogeneous computing operations
448#[derive(Debug, Clone)]
449pub struct HeterogeneousStats {
450    /// Number of available compute devices
451    pub available_devices: usize,
452    /// Total number of executions
453    pub total_executions: usize,
454    /// Average execution time
455    pub avgexecution_time: Duration,
456    /// Device utilization percentages
457    pub device_utilization: HashMap<ComputeDevice, f64>,
458}
459
460/// Workload distribution for multi-device execution
461#[derive(Debug, Clone)]
462pub struct WorkloadDistribution {
463    /// Device assignments with work fractions
464    pub assignments: HashMap<ComputeDevice, f64>,
465    /// Data partitioning strategy
466    pub partitioning: PartitioningStrategy,
467    /// Coordination strategy
468    pub coordination: CoordinationStrategy,
469}
470
471/// Data partitioning strategies for multi-device execution
472#[derive(Debug, Clone)]
473pub enum PartitioningStrategy {
474    /// Split data by rows
475    RowSplit,
476    /// Split data by columns
477    ColumnSplit,
478    /// Split data by blocks
479    BlockSplit { block_size: (usize, usize) },
480    /// Custom partitioning function
481    Custom(String),
482}
483
484/// Coordination strategies for multi-device execution
485#[derive(Debug, Clone)]
486pub enum CoordinationStrategy {
487    /// Bulk synchronous parallel
488    BulkSynchronous,
489    /// Asynchronous with events
490    AsyncWithEvents,
491    /// Pipeline parallel
492    Pipeline,
493    /// Custom coordination
494    Custom(String),
495}
496
497/// Helper functions for common heterogeneous computing patterns
498pub mod patterns {
499    use super::*;
500
501    /// Execute a map operation across heterogeneous devices
502    pub fn heterogeneous_map<T, F>(
503        scheduler: &HeterogeneousScheduler,
504        data: &[T],
505        map_fn: F,
506    ) -> Result<Vec<T>, HeterogeneousError>
507    where
508        T: Clone + Send + Sync,
509        F: Fn(&T) -> T + Send + Sync,
510    {
511        let workload = WorkloadCharacteristics::element(data.len(), 1);
512        let strategy = scheduler.select_strategy(&workload)?;
513
514        scheduler.execute_workload(&workload, strategy, |_strategy| {
515            // Simple implementation - in practice would distribute across devices
516            Ok(data.iter().map(map_fn).collect())
517        })
518    }
519
520    /// Execute a reduction operation across heterogeneous devices
521    pub fn heterogeneous_reduce<T, F>(
522        scheduler: &HeterogeneousScheduler,
523        data: &[T],
524        initial: T,
525        reduce_fn: F,
526    ) -> Result<T, HeterogeneousError>
527    where
528        T: Clone + Send + Sync,
529        F: Fn(T, &T) -> T + Send + Sync,
530    {
531        let workload = WorkloadCharacteristics::element(data.len(), 1);
532        let strategy = scheduler.select_strategy(&workload)?;
533
534        scheduler.execute_workload(&workload, strategy, |_strategy| {
535            Ok(data.iter().fold(initial, reduce_fn))
536        })
537    }
538}
539
540#[cfg(test)]
541mod tests {
542    use super::*;
543
544    #[test]
545    fn test_device_availability() {
546        assert!(ComputeDevice::Cpu.is_available());
547        // GPU availability depends on system configuration
548    }
549
550    #[test]
551    fn test_workload_characteristics() {
552        let gemm = WorkloadCharacteristics::matrix_multiply(1000, 1000, 1000);
553        assert_eq!(gemm.workload_type, WorkloadType::MatrixOperations);
554        assert!(gemm.computational_intensity > 0.0);
555    }
556
557    #[test]
558    fn test_device_characteristics() {
559        let cpu = DeviceCharacteristics::typical_cpu();
560        let gpu = DeviceCharacteristics::typical_gpu();
561
562        assert_eq!(cpu.device, ComputeDevice::Cpu);
563        assert!(matches!(gpu.device, ComputeDevice::Gpu(_)));
564        assert!(gpu.peak_gflops > cpu.peak_gflops);
565    }
566
567    #[test]
568    fn testexecution_time_estimation() {
569        let cpu = DeviceCharacteristics::typical_cpu();
570        let workload = WorkloadCharacteristics::element(1000000, 1);
571
572        let time = cpu.estimateexecution_time(&workload);
573        assert!(time > Duration::ZERO);
574    }
575
576    #[test]
577    fn test_scheduler_creation() {
578        let scheduler = HeterogeneousScheduler::new();
579        assert!(!scheduler.available_devices().is_empty());
580    }
581
582    #[test]
583    fn test_strategy_selection() {
584        let scheduler = HeterogeneousScheduler::new();
585        let workload = WorkloadCharacteristics::matrix_multiply(100, 100, 100);
586
587        let strategy = scheduler.select_strategy(&workload);
588        assert!(strategy.is_ok());
589    }
590}