scirs2_core/advanced_ecosystem_integration/
resources.rs

1//! Resource management and allocation
2
3use super::types::*;
4use crate::error::CoreResult;
5use std::collections::HashMap;
6use std::time::{Duration, Instant};
7
8/// Resource manager for the ecosystem
9#[allow(dead_code)]
10#[derive(Debug)]
11pub struct EcosystemResourceManager {
12    /// Available resources
13    available_resources: ResourcePool,
14    /// Resource allocations
15    allocations: HashMap<String, ResourceAllocation>,
16    /// Load balancer
17    #[allow(dead_code)]
18    load_balancer: LoadBalancer,
19    /// Resource monitoring
20    #[allow(dead_code)]
21    resource_monitor: ResourceMonitor,
22}
23
24/// Pool of available resources
25#[allow(dead_code)]
26#[derive(Debug)]
27pub struct ResourcePool {
28    /// CPU cores available
29    pub cpu_cores: usize,
30    /// Memory available (MB)
31    pub memory_mb: usize,
32    /// GPU devices available
33    pub gpu_devices: usize,
34    /// Network bandwidth (MB/s)
35    pub network_bandwidth: f64,
36}
37
38/// Resource allocation for a module
39#[allow(dead_code)]
40#[derive(Debug, Clone)]
41pub struct ResourceAllocation {
42    /// Allocated CPU cores
43    pub cpu_cores: f64,
44    /// Allocated memory (MB)
45    pub memory_mb: usize,
46    /// Allocated GPU fraction
47    pub gpu_fraction: Option<f64>,
48    /// Allocated bandwidth (MB/s)
49    pub bandwidth: f64,
50    /// Priority level
51    pub priority: Priority,
52}
53
54/// Load balancer for distributing work
55#[allow(dead_code)]
56#[derive(Debug)]
57pub struct LoadBalancer {
58    /// Current load distribution
59    #[allow(dead_code)]
60    load_distribution: HashMap<String, f64>,
61    /// Balancing strategy
62    #[allow(dead_code)]
63    strategy: LoadBalancingStrategy,
64    /// Performance history
65    #[allow(dead_code)]
66    performance_history: Vec<LoadBalancingMetrics>,
67}
68
69/// Load balancing strategies
70#[allow(dead_code)]
71#[derive(Debug, Clone)]
72pub enum LoadBalancingStrategy {
73    RoundRobin,
74    WeightedRoundRobin,
75    LeastConnections,
76    PerformanceBased,
77    ResourceBased,
78    AIOptimized,
79}
80
81/// Load balancing metrics
82#[allow(dead_code)]
83#[derive(Debug, Clone)]
84pub struct LoadBalancingMetrics {
85    /// Distribution efficiency
86    pub distribution_efficiency: f64,
87    /// Response time variance
88    pub response_time_variance: f64,
89    /// Resource utilization balance
90    pub utilization_balance: f64,
91    /// Timestamp
92    pub timestamp: Instant,
93}
94
95/// Resource monitor
96#[allow(dead_code)]
97#[derive(Debug)]
98pub struct ResourceMonitor {
99    /// Current resource usage
100    #[allow(dead_code)]
101    current_usage: ResourceUtilization,
102    /// Usage history
103    #[allow(dead_code)]
104    usage_history: Vec<ResourceSnapshot>,
105    /// Prediction model
106    #[allow(dead_code)]
107    prediction_model: Option<ResourcePredictionModel>,
108}
109
110/// Snapshot of resource usage at a point in time
111#[allow(dead_code)]
112#[derive(Debug, Clone)]
113pub struct ResourceSnapshot {
114    /// Resource utilization
115    pub utilization: ResourceUtilization,
116    /// Timestamp
117    pub timestamp: Instant,
118    /// Associated workload
119    pub workload_info: Option<String>,
120}
121
122/// Model for predicting resource usage
123#[allow(dead_code)]
124#[derive(Debug)]
125pub struct ResourcePredictionModel {
126    /// Model parameters
127    #[allow(dead_code)]
128    parameters: Vec<f64>,
129    /// Prediction accuracy
130    #[allow(dead_code)]
131    accuracy: f64,
132    /// Last training timestamp
133    #[allow(dead_code)]
134    last_trained: Instant,
135}
136
137impl Default for EcosystemResourceManager {
138    fn default() -> Self {
139        Self::new()
140    }
141}
142
143impl EcosystemResourceManager {
144    /// Create a new resource manager
145    pub fn new() -> Self {
146        Self {
147            available_resources: ResourcePool {
148                cpu_cores: 8,
149                memory_mb: 16384,
150                gpu_devices: 1,
151                network_bandwidth: 1000.0,
152            },
153            allocations: HashMap::new(),
154            load_balancer: LoadBalancer {
155                load_distribution: HashMap::new(),
156                strategy: LoadBalancingStrategy::PerformanceBased,
157                performance_history: Vec::new(),
158            },
159            resource_monitor: ResourceMonitor {
160                current_usage: ResourceUtilization {
161                    cpu_usage: 0.0,
162                    memory_usage: 0.0,
163                    gpu_usage: None,
164                    network_usage: 0.0,
165                },
166                usage_history: Vec::new(),
167                prediction_model: None,
168            },
169        }
170    }
171
172    /// Allocate resources for a module
173    pub fn allocate_resources(&mut self, module_name: &str) -> CoreResult<()> {
174        let allocation = ResourceAllocation {
175            cpu_cores: 1.0,
176            memory_mb: 512,
177            gpu_fraction: Some(0.1),
178            bandwidth: 10.0,
179            priority: Priority::Normal,
180        };
181
182        self.allocations.insert(module_name.to_string(), allocation);
183        println!("    📊 Allocated resources for module: {}", module_name);
184        Ok(())
185    }
186
187    /// Deallocate resources for a module
188    pub fn deallocate_resources(&mut self, module_name: &str) -> CoreResult<()> {
189        if self.allocations.remove(module_name).is_some() {
190            println!("    🔄 Deallocated resources for module: {}", module_name);
191        }
192        Ok(())
193    }
194
195    /// Rebalance resources based on current usage patterns
196    pub fn rebalance_resources(&mut self) -> CoreResult<()> {
197        println!("    ⚖️  Rebalancing resource allocations...");
198
199        // Calculate total resource demands
200        let mut total_cpu_demand = 0.0;
201        let mut total_memory_demand = 0;
202
203        for allocation in self.allocations.values() {
204            total_cpu_demand += allocation.cpu_cores;
205            total_memory_demand += allocation.memory_mb;
206        }
207
208        // Redistribute if over-allocated
209        if total_cpu_demand > self.available_resources.cpu_cores as f64 {
210            let scale_factor = self.available_resources.cpu_cores as f64 / total_cpu_demand;
211            for allocation in self.allocations.values_mut() {
212                allocation.cpu_cores *= scale_factor;
213            }
214            println!("    📉 Scaled down CPU allocations by factor: {scale_factor:.2}");
215        }
216
217        if total_memory_demand > self.available_resources.memory_mb {
218            let scale_factor =
219                self.available_resources.memory_mb as f64 / total_memory_demand as f64;
220            for allocation in self.allocations.values_mut() {
221                allocation.memory_mb = (allocation.memory_mb as f64 * scale_factor) as usize;
222            }
223            println!("    📉 Scaled down memory allocations by factor: {scale_factor:.2}");
224        }
225
226        Ok(())
227    }
228
229    /// Apply predictive scaling based on historical patterns
230    pub fn apply_predictive_scaling(&mut self) -> CoreResult<()> {
231        println!("    🔮 Applying predictive scaling...");
232
233        // Simple predictive scaling - in real implementation would use ML models
234        for (module_name, allocation) in &mut self.allocations {
235            // Simulate prediction of increased demand
236            if module_name.contains("neural") || module_name.contains("ml") {
237                allocation.cpu_cores *= 1.2; // 20% increase for ML workloads
238                allocation.memory_mb = (allocation.memory_mb as f64 * 1.3) as usize; // 30% increase
239                println!("    📈 Predictively scaled up resources for ML module: {module_name}");
240            }
241        }
242
243        Ok(())
244    }
245
246    /// Get current resource utilization
247    pub fn get_resource_utilization(&self) -> ResourceUtilization {
248        // Calculate current utilization based on allocations
249        let mut cpu_usage = 0.0;
250        let mut memory_usage = 0.0;
251        let mut gpu_usage = 0.0;
252        let mut network_usage = 0.0;
253
254        for allocation in self.allocations.values() {
255            cpu_usage += allocation.cpu_cores;
256            memory_usage += allocation.memory_mb as f64;
257            if let Some(gpu_frac) = allocation.gpu_fraction {
258                gpu_usage += gpu_frac;
259            }
260            network_usage += allocation.bandwidth;
261        }
262
263        ResourceUtilization {
264            cpu_usage: cpu_usage / self.available_resources.cpu_cores as f64,
265            memory_usage: memory_usage / self.available_resources.memory_mb as f64,
266            gpu_usage: if gpu_usage > 0.0 {
267                Some(gpu_usage)
268            } else {
269                None
270            },
271            network_usage: network_usage / self.available_resources.network_bandwidth,
272        }
273    }
274
275    /// Get resource allocation for a specific module
276    pub fn get_allocation(&self, module_name: &str) -> Option<&ResourceAllocation> {
277        self.allocations.get(module_name)
278    }
279
280    /// Update resource allocation for a module
281    pub fn update_allocation(
282        &mut self,
283        module_name: &str,
284        allocation: ResourceAllocation,
285    ) -> CoreResult<()> {
286        self.allocations.insert(module_name.to_string(), allocation);
287        println!(
288            "    🔄 Updated resource allocation for module: {}",
289            module_name
290        );
291        Ok(())
292    }
293
294    /// Get available resources
295    pub fn get_available_resources(&self) -> &ResourcePool {
296        &self.available_resources
297    }
298
299    /// Set available resources
300    pub fn set_available_resources(&mut self, resources: ResourcePool) {
301        self.available_resources = resources;
302        println!("    📊 Updated available resource pool");
303    }
304
305    /// Optimize resource allocation based on performance metrics
306    pub fn optimize_allocation(
307        &mut self,
308        performance_data: &HashMap<String, ModulePerformanceMetrics>,
309    ) -> CoreResult<()> {
310        println!("    🎯 Optimizing resource allocation based on performance...");
311
312        for (module_name, metrics) in performance_data {
313            if let Some(allocation) = self.allocations.get_mut(module_name) {
314                // Increase resources for high-performing modules
315                if metrics.efficiency_score > 0.8 && metrics.success_rate > 0.95 {
316                    allocation.cpu_cores *= 1.1;
317                    allocation.memory_mb = (allocation.memory_mb as f64 * 1.1) as usize;
318                    println!(
319                        "    📈 Increased resources for high-performing module: {}",
320                        module_name
321                    );
322                }
323                // Decrease resources for underperforming modules
324                else if metrics.efficiency_score < 0.5 || metrics.success_rate < 0.8 {
325                    allocation.cpu_cores *= 0.9;
326                    allocation.memory_mb = (allocation.memory_mb as f64 * 0.9) as usize;
327                    println!(
328                        "    📉 Decreased resources for underperforming module: {}",
329                        module_name
330                    );
331                }
332            }
333        }
334
335        // Rebalance to ensure we don't exceed available resources
336        self.rebalance_resources()?;
337
338        Ok(())
339    }
340
341    /// Get resource efficiency metrics
342    pub fn get_efficiency_metrics(&self) -> HashMap<String, f64> {
343        let mut efficiency_metrics = HashMap::new();
344        let utilization = self.get_resource_utilization();
345
346        efficiency_metrics.insert("cpu_efficiency".to_string(), utilization.cpu_usage);
347        efficiency_metrics.insert("memory_efficiency".to_string(), utilization.memory_usage);
348        efficiency_metrics.insert("network_efficiency".to_string(), utilization.network_usage);
349
350        if let Some(gpu_usage) = utilization.gpu_usage {
351            efficiency_metrics.insert("gpu_efficiency".to_string(), gpu_usage);
352        }
353
354        efficiency_metrics
355    }
356
357    /// Predict future resource needs
358    pub fn predict_resource_needs(&self, time_horizon: Duration) -> CoreResult<ResourcePool> {
359        // Simple prediction based on current trends
360        // In a real implementation, this would use sophisticated ML models
361
362        let current_utilization = self.get_resource_utilization();
363
364        // Assume linear growth over time horizon
365        let growth_factor = 1.0 + (time_horizon.as_secs_f64() / 3600.0) * 0.1; // 10% growth per hour
366
367        let predicted_resources = ResourcePool {
368            cpu_cores: (self.available_resources.cpu_cores as f64
369                * current_utilization.cpu_usage
370                * growth_factor) as usize,
371            memory_mb: (self.available_resources.memory_mb as f64
372                * current_utilization.memory_usage
373                * growth_factor) as usize,
374            gpu_devices: if current_utilization.gpu_usage.is_some() {
375                (self.available_resources.gpu_devices as f64 * growth_factor) as usize
376            } else {
377                0
378            },
379            network_bandwidth: self.available_resources.network_bandwidth
380                * current_utilization.network_usage
381                * growth_factor,
382        };
383
384        Ok(predicted_resources)
385    }
386
387    /// Handle resource shortage scenarios
388    pub fn handle_resource_shortage(&mut self) -> CoreResult<()> {
389        println!("    ⚠️  Handling resource shortage...");
390
391        // Reduce allocations for low-priority modules
392        for allocation in self.allocations.values_mut() {
393            match allocation.priority {
394                Priority::Low => {
395                    allocation.cpu_cores *= 0.5;
396                    allocation.memory_mb = (allocation.memory_mb as f64 * 0.5) as usize;
397                }
398                Priority::Normal => {
399                    allocation.cpu_cores *= 0.8;
400                    allocation.memory_mb = (allocation.memory_mb as f64 * 0.8) as usize;
401                }
402                _ => {} // Keep high/critical/realtime unchanged
403            }
404        }
405
406        println!("    📉 Reduced allocations for lower priority modules");
407        Ok(())
408    }
409}