scirs2_core/error/
diagnostics.rs

1//! Advanced error diagnostics and reporting for ``SciRS2``
2//!
3//! This module provides enhanced error diagnostics including:
4//! - Contextual error analysis
5//! - Performance impact assessment
6//! - Environment diagnostics
7//! - Error pattern recognition
8//! - Automated troubleshooting suggestions
9
10use std::collections::HashMap;
11use std::fmt;
12use std::sync::{Arc, Mutex, OnceLock};
13use std::time::{Duration, SystemTime};
14
15use crate::error::CoreError;
16
17/// Environment information for error diagnostics
18#[derive(Debug, Clone)]
19pub struct EnvironmentInfo {
20    /// Operating system information
21    pub os: String,
22    /// Architecture (x86_64, aarch64, etc.)
23    pub arch: String,
24    /// Available memory in bytes
25    pub available_memory: Option<u64>,
26    /// Number of CPU cores
27    pub cpu_cores: Option<usize>,
28    /// Rust compiler version
29    pub rustc_version: Option<String>,
30    /// ``SciRS2`` version
31    pub scirs2_version: String,
32    /// Enabled features
33    pub features: Vec<String>,
34    /// Environment variables of interest
35    pub env_vars: HashMap<String, String>,
36}
37
38impl Default for EnvironmentInfo {
39    fn default() -> Self {
40        let mut env_vars = HashMap::new();
41
42        // Collect relevant environment variables
43        let relevant_vars = [
44            "RUST_LOG",
45            "RUST_BACKTRACE",
46            "OMP_NUM_THREADS",
47            "MKL_NUM_THREADS",
48            "OPENBLAS_NUM_THREADS",
49            "RAYON_NUM_THREADS",
50            "CARGO_MANIFEST_DIR",
51        ];
52
53        for var in &relevant_vars {
54            if let Ok(value) = std::env::var(var) {
55                env_vars.insert(var.to_string(), value);
56            }
57        }
58
59        Self {
60            os: std::env::consts::OS.to_string(),
61            arch: std::env::consts::ARCH.to_string(),
62            available_memory: Self::get_available_memory(),
63            cpu_cores: std::thread::available_parallelism().ok().map(|n| n.get()),
64            rustc_version: option_env!("RUSTC_VERSION").map(|s| s.to_string()),
65            scirs2_version: env!("CARGO_PKG_VERSION").to_string(),
66            features: Self::get_enabled_features(),
67            env_vars,
68        }
69    }
70}
71
72impl EnvironmentInfo {
73    /// Get available memory in bytes (platform-specific)
74    fn get_available_memory() -> Option<u64> {
75        // This is a simplified implementation
76        // In a real implementation, you'd use platform-specific APIs
77        #[cfg(unix)]
78        {
79            if let Ok(pages) = std::process::Command::new("getconf")
80                .args(["_PHYS_PAGES"])
81                .output()
82            {
83                if let Ok(pages_str) = String::from_utf8(pages.stdout) {
84                    if let Ok(pages_num) = pages_str.trim().parse::<u64>() {
85                        if let Ok(page_size) = std::process::Command::new("getconf")
86                            .args(["PAGE_SIZE"])
87                            .output()
88                        {
89                            if let Ok(sizestr) = String::from_utf8(page_size.stdout) {
90                                if let Ok(size_num) = sizestr.trim().parse::<u64>() {
91                                    return Some(pages_num * size_num);
92                                }
93                            }
94                        }
95                    }
96                }
97            }
98        }
99        None
100    }
101
102    /// Get list of enabled features
103    #[allow(clippy::vec_init_then_push)]
104    fn get_enabled_features() -> Vec<String> {
105        #[allow(unused_mut)]
106        let mut features = Vec::with_capacity(5);
107
108        #[cfg(feature = "parallel")]
109        features.push("parallel".to_string());
110
111        #[cfg(feature = "simd")]
112        features.push("simd".to_string());
113
114        #[cfg(feature = "gpu")]
115        features.push("gpu".to_string());
116
117        #[cfg(feature = "openblas")]
118        features.push("openblas".to_string());
119
120        // Note: intel-mkl feature removed to avoid conflicts with openblas
121
122        #[cfg(feature = "profiling")]
123        features.push("profiling".to_string());
124
125        features
126    }
127}
128
129/// Error occurrence tracking for pattern recognition
130#[derive(Debug, Clone)]
131pub struct ErrorOccurrence {
132    /// Error type
133    pub errortype: String,
134    /// Timestamp when error occurred
135    pub timestamp: SystemTime,
136    /// Context where error occurred
137    pub context: String,
138    /// Function or module where error occurred
139    pub location: Option<String>,
140    /// Additional metadata
141    pub metadata: HashMap<String, String>,
142}
143
144impl ErrorOccurrence {
145    /// Create a new error occurrence
146    pub fn error(error: &CoreError, context: String) -> Self {
147        let errortype = format!("{error:?}")
148            .split('(')
149            .next()
150            .unwrap_or("Unknown")
151            .to_string();
152
153        Self {
154            errortype,
155            timestamp: SystemTime::now(),
156            context,
157            location: None,
158            metadata: HashMap::new(),
159        }
160    }
161
162    /// Add location information
163    pub fn with_location<S: Into<String>>(mut self, location: S) -> Self {
164        self.location = Some(location.into());
165        self
166    }
167
168    /// Add metadata
169    pub fn with_metadata<K, V>(mut self, key: K, value: V) -> Self
170    where
171        K: Into<String>,
172        V: Into<String>,
173    {
174        self.metadata.insert(key.into(), value.into());
175        self
176    }
177}
178
179/// Error pattern analysis
180#[derive(Debug, Clone)]
181pub struct ErrorPattern {
182    /// Pattern description
183    pub description: String,
184    /// Error types involved in this pattern
185    pub errortypes: Vec<String>,
186    /// Frequency of this pattern
187    pub frequency: usize,
188    /// Common contexts where this pattern occurs
189    pub common_contexts: Vec<String>,
190    /// Suggested actions for this pattern
191    pub suggestions: Vec<String>,
192}
193
194/// Error diagnostics engine
195#[derive(Debug)]
196pub struct ErrorDiagnostics {
197    /// Environment information
198    environment: EnvironmentInfo,
199    /// Recent error occurrences
200    error_history: Arc<Mutex<Vec<ErrorOccurrence>>>,
201    /// Maximum number of errors to keep in history
202    max_history: usize,
203    /// Known error patterns
204    patterns: Vec<ErrorPattern>,
205}
206
207static GLOBAL_DIAGNOSTICS: OnceLock<ErrorDiagnostics> = OnceLock::new();
208
209impl ErrorDiagnostics {
210    /// Create a new error diagnostics engine
211    pub fn new() -> Self {
212        Self {
213            environment: EnvironmentInfo::default(),
214            error_history: Arc::new(Mutex::new(Vec::new())),
215            max_history: 1000,
216            patterns: Self::initialize_patterns(),
217        }
218    }
219
220    /// Get the global diagnostics instance
221    pub fn global() -> &'static ErrorDiagnostics {
222        GLOBAL_DIAGNOSTICS.get_or_init(Self::new)
223    }
224
225    /// Record an error occurrence
226    pub fn recorderror(&self, error: &CoreError, context: String) {
227        let occurrence = ErrorOccurrence::error(error, context);
228
229        let mut history = self.error_history.lock().unwrap();
230        history.push(occurrence);
231
232        // Keep only the most recent errors
233        if history.len() > self.max_history {
234            history.remove(0);
235        }
236    }
237
238    /// Analyze an error and provide comprehensive diagnostics
239    pub fn analyzeerror(&self, error: &CoreError) -> ErrorDiagnosticReport {
240        let mut report = ErrorDiagnosticReport::error(error.clone());
241
242        // Add environment information
243        report.environment = Some(self.environment.clone());
244
245        // Analyze error patterns
246        report.patterns = self.find_matching_patterns(error);
247
248        // Check for recent similar errors
249        report.recent_occurrences = self.find_recent_similarerrors(error, Duration::from_secs(300)); // 5 minutes
250
251        // Assess performance impact
252        report.performance_impact = self.assess_performance_impact(error);
253
254        // Generate contextual suggestions
255        report.contextual_suggestions = self.generate_contextual_suggestions(error, &report);
256
257        // Add environment-specific diagnostics
258        report.environment_diagnostics = self.diagnose_environment_issues(error);
259
260        report
261    }
262
263    /// Find patterns matching the given error
264    fn find_matching_patterns(&self, error: &CoreError) -> Vec<ErrorPattern> {
265        let errortype = format!("{error:?}")
266            .split('(')
267            .next()
268            .unwrap_or("Unknown")
269            .to_string();
270
271        self.patterns
272            .iter()
273            .filter(|pattern| pattern.errortypes.contains(&errortype))
274            .cloned()
275            .collect()
276    }
277
278    /// Find recent similar errors
279    fn find_recent_similarerrors(
280        &self,
281        error: &CoreError,
282        window: Duration,
283    ) -> Vec<ErrorOccurrence> {
284        let errortype = format!("{error:?}")
285            .split('(')
286            .next()
287            .unwrap_or("Unknown")
288            .to_string();
289        let cutoff = SystemTime::now() - window;
290
291        let history = self.error_history.lock().unwrap();
292        history
293            .iter()
294            .filter(|occurrence| {
295                occurrence.errortype == errortype && occurrence.timestamp >= cutoff
296            })
297            .cloned()
298            .collect()
299    }
300
301    /// Assess the performance impact of an error
302    fn assess_performance_impact(&self, error: &CoreError) -> PerformanceImpact {
303        match error {
304            CoreError::MemoryError(_) => PerformanceImpact::High,
305            CoreError::TimeoutError(_) => PerformanceImpact::High,
306            CoreError::ConvergenceError(_) => PerformanceImpact::Medium,
307            CoreError::ComputationError(_) => PerformanceImpact::Medium,
308            CoreError::DomainError(_) | CoreError::ValueError(_) => PerformanceImpact::Low,
309            _ => PerformanceImpact::Unknown,
310        }
311    }
312
313    /// Generate contextual suggestions based on error analysis
314    fn generate_contextual_suggestions(
315        &self,
316        error: &CoreError,
317        report: &ErrorDiagnosticReport,
318    ) -> Vec<String> {
319        let mut suggestions = Vec::new();
320
321        // Environment-based suggestions
322        if let Some(env) = &report.environment {
323            if env.available_memory.is_some_and(|mem| mem < 2_000_000_000) {
324                // Less than 2GB
325                suggestions.push(
326                    "Consider using memory-efficient algorithms for large datasets".to_string(),
327                );
328            }
329
330            if env.cpu_cores == Some(1) {
331                suggestions.push(
332                    "Single-core system detected - parallel algorithms may not provide benefits"
333                        .to_string(),
334                );
335            }
336
337            if !env.features.contains(&"simd".to_string()) {
338                suggestions.push(
339                    "SIMD optimizations not enabled - consider enabling for better performance"
340                        .to_string(),
341                );
342            }
343        }
344
345        // Pattern-based suggestions
346        for pattern in &report.patterns {
347            suggestions.extend(pattern.suggestions.clone());
348        }
349
350        // Frequency-based suggestions
351        if report.recent_occurrences.len() > 3 {
352            suggestions.push("This error has occurred frequently recently - consider reviewing input data or algorithm parameters".to_string());
353        }
354
355        suggestions
356    }
357
358    /// Diagnose environment-specific issues with enhanced Beta 2 analysis
359    fn diagnose_environment_issues(&self, error: &CoreError) -> Vec<String> {
360        let mut diagnostics = Vec::new();
361
362        match error {
363            CoreError::MemoryError(_) => {
364                if let Some(mem) = self.environment.available_memory {
365                    diagnostics.push(format!(
366                        "Available memory: {:.2} GB",
367                        mem as f64 / 1_000_000_000.0
368                    ));
369
370                    // Enhanced memory analysis
371                    if mem < 4_000_000_000 {
372                        diagnostics.push(
373                            "Low memory detected - consider using memory-efficient algorithms"
374                                .to_string(),
375                        );
376                    }
377                    if mem > 64_000_000_000 {
378                        diagnostics.push(
379                            "High memory system - can use in-memory algorithms for large datasets"
380                                .to_string(),
381                        );
382                    }
383                }
384
385                // Check for memory-related environment variables
386                if let Some(threads) = self.environment.env_vars.get("OMP_NUM_THREADS") {
387                    diagnostics.push(format!("OpenMP threads: {threads}"));
388                }
389
390                // Check for memory management features
391                if !self
392                    .environment
393                    .features
394                    .contains(&"memory_efficient".to_string())
395                {
396                    diagnostics.push(
397                        "Memory-efficient algorithms not enabled - consider enabling this feature"
398                            .to_string(),
399                    );
400                }
401            }
402
403            CoreError::ComputationError(_) => {
404                if let Some(cores) = self.environment.cpu_cores {
405                    diagnostics.push(format!("CPU cores available: {cores}"));
406
407                    // Enhanced CPU analysis
408                    if cores == 1 {
409                        diagnostics.push(
410                            "Single-core system - parallel algorithms won't help".to_string(),
411                        );
412                    } else if cores > 32 {
413                        diagnostics.push(
414                            "High-core count system - consider NUMA-aware algorithms".to_string(),
415                        );
416                    }
417                }
418
419                // Check compiler optimizations
420                #[cfg(debug_assertions)]
421                diagnostics.push("Running in debug mode - performance may be reduced".to_string());
422
423                // Check for performance features
424                if !self.environment.features.contains(&"parallel".to_string()) {
425                    diagnostics.push(
426                        "Parallel processing not enabled - could improve performance".to_string(),
427                    );
428                }
429                if !self.environment.features.contains(&"simd".to_string()) {
430                    diagnostics.push(
431                        "SIMD optimizations not enabled - could improve numerical performance"
432                            .to_string(),
433                    );
434                }
435            }
436
437            CoreError::TimeoutError(_) => {
438                diagnostics
439                    .push("Timeout detected - operation took longer than expected".to_string());
440                if let Some(cores) = self.environment.cpu_cores {
441                    if cores > 1 && !self.environment.features.contains(&"parallel".to_string()) {
442                        diagnostics.push(
443                            "Multi-core system but parallel processing not enabled".to_string(),
444                        );
445                    }
446                }
447            }
448
449            _ => {}
450        }
451
452        // General environment diagnostics
453        self.add_general_environment_diagnostics(&mut diagnostics);
454
455        diagnostics
456    }
457
458    /// Add general environment diagnostics for Beta 2
459    fn add_general_environment_diagnostics(&self, diagnostics: &mut Vec<String>) {
460        // Check for optimal thread configuration
461        if let (Some(cores), Some(omp_threads)) = (
462            self.environment.cpu_cores,
463            self.environment.env_vars.get("OMP_NUM_THREADS"),
464        ) {
465            if let Ok(omp_count) = omp_threads.parse::<usize>() {
466                if omp_count > cores {
467                    diagnostics.push(
468                        "OMP_NUM_THREADS exceeds available cores - may cause oversubscription"
469                            .to_string(),
470                    );
471                }
472            }
473        }
474
475        // Check for BLAS backend optimization
476        if self.environment.features.contains(&"openblas".to_string()) {
477            diagnostics.push("Using OpenBLAS backend - good for general computations".to_string());
478        } else if self.environment.features.contains(&"intel-mkl".to_string()) {
479            diagnostics.push("Using Intel MKL backend - optimized for Intel CPUs".to_string());
480        } else if self.environment.features.contains(&"linalg".to_string()) {
481            diagnostics.push(
482                "Linear algebra backend available but no optimized BLAS detected".to_string(),
483            );
484        }
485
486        // Check for GPU capabilities
487        if self.environment.features.contains(&"gpu".to_string()) {
488            diagnostics.push("GPU acceleration available".to_string());
489            if self.environment.features.contains(&"cuda".to_string()) {
490                diagnostics.push("CUDA backend enabled for NVIDIA GPUs".to_string());
491            }
492        }
493    }
494
495    /// Perform predictive error analysis based on historical patterns (Beta 2 feature)
496    #[allow(dead_code)]
497    pub fn predict_potentialerrors(&self, context: &str) -> Vec<String> {
498        let mut predictions = Vec::new();
499        let history = self.error_history.lock().unwrap();
500
501        // Analyze error frequency patterns
502        let mut error_counts: HashMap<String, usize> = HashMap::new();
503        let recent_cutoff = SystemTime::now() - Duration::from_secs(3600); // Last hour
504
505        for occurrence in history.iter() {
506            if occurrence.timestamp >= recent_cutoff {
507                *error_counts
508                    .entry(occurrence.errortype.clone())
509                    .or_insert(0) += 1;
510            }
511        }
512
513        // Predict based on high-frequency patterns
514        for (errortype, count) in error_counts {
515            if count >= 3 {
516                predictions.push(format!(
517                    "High risk of {errortype} based on recent frequency ({count}x in last hour)"
518                ));
519            }
520        }
521
522        // Context-based predictions
523        if (context.contains("matrix") || context.contains("linear_algebra"))
524            && self
525                .environment
526                .available_memory
527                .is_some_and(|mem| mem < 8_000_000_000)
528        {
529            predictions.push("Potential memory issues with large matrix operations".to_string());
530        }
531
532        if context.contains("optimization") || context.contains("solver") {
533            predictions.push(
534                "Potential convergence issues - consider robust initial conditions".to_string(),
535            );
536        }
537
538        if context.contains("parallel") && self.environment.cpu_cores == Some(1) {
539            predictions
540                .push("Parallel algorithms may not be effective on single-core system".to_string());
541        }
542
543        predictions
544    }
545
546    /// Generate domain-specific recovery strategies (Beta 2 feature)
547    #[allow(dead_code)]
548    pub fn suggest_domain_recovery(&self, error: &CoreError, domain: &str) -> Vec<String> {
549        let mut strategies = Vec::new();
550
551        match domain {
552            "linear_algebra" => match error {
553                CoreError::MemoryError(_) => {
554                    strategies.extend(vec![
555                        "Use iterative solvers instead of direct factorization".to_string(),
556                        "Implement block algorithms for large matrices".to_string(),
557                        "Consider sparse matrix representations".to_string(),
558                        "Use out-of-core matrix algorithms".to_string(),
559                    ]);
560                }
561                CoreError::ConvergenceError(_) => {
562                    strategies.extend(vec![
563                        "Apply preconditioning (ILU, SSOR, or Jacobi)".to_string(),
564                        "Use more robust factorization (SVD instead of LU)".to_string(),
565                        "Check matrix conditioning and apply regularization".to_string(),
566                        "Try different solver algorithms (GMRES, BiCGSTAB)".to_string(),
567                    ]);
568                }
569                _ => {}
570            },
571
572            "optimization" => match error {
573                CoreError::ConvergenceError(_) => {
574                    strategies.extend(vec![
575                        "Use trust region methods for better global convergence".to_string(),
576                        "Apply line search algorithms with backtracking".to_string(),
577                        "Try multiple random starting points".to_string(),
578                        "Use gradient-free methods for noisy objectives".to_string(),
579                        "Implement adaptive step size control".to_string(),
580                    ]);
581                }
582                CoreError::DomainError(_) => {
583                    strategies.extend(vec![
584                        "Add constraint handling and projection operators".to_string(),
585                        "Use barrier methods for constrained optimization".to_string(),
586                        "Implement bounds checking and clipping".to_string(),
587                    ]);
588                }
589                _ => {}
590            },
591
592            "statistics" => match error {
593                CoreError::DomainError(_) => {
594                    strategies.extend(vec![
595                        "Use robust statistical methods for outliers".to_string(),
596                        "Apply data transformation (log, Box-Cox)".to_string(),
597                        "Implement missing data handling strategies".to_string(),
598                        "Use non-parametric methods for non-normal data".to_string(),
599                    ]);
600                }
601                CoreError::ComputationError(_) => {
602                    strategies.extend(vec![
603                        "Use numerically stable algorithms (Welford for variance)".to_string(),
604                        "Apply importance sampling for rare events".to_string(),
605                        "Use bootstrap methods for robust estimates".to_string(),
606                    ]);
607                }
608                _ => {}
609            },
610
611            "signal_processing" => match error {
612                CoreError::MemoryError(_) => {
613                    strategies.extend(vec![
614                        "Use streaming FFT algorithms".to_string(),
615                        "Implement overlap-add/overlap-save methods".to_string(),
616                        "Use decimation for reduced sample rates".to_string(),
617                    ]);
618                }
619                CoreError::ComputationError(_) => {
620                    strategies.extend(vec![
621                        "Use windowing to reduce spectral leakage".to_string(),
622                        "Apply zero-padding for better frequency resolution".to_string(),
623                        "Use advanced spectral estimation methods".to_string(),
624                    ]);
625                }
626                _ => {}
627            },
628            _ => {
629                // Generic domain-agnostic strategies
630                strategies.push("Consider using more robust numerical algorithms".to_string());
631                strategies.push("Implement error checking and data validation".to_string());
632                strategies.push("Use iterative refinement for better accuracy".to_string());
633            }
634        }
635
636        strategies
637    }
638
639    /// Initialize known error patterns with enhanced Beta 2 patterns
640    fn initialize_patterns() -> Vec<ErrorPattern> {
641        vec![
642            ErrorPattern {
643                description: "Memory allocation failures in large matrix operations".to_string(),
644                errortypes: vec!["MemoryError".to_string()],
645                frequency: 0,
646                common_contexts: vec![
647                    "matrix_multiplication".to_string(),
648                    "decomposition".to_string(),
649                ],
650                suggestions: vec![
651                    "Use chunked processing for large matrices".to_string(),
652                    "Consider using f32 instead of f64 to reduce memory usage".to_string(),
653                    "Enable out-of-core algorithms if available".to_string(),
654                    "Use memory-mapped arrays for very large datasets".to_string(),
655                    "Consider distributed computing for extremely large problems".to_string(),
656                ],
657            },
658            ErrorPattern {
659                description: "Convergence failures in iterative algorithms".to_string(),
660                errortypes: vec!["ConvergenceError".to_string()],
661                frequency: 0,
662                common_contexts: vec!["optimization".to_string(), "linear_solver".to_string()],
663                suggestions: vec![
664                    "Increase maximum iteration count".to_string(),
665                    "Adjust convergence tolerance".to_string(),
666                    "Try different initial conditions".to_string(),
667                    "Use preconditioning to improve convergence".to_string(),
668                    "Consider adaptive step sizes or trust region methods".to_string(),
669                    "Check problem conditioning and scaling".to_string(),
670                ],
671            },
672            ErrorPattern {
673                description: "Shape mismatches in array operations".to_string(),
674                errortypes: vec!["ShapeError".to_string(), "DimensionError".to_string()],
675                frequency: 0,
676                common_contexts: vec!["matrix_operations".to_string(), "broadcasting".to_string()],
677                suggestions: vec![
678                    "Check input array shapes before operations".to_string(),
679                    "Use reshaping or broadcasting to make arrays compatible".to_string(),
680                    "Verify matrix multiplication dimension compatibility (A: m×k, B: k×n)"
681                        .to_string(),
682                    "Consider using automatic broadcasting utilities".to_string(),
683                    "Use array protocol for mixed array type compatibility".to_string(),
684                ],
685            },
686            ErrorPattern {
687                description: "Domain errors with mathematical functions".to_string(),
688                errortypes: vec!["DomainError".to_string()],
689                frequency: 0,
690                common_contexts: vec!["special_functions".to_string(), "statistics".to_string()],
691                suggestions: vec![
692                    "Check input ranges for mathematical functions".to_string(),
693                    "Handle edge cases (zero, negative values, infinities)".to_string(),
694                    "Use input validation before calling functions".to_string(),
695                    "Consider using robust numerical methods for ill-conditioned problems"
696                        .to_string(),
697                    "Use IEEE 754 special value handling where appropriate".to_string(),
698                ],
699            },
700            // New Beta 2 patterns
701            ErrorPattern {
702                description: "GPU memory exhaustion in accelerated computations".to_string(),
703                errortypes: vec!["MemoryError".to_string(), "ComputationError".to_string()],
704                frequency: 0,
705                common_contexts: vec![
706                    "gpu_acceleration".to_string(),
707                    "neural_networks".to_string(),
708                ],
709                suggestions: vec![
710                    "Reduce batch size to fit GPU memory".to_string(),
711                    "Use gradient accumulation for large batches".to_string(),
712                    "Enable mixed precision training (fp16/fp32)".to_string(),
713                    "Consider model parallelism for very large models".to_string(),
714                    "Use CPU fallback for computations that don't fit on GPU".to_string(),
715                ],
716            },
717            ErrorPattern {
718                description: "Numerical instability in scientific computations".to_string(),
719                errortypes: vec![
720                    "ComputationError".to_string(),
721                    "ConvergenceError".to_string(),
722                ],
723                frequency: 0,
724                common_contexts: vec![
725                    "linear_algebra".to_string(),
726                    "ode_solving".to_string(),
727                    "pde_solving".to_string(),
728                ],
729                suggestions: vec![
730                    "Use higher precision (f64 instead of f32)".to_string(),
731                    "Apply numerical stabilization techniques".to_string(),
732                    "Check condition numbers and matrix rank".to_string(),
733                    "Use pivoting strategies in decompositions".to_string(),
734                    "Consider regularization for ill-posed problems".to_string(),
735                    "Use iterative refinement for better accuracy".to_string(),
736                ],
737            },
738            ErrorPattern {
739                description: "Parallel processing overhead and contention".to_string(),
740                errortypes: vec!["TimeoutError".to_string(), "ComputationError".to_string()],
741                frequency: 0,
742                common_contexts: vec!["parallel_computing".to_string(), "rayon".to_string()],
743                suggestions: vec![
744                    "Adjust thread pool size based on workload".to_string(),
745                    "Use work-stealing for better load balancing".to_string(),
746                    "Minimize false sharing in parallel algorithms".to_string(),
747                    "Consider chunking strategies for better cache locality".to_string(),
748                    "Profile thread utilization and adjust accordingly".to_string(),
749                    "Use NUMA-aware allocation for large systems".to_string(),
750                ],
751            },
752            ErrorPattern {
753                description: "Data type overflow and underflow in scientific calculations"
754                    .to_string(),
755                errortypes: vec!["ValueError".to_string(), "ComputationError".to_string()],
756                frequency: 0,
757                common_contexts: vec![
758                    "numerical_integration".to_string(),
759                    "statistics".to_string(),
760                ],
761                suggestions: vec![
762                    "Use logarithmic computations for very large/small values".to_string(),
763                    "Implement numerical scaling and normalization".to_string(),
764                    "Use arbitrary precision arithmetic for extreme ranges".to_string(),
765                    "Apply Kahan summation for better numerical stability".to_string(),
766                    "Check for intermediate overflow in complex calculations".to_string(),
767                ],
768            },
769            ErrorPattern {
770                description: "I/O and serialization failures in scientific data".to_string(),
771                errortypes: vec!["IoError".to_string(), "SerializationError".to_string()],
772                frequency: 0,
773                common_contexts: vec!["data_loading".to_string(), "checkpointing".to_string()],
774                suggestions: vec![
775                    "Use streaming I/O for large datasets".to_string(),
776                    "Implement progressive loading with error recovery".to_string(),
777                    "Use compression to reduce I/O overhead".to_string(),
778                    "Implement chunked serialization for large arrays".to_string(),
779                    "Use memory-mapped files for random access patterns".to_string(),
780                    "Consider distributed storage for very large datasets".to_string(),
781                ],
782            },
783        ]
784    }
785}
786
787impl Default for ErrorDiagnostics {
788    fn default() -> Self {
789        Self::new()
790    }
791}
792
793/// Performance impact assessment
794#[derive(Debug, Clone, Copy, PartialEq, Eq)]
795pub enum PerformanceImpact {
796    Unknown,
797    Low,
798    Medium,
799    High,
800    Critical,
801}
802
803impl fmt::Display for PerformanceImpact {
804    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
805        match self {
806            Self::Unknown => write!(f, "Unknown"),
807            Self::Low => write!(f, "Low"),
808            Self::Medium => write!(f, "Medium"),
809            Self::High => write!(f, "High"),
810            Self::Critical => write!(f, "Critical"),
811        }
812    }
813}
814
815/// Comprehensive error diagnostic report with Beta 2 enhancements
816#[derive(Debug)]
817pub struct ErrorDiagnosticReport {
818    /// The original error
819    pub error: CoreError,
820    /// Environment information
821    pub environment: Option<EnvironmentInfo>,
822    /// Matching error patterns
823    pub patterns: Vec<ErrorPattern>,
824    /// Recent similar occurrences
825    pub recent_occurrences: Vec<ErrorOccurrence>,
826    /// Performance impact assessment
827    pub performance_impact: PerformanceImpact,
828    /// Contextual suggestions
829    pub contextual_suggestions: Vec<String>,
830    /// Environment-specific diagnostics
831    pub environment_diagnostics: Vec<String>,
832    /// Beta 2: Predictive error analysis
833    pub predictions: Vec<String>,
834    /// Beta 2: Domain-specific recovery strategies
835    pub domain_strategies: Vec<String>,
836    /// Timestamp when report was generated
837    pub generated_at: SystemTime,
838}
839
840impl ErrorDiagnosticReport {
841    /// Create a new diagnostic report
842    pub fn error(error: CoreError) -> Self {
843        Self {
844            error,
845            environment: None,
846            patterns: Vec::new(),
847            recent_occurrences: Vec::new(),
848            performance_impact: PerformanceImpact::Unknown,
849            contextual_suggestions: Vec::new(),
850            environment_diagnostics: Vec::new(),
851            predictions: Vec::new(),
852            domain_strategies: Vec::new(),
853            generated_at: SystemTime::now(),
854        }
855    }
856
857    /// Generate a comprehensive report string
858    pub fn generate_report(&self) -> String {
859        let mut report = String::new();
860
861        // Header
862        report.push_str("🔍 `SciRS2` Error Diagnostic Report\n");
863        report.push_str(&format!("Generated: {:?}\n", self.generated_at));
864        report.push_str("═══════════════════════════════════════════════════════════════\n\n");
865
866        // Error information
867        report.push_str("🚨 Error Details:\n");
868        report.push_str(&format!("   {error}\n\n", error = self.error));
869
870        // Performance impact
871        report.push_str(&format!(
872            "⚡ Performance Impact: {}\n\n",
873            self.performance_impact
874        ));
875
876        // Environment information
877        if let Some(env) = &self.environment {
878            report.push_str("🖥️  Environment Information:\n");
879            report.push_str(&format!(
880                "   OS: {os} ({arch})\n",
881                os = env.os,
882                arch = env.arch
883            ));
884            report.push_str(&format!(
885                "   `SciRS2` Version: {_version}\n",
886                _version = env.scirs2_version
887            ));
888
889            if let Some(cores) = env.cpu_cores {
890                report.push_str(&format!("   CPU Cores: {cores}\n"));
891            }
892
893            if let Some(memory) = env.available_memory {
894                report.push_str(&format!(
895                    "   Available Memory: {:.2} GB\n",
896                    memory as f64 / 1_000_000_000.0
897                ));
898            }
899
900            if !env.features.is_empty() {
901                report.push_str(&format!(
902                    "   Enabled Features: {}\n",
903                    env.features.join(", ")
904                ));
905            }
906
907            report.push('\n');
908        }
909
910        // Environment diagnostics
911        if !self.environment_diagnostics.is_empty() {
912            report.push_str("🔧 Environment Diagnostics:\n");
913            for diagnostic in &self.environment_diagnostics {
914                report.push_str(&format!("   • {diagnostic}\n"));
915            }
916            report.push('\n');
917        }
918
919        // Error patterns
920        if !self.patterns.is_empty() {
921            report.push_str("📊 Matching Error Patterns:\n");
922            for pattern in &self.patterns {
923                report.push_str(&format!(
924                    "   • {description}\n",
925                    description = pattern.description
926                ));
927                if !pattern.suggestions.is_empty() {
928                    report.push_str("     Suggestions:\n");
929                    for suggestion in &pattern.suggestions {
930                        report.push_str(&format!("     - {suggestion}\n"));
931                    }
932                }
933            }
934            report.push('\n');
935        }
936
937        // Recent occurrences
938        if !self.recent_occurrences.is_empty() {
939            report.push_str(&format!(
940                "📈 Recent Similar Errors: {} in the last 5 minutes\n",
941                self.recent_occurrences.len()
942            ));
943            if self.recent_occurrences.len() > 3 {
944                report.push_str(
945                    "   ⚠️  High frequency detected - this may indicate a systematic issue\n",
946                );
947            }
948            report.push('\n');
949        }
950
951        // Beta 2: Predictive analysis
952        if !self.predictions.is_empty() {
953            report.push_str("🔮 Predictive Analysis:\n");
954            for prediction in &self.predictions {
955                report.push_str(&format!("   • {prediction}\n"));
956            }
957            report.push('\n');
958        }
959
960        // Beta 2: Domain-specific recovery strategies
961        if !self.domain_strategies.is_empty() {
962            report.push_str("🎯 Domain-Specific Recovery Strategies:\n");
963            for (i, strategy) in self.domain_strategies.iter().enumerate() {
964                report.push_str(&format!("   {num}. {strategy}\n", num = i + 1));
965            }
966            report.push('\n');
967        }
968
969        // Contextual suggestions
970        if !self.contextual_suggestions.is_empty() {
971            report.push_str("💡 Contextual Suggestions:\n");
972            for (i, suggestion) in self.contextual_suggestions.iter().enumerate() {
973                report.push_str(&format!("   {num}. {suggestion}\n", num = i + 1));
974            }
975            report.push('\n');
976        }
977
978        // Footer
979        report.push_str("═══════════════════════════════════════════════════════════════\n");
980        report.push_str("For more help, visit: https://github.com/cool-japan/scirs/issues\n");
981
982        report
983    }
984}
985
986impl fmt::Display for ErrorDiagnosticReport {
987    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
988        write!(f, "{}", self.generate_report())
989    }
990}
991
992/// Convenience function to create a diagnostic report for an error
993#[allow(dead_code)]
994pub fn error(err: &CoreError) -> ErrorDiagnosticReport {
995    ErrorDiagnostics::global().analyzeerror(err)
996}
997
998/// Convenience function to create a diagnostic report with context
999#[allow(dead_code)]
1000pub fn error_with_context(err: &CoreError, context: String) -> ErrorDiagnosticReport {
1001    let diagnostics = ErrorDiagnostics::global();
1002    diagnostics.recorderror(err, context);
1003    diagnostics.analyzeerror(err)
1004}
1005
1006/// Macro to create a diagnostic error with automatic context
1007#[macro_export]
1008macro_rules! diagnosticerror {
1009    ($errortype:ident, $message:expr) => {{
1010        let error = $crate::error::CoreError::$errortype($crate::error_context!($message));
1011        let line_num = line!();
1012        let file_name = file!();
1013        let context = format!("line {line_num}, file = {file_name}");
1014        $crate::error::diagnostics::diagnoseerror_with_context(&error, context);
1015        error
1016    }};
1017}
1018
1019#[cfg(test)]
1020mod tests {
1021    use super::*;
1022    use crate::ErrorContext;
1023
1024    #[test]
1025    fn test_environment_info() {
1026        let env = EnvironmentInfo::default();
1027        assert!(!env.os.is_empty());
1028        assert!(!env.arch.is_empty());
1029        assert!(!env.scirs2_version.is_empty());
1030    }
1031
1032    #[test]
1033    fn testerror_occurrence() {
1034        let error = CoreError::DomainError(ErrorContext::new("Test error"));
1035        let occurrence = ErrorOccurrence::error(&error, "test_context".to_string())
1036            .with_location("test_function")
1037            .with_metadata("key", "value");
1038
1039        assert_eq!(occurrence.errortype, "DomainError");
1040        assert_eq!(occurrence.context, "test_context");
1041        assert_eq!(occurrence.location, Some("test_function".to_string()));
1042        assert_eq!(occurrence.metadata.get("key"), Some(&"value".to_string()));
1043    }
1044
1045    #[test]
1046    fn test_diagnosticserror_diagnostics() {
1047        let diagnostics = ErrorDiagnostics::new();
1048        let error = CoreError::MemoryError(ErrorContext::new("Out of memory"));
1049
1050        let report = diagnostics.analyzeerror(&error);
1051        assert!(matches!(report.error, CoreError::MemoryError(_)));
1052        assert!(matches!(report.performance_impact, PerformanceImpact::High));
1053    }
1054
1055    #[test]
1056    fn test_diagnostic_report_generation() {
1057        let error = CoreError::ShapeError(ErrorContext::new("Shape mismatch"));
1058        let report = ErrorDiagnostics::global().analyzeerror(&error);
1059
1060        let report_string = report.generate_report();
1061        assert!(report_string.contains("Error Diagnostic Report"));
1062        assert!(report_string.contains("Shape mismatch"));
1063    }
1064}