pub fn standardize_simd<F>(a: &ArrayView1<'_, F>) -> Array1<F>where
F: Float + SimdUnifiedOps,Expand description
SIMD-accelerated standardization (z-score normalization)
Transforms to zero mean and unit variance: (x - mean) / std
§Arguments
a- Input array
§Returns
Standardized array
§Examples
use scirs2_core::ndarray::array;
use scirs2_core::ndarray_ext::elementwise::standardize_simd;
let x = array![2.0_f64, 4.0, 4.0, 4.0, 5.0, 5.0, 7.0, 9.0];
let result = standardize_simd::<f64>(&x.view());
// Mean should be ~0, std should be ~1
let mean: f64 = result.iter().sum::<f64>() / result.len() as f64;
assert!(mean.abs() < 1e-10);§Use Cases
- Feature scaling for ML
- Batch normalization
- Statistical preprocessing
- Anomaly scoring