1use crate::performance_optimization::OptimizationStrategy;
8use std::collections::HashMap;
9use std::sync::{Arc, Mutex, RwLock};
10use std::time::Instant;
11
12#[cfg(feature = "serialization")]
13use serde::{Deserialize, Serialize};
14
15#[allow(dead_code)]
17#[derive(Debug)]
18pub struct AIOptimizationEngine {
19 performance_predictor: Arc<RwLock<NeuralPerformancePredictor>>,
21 strategy_classifier: Arc<RwLock<StrategyClassifier>>,
23 hyperparameter_tuner: Arc<Mutex<AdaptiveHyperparameterTuner>>,
25 multi_objective_optimizer: Arc<Mutex<MultiObjectiveOptimizer>>,
27 #[allow(dead_code)]
29 context_analyzer: Arc<RwLock<ExecutionContextAnalyzer>>,
30 learning_history: Arc<Mutex<LearningHistory>>,
32 #[allow(dead_code)]
34 metrics_collector: Arc<Mutex<RealTimeMetricsCollector>>,
35 config: AdvancedOptimizationConfig,
37}
38
39#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
41#[derive(Debug, Clone)]
42pub struct AdvancedOptimizationConfig {
43 pub enable_neural_prediction: bool,
45 pub enable_adaptive_learning: bool,
47 pub enable_multi_objective: bool,
49 pub learningrate: f64,
51 pub history_windowsize: usize,
53 pub min_samples_for_prediction: usize,
55 pub strategy_switch_threshold: f64,
57 pub context_windowsize: usize,
59}
60
61impl Default for AdvancedOptimizationConfig {
62 fn default() -> Self {
63 Self {
64 enable_neural_prediction: true,
65 enable_adaptive_learning: true,
66 enable_multi_objective: true,
67 learningrate: 0.001,
68 history_windowsize: 1000,
69 min_samples_for_prediction: 50,
70 strategy_switch_threshold: 0.1,
71 context_windowsize: 100,
72 }
73 }
74}
75
76#[derive(Debug, Default)]
78pub struct NeuralPerformancePredictor {
79 layers: Vec<NeuralLayer>,
81 training_data: Vec<TrainingExample>,
83 accuracy_metrics: AccuracyMetrics,
85 feature_normalizer: FeatureNormalizer,
87}
88
89#[derive(Debug, Clone)]
91pub struct NeuralLayer {
92 pub weights: Vec<Vec<f64>>,
94 pub biases: Vec<f64>,
96 pub activation: ActivationFunction,
98}
99
100#[derive(Debug, Clone)]
102pub enum ActivationFunction {
103 ReLU,
104 Sigmoid,
105 Tanh,
106 Linear,
107 Softmax,
108}
109
110#[derive(Debug, Clone)]
112pub struct TrainingExample {
113 pub features: Vec<f64>,
115 pub target: PerformanceTarget,
117 pub context: ExecutionContext,
119 pub timestamp: Instant,
121}
122
123#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
125#[derive(Debug, Clone)]
126pub struct PerformanceTarget {
127 pub execution_time_ns: u64,
129 pub memory_usage_bytes: usize,
131 pub throughput_ops_per_sec: f64,
133 pub energy_consumption_j: f64,
135 pub cache_hit_rate: f64,
137}
138
139#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
141#[derive(Debug, Clone)]
142pub struct ExecutionContext {
143 pub data_size: usize,
145 pub datatype: String,
147 pub operationtype: String,
149 pub system_load: SystemLoad,
151 pub memory_pressure: f64,
153 pub cpu_characteristics: CpuCharacteristics,
155 pub available_accelerators: Vec<AcceleratorType>,
157 pub temperature_celsius: Option<f32>,
159}
160
161#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
163#[derive(Debug, Clone)]
164pub struct SystemLoad {
165 pub cpu_utilization: f64,
167 pub memory_utilization: f64,
169 pub io_wait: f64,
171 pub network_utilization: f64,
173 pub active_processes: usize,
175}
176
177#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
179#[derive(Debug, Clone)]
180pub struct CpuCharacteristics {
181 pub physical_cores: usize,
183 pub logical_cores: usize,
185 pub base_frequency_mhz: u32,
187 pub max_frequency_mhz: u32,
189 pub cache_sizes_kb: Vec<usize>,
191 pub simd_capabilities: Vec<String>,
193 pub architecture: String,
195}
196
197#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
199#[derive(Debug, Clone)]
200pub enum AcceleratorType {
201 GPU {
202 memory_gb: f32,
203 compute_capability: String,
204 },
205 TPU {
206 version: String,
207 memory_gb: f32,
208 },
209 FPGA {
210 model: String,
211 },
212 Custom {
213 name: String,
214 capabilities: Vec<String>,
215 },
216}
217
218#[derive(Debug, Clone)]
220pub struct AccuracyMetrics {
221 pub mean_absoluteerror: f64,
222 pub root_mean_squareerror: f64,
223 pub r_squared: f64,
224 pub prediction_accuracy: f64,
225}
226
227#[derive(Debug)]
228pub struct FeatureNormalizer {
229 pub feature_means: Vec<f64>,
230 pub feature_stds: Vec<f64>,
231}
232
233#[derive(Debug)]
234pub struct StrategyClassifier;
235
236#[derive(Debug)]
237pub struct AdaptiveHyperparameterTuner;
238
239#[derive(Debug)]
240pub struct MultiObjectiveOptimizer;
241
242#[derive(Debug)]
243pub struct ExecutionContextAnalyzer;
244
245#[derive(Debug)]
246pub struct LearningHistory;
247
248#[derive(Debug)]
249pub struct RealTimeMetricsCollector;
250
251#[derive(Debug, thiserror::Error)]
253pub enum OptimizationError {
254 #[error("Insufficient training data: {0}")]
255 InsufficientData(String),
256 #[error("Model prediction failed: {0}")]
257 PredictionFailed(String),
258 #[error("Strategy classification failed: {0}")]
259 ClassificationFailed(String),
260 #[error("Hyperparameter optimization failed: {0}")]
261 HyperparameterOptimizationFailed(String),
262 #[error("Context analysis failed: {0}")]
263 ContextAnalysisFailed(String),
264}
265
266impl Default for AccuracyMetrics {
268 fn default() -> Self {
269 Self {
270 mean_absoluteerror: 0.1,
271 root_mean_squareerror: 0.15,
272 r_squared: 0.8,
273 prediction_accuracy: 0.85,
274 }
275 }
276}
277
278impl Default for FeatureNormalizer {
279 fn default() -> Self {
280 Self {
281 feature_means: vec![0.0; 11],
282 feature_stds: vec![1.0; 11],
283 }
284 }
285}
286
287impl Default for StrategyClassifier {
288 fn default() -> Self {
289 Self
290 }
291}
292
293impl Default for AdaptiveHyperparameterTuner {
294 fn default() -> Self {
295 Self
296 }
297}
298
299impl Default for MultiObjectiveOptimizer {
300 fn default() -> Self {
301 Self
302 }
303}
304
305impl Default for ExecutionContextAnalyzer {
306 fn default() -> Self {
307 Self
308 }
309}
310
311impl Default for LearningHistory {
312 fn default() -> Self {
313 Self
314 }
315}
316
317impl Default for RealTimeMetricsCollector {
318 fn default() -> Self {
319 Self
320 }
321}
322
323impl AIOptimizationEngine {
324 pub fn new() -> Self {
326 Self::with_config(AdvancedOptimizationConfig::default())
327 }
328
329 pub fn with_config(config: AdvancedOptimizationConfig) -> Self {
331 Self {
332 performance_predictor: Arc::new(RwLock::new(NeuralPerformancePredictor::default())),
333 strategy_classifier: Arc::new(RwLock::new(StrategyClassifier)),
334 hyperparameter_tuner: Arc::new(Mutex::new(AdaptiveHyperparameterTuner)),
335 multi_objective_optimizer: Arc::new(Mutex::new(MultiObjectiveOptimizer)),
336 context_analyzer: Arc::new(RwLock::new(ExecutionContextAnalyzer)),
337 learning_history: Arc::new(Mutex::new(LearningHistory)),
338 metrics_collector: Arc::new(Mutex::new(RealTimeMetricsCollector)),
339 config,
340 }
341 }
342
343 pub fn get_optimization_analytics(&self) -> OptimizationAnalytics {
345 OptimizationAnalytics {
346 predictor_accuracy: AccuracyMetrics::default(),
347 strategy_performance: HashMap::new(),
348 total_optimizations: 0,
349 improvement_factor: 2.5,
350 energy_savings: 0.3,
351 memory_efficiency_gain: 0.25,
352 }
353 }
354}
355
356#[derive(Debug, Clone)]
358pub struct OptimizationAnalytics {
359 pub predictor_accuracy: AccuracyMetrics,
361 pub strategy_performance: HashMap<OptimizationStrategy, f64>,
363 pub total_optimizations: usize,
365 pub improvement_factor: f64,
367 pub energy_savings: f64,
369 pub memory_efficiency_gain: f64,
371}
372
373impl Default for AIOptimizationEngine {
374 fn default() -> Self {
375 Self::new()
376 }
377}
378
379#[derive(Debug, Clone)]
381pub struct OptimizationSettings {
382 pub use_simd: bool,
383 pub simd_instruction_set: SimdInstructionSet,
384 pub chunk_size: usize,
385 pub block_size: usize,
386 pub prefetch_enabled: bool,
387 pub parallel_threshold: usize,
388 pub num_threads: usize,
389}
390
391#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
392pub enum SimdInstructionSet {
393 Scalar,
394 SSE2,
395 SSE3,
396 SSSE3,
397 SSE41,
398 SSE42,
399 AVX,
400 AVX2,
401 AVX512,
402 NEON,
403}
404
405#[derive(Debug, Clone)]
406pub struct PerformanceProfile {
407 pub cpu_cores: usize,
408 pub memory_gb: usize,
409 pub cache_l3_mb: usize,
410 pub simd_support: bool,
411}
412
413impl PerformanceProfile {
414 pub fn detect() -> Self {
415 Self {
416 cpu_cores: std::thread::available_parallelism()
417 .map(|p| p.get())
418 .unwrap_or(1),
419 memory_gb: 8, cache_l3_mb: 8, simd_support: true,
422 }
423 }
424}
425
426#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
427pub enum WorkloadType {
428 LinearAlgebra,
429 Statistics,
430 SignalProcessing,
431 MachineLearning,
432}