1use std::fmt;
20use std::sync::Arc;
21
22use crate::array_protocol::neural::Sequential;
23use crate::array_protocol::training::{DataLoader, Dataset, Metrics, Trainer, TrainingCallback};
24use crate::array_protocol::ArrayProtocol;
25use crate::error::{CoreError, CoreResult, ErrorContext};
26
27#[derive(Debug, Clone, Copy, PartialEq, Eq)]
29pub enum DistributedStrategy {
30 DataParallel,
32
33 ModelParallel,
35
36 HybridParallel,
38
39 PipelineParallel,
41}
42
43impl fmt::Display for DistributedStrategy {
44 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
45 match self {
46 Self::DataParallel => write!(f, "DataParallel"),
47 Self::ModelParallel => write!(f, "ModelParallel"),
48 Self::HybridParallel => write!(f, "HybridParallel"),
49 Self::PipelineParallel => write!(f, "PipelineParallel"),
50 }
51 }
52}
53
54#[derive(Debug, Clone)]
56pub struct DistributedTrainingConfig {
57 pub strategy: DistributedStrategy,
59
60 pub numworkers: usize,
62
63 pub rank: usize,
65
66 pub is_master: bool,
68
69 pub syncinterval: usize,
71
72 pub backend: String,
74
75 pub mixed_precision: bool,
77
78 pub gradient_accumulation_steps: usize,
80}
81
82impl Default for DistributedTrainingConfig {
83 fn default() -> Self {
84 Self {
85 strategy: DistributedStrategy::DataParallel,
86 numworkers: 1,
87 rank: 0,
88 is_master: true,
89 syncinterval: 1,
90 backend: "threaded".to_string(),
91 mixed_precision: false,
92 gradient_accumulation_steps: 1,
93 }
94 }
95}
96
97#[allow(dead_code)]
99pub struct DistributedNode {
100 config: DistributedTrainingConfig,
102
103 model: Sequential,
105
106 channel: CommunicationChannel,
108}
109
110impl DistributedNode {
111 pub fn new(
113 model: Sequential,
114 config: DistributedTrainingConfig,
115 channel: Box<dyn DistributedCommunication>,
116 ) -> Self {
117 Self {
118 config,
119 model,
120 channel: CommunicationChannel::new(channel),
121 }
122 }
123
124 pub fn synchronize_parameters(&mut self) -> CoreResult<()> {
126 match self.config.strategy {
127 DistributedStrategy::DataParallel => {
128 self.average_gradients()?;
130 }
131 DistributedStrategy::ModelParallel => {
132 self.exchange_activations_and_gradients()?;
135 }
136 DistributedStrategy::HybridParallel => {
137 self.average_gradients()?;
139 self.exchange_activations_and_gradients()?;
140 }
141 DistributedStrategy::PipelineParallel => {
142 self.pipeline_forward_backward()?;
144 }
145 }
146
147 Ok(())
148 }
149
150 fn average_gradients(&self) -> CoreResult<()> {
152 let params = self.model.parameters();
158
159 for _param in params {
161 }
166
167 Ok(())
168 }
169
170 fn exchange_activations_and_gradients(&self) -> CoreResult<()> {
172 Ok(())
188 }
189
190 fn pipeline_forward_backward(&self) -> CoreResult<()> {
192 Ok(())
204 }
205}
206
207pub trait DistributedCommunication: Send + Sync {
209 fn send(&self, tensor: Box<dyn ArrayProtocol>, destination: usize) -> CoreResult<()>;
211
212 fn recv(&self, source: usize) -> CoreResult<Box<dyn ArrayProtocol>>;
214
215 fn broadcast(&self, tensor: Box<dyn ArrayProtocol>) -> CoreResult<Box<dyn ArrayProtocol>>;
217
218 fn gather(&self, tensor: Box<dyn ArrayProtocol>) -> CoreResult<Vec<Box<dyn ArrayProtocol>>>;
220
221 fn scatter(&self, tensors: Vec<Box<dyn ArrayProtocol>>) -> CoreResult<Box<dyn ArrayProtocol>>;
223
224 fn reduce(
226 &self,
227 tensor: Box<dyn ArrayProtocol>,
228 op: &str,
229 ) -> CoreResult<Box<dyn ArrayProtocol>>;
230
231 fn all_reduce(
233 &self,
234 tensor: Box<dyn ArrayProtocol>,
235 op: &str,
236 ) -> CoreResult<Box<dyn ArrayProtocol>>;
237
238 fn all_gather(&self, tensor: Box<dyn ArrayProtocol>)
240 -> CoreResult<Vec<Box<dyn ArrayProtocol>>>;
241
242 fn barrier(&self) -> CoreResult<()>;
244
245 fn box_clone(&self) -> Box<dyn DistributedCommunication>;
247}
248
249#[derive(Clone)]
251pub struct CommunicationChannel(Arc<Box<dyn DistributedCommunication>>);
252
253impl CommunicationChannel {
254 pub fn new(comm: Box<dyn DistributedCommunication>) -> Self {
256 Self(Arc::new(comm))
257 }
258
259 pub fn inner(&self) -> &dyn DistributedCommunication {
261 self.0.as_ref().as_ref()
262 }
263}
264
265impl Clone for Box<dyn DistributedCommunication> {
267 fn clone(&self) -> Self {
268 self.box_clone()
269 }
270}
271
272pub struct MockDistributedCommunication {
274 numworkers: usize,
276
277 rank: usize,
279}
280
281impl MockDistributedCommunication {
282 pub fn new(numworkers: usize, rank: usize) -> Self {
284 Self { numworkers, rank }
285 }
286}
287
288impl DistributedCommunication for MockDistributedCommunication {
289 fn send(&self, _tensor: Box<dyn ArrayProtocol>, destination: usize) -> CoreResult<()> {
290 Ok(())
292 }
293
294 fn recv(&self, source: usize) -> CoreResult<Box<dyn ArrayProtocol>> {
295 Err(CoreError::NotImplementedError(ErrorContext::new(
297 "recv not implemented for MockDistributedCommunication".to_string(),
298 )))
299 }
300
301 fn broadcast(&self, tensor: Box<dyn ArrayProtocol>) -> CoreResult<Box<dyn ArrayProtocol>> {
302 Ok(tensor)
304 }
305
306 fn gather(&self, tensor: Box<dyn ArrayProtocol>) -> CoreResult<Vec<Box<dyn ArrayProtocol>>> {
307 Ok(vec![tensor])
309 }
310
311 fn scatter(&self, tensors: Vec<Box<dyn ArrayProtocol>>) -> CoreResult<Box<dyn ArrayProtocol>> {
312 if tensors.is_empty() {
314 return Err(CoreError::InvalidArgument(ErrorContext::new(
315 "Empty tensors list for scatter".to_string(),
316 )));
317 }
318
319 Ok(tensors[0].clone())
320 }
321
322 fn reduce(
323 &self,
324 tensor: Box<dyn ArrayProtocol>,
325 op: &str,
326 ) -> CoreResult<Box<dyn ArrayProtocol>> {
327 match op {
329 "sum" | "mean" => Ok(tensor),
330 _ => Err(CoreError::InvalidArgument(ErrorContext::new(format!(
331 "Unknown reduction operation: {op}"
332 )))),
333 }
334 }
335
336 fn all_reduce(
337 &self,
338 tensor: Box<dyn ArrayProtocol>,
339 op: &str,
340 ) -> CoreResult<Box<dyn ArrayProtocol>> {
341 match op {
343 "sum" | "mean" => Ok(tensor),
344 _ => Err(CoreError::InvalidArgument(ErrorContext::new(format!(
345 "Unknown reduction operation: {op}"
346 )))),
347 }
348 }
349
350 fn all_gather(
351 &self,
352 tensor: Box<dyn ArrayProtocol>,
353 ) -> CoreResult<Vec<Box<dyn ArrayProtocol>>> {
354 Ok(vec![tensor])
356 }
357
358 fn barrier(&self) -> CoreResult<()> {
359 Ok(())
361 }
362
363 fn box_clone(&self) -> Box<dyn DistributedCommunication> {
364 Box::new(MockDistributedCommunication {
365 numworkers: self.numworkers,
366 rank: self.rank,
367 })
368 }
369}
370
371#[allow(dead_code)]
373pub struct DistributedDataset {
374 dataset: Box<dyn Dataset>,
376
377 numworkers: usize,
379
380 rank: usize,
382
383 indices: Vec<usize>,
385}
386
387impl DistributedDataset {
388 pub fn new(dataset: Box<dyn Dataset>, numworkers: usize, rank: usize) -> Self {
390 let num_samples = dataset.len();
391 let samples_per_worker = num_samples / numworkers;
392 let remainder = num_samples % numworkers;
393
394 let start = if rank < remainder {
395 rank * (samples_per_worker + 1)
396 } else {
397 rank * samples_per_worker + remainder
398 };
399
400 let end = if rank < remainder {
401 start + samples_per_worker + 1
402 } else {
403 start + samples_per_worker
404 };
405
406 let indices = (start..end).collect();
407
408 Self {
409 dataset,
410 numworkers,
411 rank,
412 indices,
413 }
414 }
415}
416
417impl Dataset for DistributedDataset {
418 fn len(&self) -> usize {
419 self.indices.len()
420 }
421
422 fn get(&self, index: usize) -> Option<(Box<dyn ArrayProtocol>, Box<dyn ArrayProtocol>)> {
423 if index >= self.len() {
424 return None;
425 }
426
427 let global_index = self.indices[index];
428 self.dataset.get(global_index)
429 }
430
431 fn inputshape(&self) -> Vec<usize> {
432 self.dataset.inputshape()
433 }
434
435 fn outputshape(&self) -> Vec<usize> {
436 self.dataset.outputshape()
437 }
438}
439
440#[allow(dead_code)]
442pub struct DistributedTrainer {
443 trainer: Trainer,
445
446 config: DistributedTrainingConfig,
448
449 channel: CommunicationChannel,
451
452 batch_counter: usize,
454}
455
456impl DistributedTrainer {
457 pub fn new(
459 trainer: Trainer,
460 config: DistributedTrainingConfig,
461 channel: Box<dyn DistributedCommunication>,
462 ) -> Self {
463 Self {
464 trainer,
465 config,
466 channel: CommunicationChannel::new(channel),
467 batch_counter: 0,
468 }
469 }
470
471 pub fn train(
473 &mut self,
474 train_loader: &mut DataLoader,
475 num_epochs: usize,
476 val_loader: Option<&mut DataLoader>,
477 ) -> CoreResult<()> {
478 self.synchronize_parameters()?;
480
481 if self.config.strategy == DistributedStrategy::DataParallel {
483 self.train_data_parallel(train_loader, num_epochs, val_loader)?;
486 } else {
487 match self.config.strategy {
489 DistributedStrategy::ModelParallel => {
490 self.train_model_parallel(train_loader, num_epochs, val_loader)?;
491 }
492 DistributedStrategy::HybridParallel => {
493 self.train_hybrid_parallel(train_loader, num_epochs, val_loader)?;
494 }
495 DistributedStrategy::PipelineParallel => {
496 self.train_pipeline_parallel(train_loader, num_epochs, val_loader)?;
497 }
498 _ => unreachable!(),
499 }
500 }
501
502 Ok(())
503 }
504
505 fn synchronize_parameters(&self) -> CoreResult<()> {
507 self.channel.inner().barrier()?;
515
516 Ok(())
517 }
518
519 fn train_data_parallel(
521 &mut self,
522 train_loader: &mut DataLoader,
523 num_epochs: usize,
524 val_loader: Option<&mut DataLoader>,
525 ) -> CoreResult<()> {
526 let _sync_callback = ParameterSyncCallback::new(
528 self.config.syncinterval,
529 self.channel.0.clone().box_clone(),
530 );
531
532 self.trainer.train(train_loader, num_epochs, val_loader)?;
537
538 Ok(())
539 }
540
541 fn train_model_parallel(
543 &mut self,
544 _train_loader: &mut DataLoader,
545 _num_epochs: usize,
546 _val_loader: Option<&mut DataLoader>,
547 ) -> CoreResult<()> {
548 Ok(())
553 }
554
555 fn train_hybrid_parallel(
557 &mut self,
558 _train_loader: &mut DataLoader,
559 _num_epochs: usize,
560 _val_loader: Option<&mut DataLoader>,
561 ) -> CoreResult<()> {
562 Ok(())
567 }
568
569 fn train_pipeline_parallel(
571 &mut self,
572 _train_loader: &mut DataLoader,
573 _num_epochs: usize,
574 _val_loader: Option<&mut DataLoader>,
575 ) -> CoreResult<()> {
576 Ok(())
581 }
582}
583
584pub struct ParameterSyncCallback {
586 syncinterval: usize,
588
589 batch_counter: usize,
591
592 channel: CommunicationChannel,
594}
595
596impl ParameterSyncCallback {
597 pub fn new(syncinterval: usize, channel: Box<dyn DistributedCommunication>) -> Self {
599 Self {
600 syncinterval,
601 batch_counter: 0,
602 channel: CommunicationChannel::new(channel),
603 }
604 }
605}
606
607impl TrainingCallback for ParameterSyncCallback {
608 fn on_epoch_start(&mut self, _epoch: usize, _numepochs: usize) {
609 self.batch_counter = 0;
611 }
612
613 fn on_epoch_end(&mut self, _epoch: usize, _num_epochs: usize, metrics: &Metrics) {
614 match self.channel.inner().barrier() {
619 Ok(()) => {}
620 Err(e) => eprintln!("Error in barrier synchronization: {e}"),
621 }
622 }
623
624 fn on_batch_start(&mut self, _batch: usize, _numbatches: usize) {
625 }
627
628 fn on_batch_end(&mut self, _batch: usize, _numbatches: usize, loss: f64) {
629 self.batch_counter += 1;
631
632 if self.batch_counter.is_multiple_of(self.syncinterval) {
634 match self.channel.inner().barrier() {
638 Ok(()) => {}
639 Err(e) => eprintln!("Error in barrier synchronization: {e}"),
640 }
641 }
642 }
643
644 fn on_train_start(&mut self, _numepochs: usize) {
645 match self.channel.inner().barrier() {
647 Ok(()) => {}
648 Err(e) => eprintln!("Error in barrier synchronization: {e}"),
649 }
650 }
651
652 fn on_train_end(&mut self, metrics: &Metrics) {
653 match self.channel.inner().barrier() {
655 Ok(()) => {}
656 Err(e) => eprintln!("Error in barrier synchronization: {e}"),
657 }
658 }
659}
660
661pub struct DistributedTrainingFactory;
663
664impl DistributedTrainingFactory {
665 pub fn create_dataset(
667 dataset: Box<dyn Dataset>,
668 config: &DistributedTrainingConfig,
669 ) -> Box<dyn Dataset> {
670 Box::new(DistributedDataset::new(
671 dataset,
672 config.numworkers,
673 config.rank,
674 ))
675 }
676
677 pub fn create_trainer(
679 trainer: Trainer,
680 config: DistributedTrainingConfig,
681 ) -> DistributedTrainer {
682 let channel: Box<dyn DistributedCommunication> = match config.backend.as_str() {
684 "threaded" => Box::new(MockDistributedCommunication::new(
685 config.numworkers,
686 config.rank,
687 )),
688 _ => Box::new(MockDistributedCommunication::new(
690 config.numworkers,
691 config.rank,
692 )),
693 };
694
695 DistributedTrainer::new(trainer, config, channel)
696 }
697}
698
699#[cfg(test)]
700mod tests {
701 use super::*;
702 use crate::array_protocol::training::InMemoryDataset;
703 use crate::array_protocol::NdarrayWrapper;
704 use ndarray::Array2;
705
706 #[test]
707 fn test_distributed_dataset() {
708 let inputs = Array2::<f64>::ones((10, 5));
710 let targets = Array2::<f64>::zeros((10, 2));
711 let dataset = Box::new(InMemoryDataset::from_arrays(inputs, targets));
712
713 let dist_dataset = DistributedDataset::new(dataset, 2, 0);
715
716 assert_eq!(dist_dataset.len(), 5);
718 assert_eq!(dist_dataset.inputshape(), vec![5]);
719 assert_eq!(dist_dataset.outputshape(), vec![2]);
720
721 let (input, target) = dist_dataset.get(0).unwrap();
723 assert!(input
724 .as_any()
725 .downcast_ref::<NdarrayWrapper<f64, ndarray::IxDyn>>()
726 .is_some());
727 assert!(target
728 .as_any()
729 .downcast_ref::<NdarrayWrapper<f64, ndarray::IxDyn>>()
730 .is_some());
731 }
732
733 #[test]
734 fn test_mock_distributed_communication() {
735 let channel = MockDistributedCommunication::new(2, 0);
737
738 let tensor = NdarrayWrapper::new(Array2::<f64>::ones((2, 2)));
740 let boxed_tensor = Box::new(tensor);
741
742 let result = channel.broadcast(boxed_tensor.clone());
744 assert!(result.is_ok());
745
746 let result = channel.all_reduce(boxed_tensor.clone(), "mean");
748 assert!(result.is_ok());
749
750 let result = channel.barrier();
752 assert!(result.is_ok());
753 }
754}