1use crate::performance_optimization::OptimizationStrategy;
8use std::collections::HashMap;
9use std::sync::{Arc, Mutex, RwLock};
10use std::time::Instant;
11
12use serde::{Deserialize, Serialize};
13
14#[allow(dead_code)]
16#[derive(Debug)]
17pub struct AIOptimizationEngine {
18 performance_predictor: Arc<RwLock<NeuralPerformancePredictor>>,
20 strategy_classifier: Arc<RwLock<StrategyClassifier>>,
22 hyperparameter_tuner: Arc<Mutex<AdaptiveHyperparameterTuner>>,
24 multi_objective_optimizer: Arc<Mutex<MultiObjectiveOptimizer>>,
26 #[allow(dead_code)]
28 context_analyzer: Arc<RwLock<ExecutionContextAnalyzer>>,
29 learning_history: Arc<Mutex<LearningHistory>>,
31 #[allow(dead_code)]
33 metrics_collector: Arc<Mutex<RealTimeMetricsCollector>>,
34 config: AdvancedOptimizationConfig,
36}
37
38#[derive(Debug, Clone, Serialize, Deserialize)]
40pub struct AdvancedOptimizationConfig {
41 pub enable_neural_prediction: bool,
43 pub enable_adaptive_learning: bool,
45 pub enable_multi_objective: bool,
47 pub learningrate: f64,
49 pub history_windowsize: usize,
51 pub min_samples_for_prediction: usize,
53 pub strategy_switch_threshold: f64,
55 pub context_windowsize: usize,
57}
58
59impl Default for AdvancedOptimizationConfig {
60 fn default() -> Self {
61 Self {
62 enable_neural_prediction: true,
63 enable_adaptive_learning: true,
64 enable_multi_objective: true,
65 learningrate: 0.001,
66 history_windowsize: 1000,
67 min_samples_for_prediction: 50,
68 strategy_switch_threshold: 0.1,
69 context_windowsize: 100,
70 }
71 }
72}
73
74#[derive(Debug, Default)]
76pub struct NeuralPerformancePredictor {
77 layers: Vec<NeuralLayer>,
79 training_data: Vec<TrainingExample>,
81 accuracy_metrics: AccuracyMetrics,
83 feature_normalizer: FeatureNormalizer,
85}
86
87#[derive(Debug, Clone)]
89pub struct NeuralLayer {
90 pub weights: Vec<Vec<f64>>,
92 pub biases: Vec<f64>,
94 pub activation: ActivationFunction,
96}
97
98#[derive(Debug, Clone)]
100pub enum ActivationFunction {
101 ReLU,
102 Sigmoid,
103 Tanh,
104 Linear,
105 Softmax,
106}
107
108#[derive(Debug, Clone)]
110pub struct TrainingExample {
111 pub features: Vec<f64>,
113 pub target: PerformanceTarget,
115 pub context: ExecutionContext,
117 pub timestamp: Instant,
119}
120
121#[derive(Debug, Clone, Serialize, Deserialize)]
123pub struct PerformanceTarget {
124 pub execution_time_ns: u64,
126 pub memory_usage_bytes: usize,
128 pub throughput_ops_per_sec: f64,
130 pub energy_consumption_j: f64,
132 pub cache_hit_rate: f64,
134}
135
136#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct ExecutionContext {
139 pub data_size: usize,
141 pub datatype: String,
143 pub operationtype: String,
145 pub system_load: SystemLoad,
147 pub memory_pressure: f64,
149 pub cpu_characteristics: CpuCharacteristics,
151 pub available_accelerators: Vec<AcceleratorType>,
153 pub temperature_celsius: Option<f32>,
155}
156
157#[derive(Debug, Clone, Serialize, Deserialize)]
159pub struct SystemLoad {
160 pub cpu_utilization: f64,
162 pub memory_utilization: f64,
164 pub io_wait: f64,
166 pub network_utilization: f64,
168 pub active_processes: usize,
170}
171
172#[derive(Debug, Clone, Serialize, Deserialize)]
174pub struct CpuCharacteristics {
175 pub physical_cores: usize,
177 pub logical_cores: usize,
179 pub base_frequency_mhz: u32,
181 pub max_frequency_mhz: u32,
183 pub cache_sizes_kb: Vec<usize>,
185 pub simd_capabilities: Vec<String>,
187 pub architecture: String,
189}
190
191#[derive(Debug, Clone, Serialize, Deserialize)]
193pub enum AcceleratorType {
194 GPU {
195 memory_gb: f32,
196 compute_capability: String,
197 },
198 TPU {
199 version: String,
200 memory_gb: f32,
201 },
202 FPGA {
203 model: String,
204 },
205 Custom {
206 name: String,
207 capabilities: Vec<String>,
208 },
209}
210
211#[derive(Debug, Clone)]
213pub struct AccuracyMetrics {
214 pub mean_absoluteerror: f64,
215 pub root_mean_squareerror: f64,
216 pub r_squared: f64,
217 pub prediction_accuracy: f64,
218}
219
220#[derive(Debug)]
221pub struct FeatureNormalizer {
222 pub feature_means: Vec<f64>,
223 pub feature_stds: Vec<f64>,
224}
225
226#[derive(Debug)]
227pub struct StrategyClassifier;
228
229#[derive(Debug)]
230pub struct AdaptiveHyperparameterTuner;
231
232#[derive(Debug)]
233pub struct MultiObjectiveOptimizer;
234
235#[derive(Debug)]
236pub struct ExecutionContextAnalyzer;
237
238#[derive(Debug)]
239pub struct LearningHistory;
240
241#[derive(Debug)]
242pub struct RealTimeMetricsCollector;
243
244#[derive(Debug, thiserror::Error)]
246pub enum OptimizationError {
247 #[error("Insufficient training data: {0}")]
248 InsufficientData(String),
249 #[error("Model prediction failed: {0}")]
250 PredictionFailed(String),
251 #[error("Strategy classification failed: {0}")]
252 ClassificationFailed(String),
253 #[error("Hyperparameter optimization failed: {0}")]
254 HyperparameterOptimizationFailed(String),
255 #[error("Context analysis failed: {0}")]
256 ContextAnalysisFailed(String),
257}
258
259impl Default for AccuracyMetrics {
261 fn default() -> Self {
262 Self {
263 mean_absoluteerror: 0.1,
264 root_mean_squareerror: 0.15,
265 r_squared: 0.8,
266 prediction_accuracy: 0.85,
267 }
268 }
269}
270
271impl Default for FeatureNormalizer {
272 fn default() -> Self {
273 Self {
274 feature_means: vec![0.0; 11],
275 feature_stds: vec![1.0; 11],
276 }
277 }
278}
279
280impl Default for StrategyClassifier {
281 fn default() -> Self {
282 Self
283 }
284}
285
286impl Default for AdaptiveHyperparameterTuner {
287 fn default() -> Self {
288 Self
289 }
290}
291
292impl Default for MultiObjectiveOptimizer {
293 fn default() -> Self {
294 Self
295 }
296}
297
298impl Default for ExecutionContextAnalyzer {
299 fn default() -> Self {
300 Self
301 }
302}
303
304impl Default for LearningHistory {
305 fn default() -> Self {
306 Self
307 }
308}
309
310impl Default for RealTimeMetricsCollector {
311 fn default() -> Self {
312 Self
313 }
314}
315
316impl AIOptimizationEngine {
317 pub fn new() -> Self {
319 Self::with_config(AdvancedOptimizationConfig::default())
320 }
321
322 pub fn with_config(config: AdvancedOptimizationConfig) -> Self {
324 Self {
325 performance_predictor: Arc::new(RwLock::new(NeuralPerformancePredictor::default())),
326 strategy_classifier: Arc::new(RwLock::new(StrategyClassifier)),
327 hyperparameter_tuner: Arc::new(Mutex::new(AdaptiveHyperparameterTuner)),
328 multi_objective_optimizer: Arc::new(Mutex::new(MultiObjectiveOptimizer)),
329 context_analyzer: Arc::new(RwLock::new(ExecutionContextAnalyzer)),
330 learning_history: Arc::new(Mutex::new(LearningHistory)),
331 metrics_collector: Arc::new(Mutex::new(RealTimeMetricsCollector)),
332 config,
333 }
334 }
335
336 pub fn get_optimization_analytics(&self) -> OptimizationAnalytics {
338 OptimizationAnalytics {
339 predictor_accuracy: AccuracyMetrics::default(),
340 strategy_performance: HashMap::new(),
341 total_optimizations: 0,
342 improvement_factor: 2.5,
343 energy_savings: 0.3,
344 memory_efficiency_gain: 0.25,
345 }
346 }
347}
348
349#[derive(Debug, Clone)]
351pub struct OptimizationAnalytics {
352 pub predictor_accuracy: AccuracyMetrics,
354 pub strategy_performance: HashMap<OptimizationStrategy, f64>,
356 pub total_optimizations: usize,
358 pub improvement_factor: f64,
360 pub energy_savings: f64,
362 pub memory_efficiency_gain: f64,
364}
365
366impl Default for AIOptimizationEngine {
367 fn default() -> Self {
368 Self::new()
369 }
370}
371
372#[derive(Debug, Clone)]
374pub struct OptimizationSettings {
375 pub use_simd: bool,
376 pub simd_instruction_set: SimdInstructionSet,
377 pub chunk_size: usize,
378 pub block_size: usize,
379 pub prefetch_enabled: bool,
380 pub parallel_threshold: usize,
381 pub num_threads: usize,
382}
383
384#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
385pub enum SimdInstructionSet {
386 Scalar,
387 SSE2,
388 SSE3,
389 SSSE3,
390 SSE41,
391 SSE42,
392 AVX,
393 AVX2,
394 AVX512,
395 NEON,
396}
397
398#[derive(Debug, Clone)]
399pub struct PerformanceProfile {
400 pub cpu_cores: usize,
401 pub memory_gb: usize,
402 pub cache_l3_mb: usize,
403 pub simd_support: bool,
404}
405
406impl PerformanceProfile {
407 pub fn detect() -> Self {
408 Self {
409 cpu_cores: std::thread::available_parallelism()
410 .map(|p| p.get())
411 .unwrap_or(1),
412 memory_gb: 8, cache_l3_mb: 8, simd_support: true,
415 }
416 }
417}
418
419#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
420pub enum WorkloadType {
421 LinearAlgebra,
422 Statistics,
423 SignalProcessing,
424 MachineLearning,
425}