scirs2_core/advanced_ecosystem_integration/
resources.rs1use super::types::*;
4use crate::error::CoreResult;
5use std::collections::HashMap;
6use std::time::{Duration, Instant};
7
8#[allow(dead_code)]
10#[derive(Debug)]
11pub struct EcosystemResourceManager {
12 available_resources: ResourcePool,
14 allocations: HashMap<String, ResourceAllocation>,
16 #[allow(dead_code)]
18 load_balancer: LoadBalancer,
19 #[allow(dead_code)]
21 resource_monitor: ResourceMonitor,
22}
23
24#[allow(dead_code)]
26#[derive(Debug)]
27pub struct ResourcePool {
28 pub cpu_cores: usize,
30 pub memory_mb: usize,
32 pub gpu_devices: usize,
34 pub network_bandwidth: f64,
36}
37
38#[allow(dead_code)]
40#[derive(Debug, Clone)]
41pub struct ResourceAllocation {
42 pub cpu_cores: f64,
44 pub memory_mb: usize,
46 pub gpu_fraction: Option<f64>,
48 pub bandwidth: f64,
50 pub priority: Priority,
52}
53
54#[allow(dead_code)]
56#[derive(Debug)]
57pub struct LoadBalancer {
58 #[allow(dead_code)]
60 load_distribution: HashMap<String, f64>,
61 #[allow(dead_code)]
63 strategy: LoadBalancingStrategy,
64 #[allow(dead_code)]
66 performance_history: Vec<LoadBalancingMetrics>,
67}
68
69#[allow(dead_code)]
71#[derive(Debug, Clone)]
72pub enum LoadBalancingStrategy {
73 RoundRobin,
74 WeightedRoundRobin,
75 LeastConnections,
76 PerformanceBased,
77 ResourceBased,
78 AIOptimized,
79}
80
81#[allow(dead_code)]
83#[derive(Debug, Clone)]
84pub struct LoadBalancingMetrics {
85 pub distribution_efficiency: f64,
87 pub response_time_variance: f64,
89 pub utilization_balance: f64,
91 pub timestamp: Instant,
93}
94
95#[allow(dead_code)]
97#[derive(Debug)]
98pub struct ResourceMonitor {
99 #[allow(dead_code)]
101 current_usage: ResourceUtilization,
102 #[allow(dead_code)]
104 usage_history: Vec<ResourceSnapshot>,
105 #[allow(dead_code)]
107 prediction_model: Option<ResourcePredictionModel>,
108}
109
110#[allow(dead_code)]
112#[derive(Debug, Clone)]
113pub struct ResourceSnapshot {
114 pub utilization: ResourceUtilization,
116 pub timestamp: Instant,
118 pub workload_info: Option<String>,
120}
121
122#[allow(dead_code)]
124#[derive(Debug)]
125pub struct ResourcePredictionModel {
126 #[allow(dead_code)]
128 parameters: Vec<f64>,
129 #[allow(dead_code)]
131 accuracy: f64,
132 #[allow(dead_code)]
134 last_trained: Instant,
135}
136
137impl Default for EcosystemResourceManager {
138 fn default() -> Self {
139 Self::new()
140 }
141}
142
143impl EcosystemResourceManager {
144 pub fn new() -> Self {
146 Self {
147 available_resources: ResourcePool {
148 cpu_cores: 8,
149 memory_mb: 16384,
150 gpu_devices: 1,
151 network_bandwidth: 1000.0,
152 },
153 allocations: HashMap::new(),
154 load_balancer: LoadBalancer {
155 load_distribution: HashMap::new(),
156 strategy: LoadBalancingStrategy::PerformanceBased,
157 performance_history: Vec::new(),
158 },
159 resource_monitor: ResourceMonitor {
160 current_usage: ResourceUtilization {
161 cpu_usage: 0.0,
162 memory_usage: 0.0,
163 gpu_usage: None,
164 network_usage: 0.0,
165 },
166 usage_history: Vec::new(),
167 prediction_model: None,
168 },
169 }
170 }
171
172 pub fn allocate_resources(&mut self, module_name: &str) -> CoreResult<()> {
174 let allocation = ResourceAllocation {
175 cpu_cores: 1.0,
176 memory_mb: 512,
177 gpu_fraction: Some(0.1),
178 bandwidth: 10.0,
179 priority: Priority::Normal,
180 };
181
182 self.allocations.insert(module_name.to_string(), allocation);
183 println!(" 📊 Allocated resources for module: {}", module_name);
184 Ok(())
185 }
186
187 pub fn deallocate_resources(&mut self, module_name: &str) -> CoreResult<()> {
189 if self.allocations.remove(module_name).is_some() {
190 println!(" 🔄 Deallocated resources for module: {}", module_name);
191 }
192 Ok(())
193 }
194
195 pub fn rebalance_resources(&mut self) -> CoreResult<()> {
197 println!(" ⚖️ Rebalancing resource allocations...");
198
199 let mut total_cpu_demand = 0.0;
201 let mut total_memory_demand = 0;
202
203 for allocation in self.allocations.values() {
204 total_cpu_demand += allocation.cpu_cores;
205 total_memory_demand += allocation.memory_mb;
206 }
207
208 if total_cpu_demand > self.available_resources.cpu_cores as f64 {
210 let scale_factor = self.available_resources.cpu_cores as f64 / total_cpu_demand;
211 for allocation in self.allocations.values_mut() {
212 allocation.cpu_cores *= scale_factor;
213 }
214 println!(" 📉 Scaled down CPU allocations by factor: {scale_factor:.2}");
215 }
216
217 if total_memory_demand > self.available_resources.memory_mb {
218 let scale_factor =
219 self.available_resources.memory_mb as f64 / total_memory_demand as f64;
220 for allocation in self.allocations.values_mut() {
221 allocation.memory_mb = (allocation.memory_mb as f64 * scale_factor) as usize;
222 }
223 println!(" 📉 Scaled down memory allocations by factor: {scale_factor:.2}");
224 }
225
226 Ok(())
227 }
228
229 pub fn apply_predictive_scaling(&mut self) -> CoreResult<()> {
231 println!(" 🔮 Applying predictive scaling...");
232
233 for (module_name, allocation) in &mut self.allocations {
235 if module_name.contains("neural") || module_name.contains("ml") {
237 allocation.cpu_cores *= 1.2; allocation.memory_mb = (allocation.memory_mb as f64 * 1.3) as usize; println!(" 📈 Predictively scaled up resources for ML module: {module_name}");
240 }
241 }
242
243 Ok(())
244 }
245
246 pub fn get_resource_utilization(&self) -> ResourceUtilization {
248 let mut cpu_usage = 0.0;
250 let mut memory_usage = 0.0;
251 let mut gpu_usage = 0.0;
252 let mut network_usage = 0.0;
253
254 for allocation in self.allocations.values() {
255 cpu_usage += allocation.cpu_cores;
256 memory_usage += allocation.memory_mb as f64;
257 if let Some(gpu_frac) = allocation.gpu_fraction {
258 gpu_usage += gpu_frac;
259 }
260 network_usage += allocation.bandwidth;
261 }
262
263 ResourceUtilization {
264 cpu_usage: cpu_usage / self.available_resources.cpu_cores as f64,
265 memory_usage: memory_usage / self.available_resources.memory_mb as f64,
266 gpu_usage: if gpu_usage > 0.0 {
267 Some(gpu_usage)
268 } else {
269 None
270 },
271 network_usage: network_usage / self.available_resources.network_bandwidth,
272 }
273 }
274
275 pub fn get_allocation(&self, module_name: &str) -> Option<&ResourceAllocation> {
277 self.allocations.get(module_name)
278 }
279
280 pub fn update_allocation(
282 &mut self,
283 module_name: &str,
284 allocation: ResourceAllocation,
285 ) -> CoreResult<()> {
286 self.allocations.insert(module_name.to_string(), allocation);
287 println!(
288 " 🔄 Updated resource allocation for module: {}",
289 module_name
290 );
291 Ok(())
292 }
293
294 pub fn get_available_resources(&self) -> &ResourcePool {
296 &self.available_resources
297 }
298
299 pub fn set_available_resources(&mut self, resources: ResourcePool) {
301 self.available_resources = resources;
302 println!(" 📊 Updated available resource pool");
303 }
304
305 pub fn optimize_allocation(
307 &mut self,
308 performance_data: &HashMap<String, ModulePerformanceMetrics>,
309 ) -> CoreResult<()> {
310 println!(" 🎯 Optimizing resource allocation based on performance...");
311
312 for (module_name, metrics) in performance_data {
313 if let Some(allocation) = self.allocations.get_mut(module_name) {
314 if metrics.efficiency_score > 0.8 && metrics.success_rate > 0.95 {
316 allocation.cpu_cores *= 1.1;
317 allocation.memory_mb = (allocation.memory_mb as f64 * 1.1) as usize;
318 println!(
319 " 📈 Increased resources for high-performing module: {}",
320 module_name
321 );
322 }
323 else if metrics.efficiency_score < 0.5 || metrics.success_rate < 0.8 {
325 allocation.cpu_cores *= 0.9;
326 allocation.memory_mb = (allocation.memory_mb as f64 * 0.9) as usize;
327 println!(
328 " 📉 Decreased resources for underperforming module: {}",
329 module_name
330 );
331 }
332 }
333 }
334
335 self.rebalance_resources()?;
337
338 Ok(())
339 }
340
341 pub fn get_efficiency_metrics(&self) -> HashMap<String, f64> {
343 let mut efficiency_metrics = HashMap::new();
344 let utilization = self.get_resource_utilization();
345
346 efficiency_metrics.insert("cpu_efficiency".to_string(), utilization.cpu_usage);
347 efficiency_metrics.insert("memory_efficiency".to_string(), utilization.memory_usage);
348 efficiency_metrics.insert("network_efficiency".to_string(), utilization.network_usage);
349
350 if let Some(gpu_usage) = utilization.gpu_usage {
351 efficiency_metrics.insert("gpu_efficiency".to_string(), gpu_usage);
352 }
353
354 efficiency_metrics
355 }
356
357 pub fn predict_resource_needs(&self, time_horizon: Duration) -> CoreResult<ResourcePool> {
359 let current_utilization = self.get_resource_utilization();
363
364 let growth_factor = 1.0 + (time_horizon.as_secs_f64() / 3600.0) * 0.1; let predicted_resources = ResourcePool {
368 cpu_cores: (self.available_resources.cpu_cores as f64
369 * current_utilization.cpu_usage
370 * growth_factor) as usize,
371 memory_mb: (self.available_resources.memory_mb as f64
372 * current_utilization.memory_usage
373 * growth_factor) as usize,
374 gpu_devices: if current_utilization.gpu_usage.is_some() {
375 (self.available_resources.gpu_devices as f64 * growth_factor) as usize
376 } else {
377 0
378 },
379 network_bandwidth: self.available_resources.network_bandwidth
380 * current_utilization.network_usage
381 * growth_factor,
382 };
383
384 Ok(predicted_resources)
385 }
386
387 pub fn handle_resource_shortage(&mut self) -> CoreResult<()> {
389 println!(" ⚠️ Handling resource shortage...");
390
391 for allocation in self.allocations.values_mut() {
393 match allocation.priority {
394 Priority::Low => {
395 allocation.cpu_cores *= 0.5;
396 allocation.memory_mb = (allocation.memory_mb as f64 * 0.5) as usize;
397 }
398 Priority::Normal => {
399 allocation.cpu_cores *= 0.8;
400 allocation.memory_mb = (allocation.memory_mb as f64 * 0.8) as usize;
401 }
402 _ => {} }
404 }
405
406 println!(" 📉 Reduced allocations for lower priority modules");
407 Ok(())
408 }
409}