pub fn sigmoid_simd<F>(x: &ArrayView1<'_, F>) -> Array1<F>where
F: Float + SimdUnifiedOps,Expand description
Compute the element-wise sigmoid (logistic) function of an array.
The sigmoid function is defined as: σ(x) = 1 / (1 + exp(-x))
This is critical for neural networks, logistic regression, and probability modeling. The implementation is numerically stable, avoiding overflow for large |x|.
§Properties
- Range: (0, 1)
- σ(0) = 0.5
- σ(-x) = 1 - σ(x)
- Derivative: σ’(x) = σ(x)(1 - σ(x))
§Examples
use scirs2_core::ndarray_ext::elementwise::sigmoid_simd;
use scirs2_core::ndarray::array;
let x = array![0.0f64, 1.0, -1.0];
let result = sigmoid_simd(&x.view());
assert!((result[0] - 0.5).abs() < 1e-10); // sigmoid(0) = 0.5