1use crate::error::CoreResult;
18use crate::quantum_optimization::QuantumOptimizer;
19use rand::prelude::*;
20use std::collections::HashMap;
21use std::sync::{Arc, Mutex, RwLock};
22use std::time::{Duration, Instant};
23
24#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
26pub enum NASStrategy {
27 Evolutionary,
29 Differentiable,
31 Progressive,
33 ReinforcementLearning,
35 Random,
37 QuantumEnhanced,
39 Hybrid,
41}
42
43#[derive(Debug, Clone)]
45pub struct SearchSpace {
46 pub layer_types: Vec<LayerType>,
48 pub depth_range: (usize, usize),
50 pub width_range: (usize, usize),
52 pub activations: Vec<ActivationType>,
54 pub optimizers: Vec<OptimizerType>,
56 pub connections: Vec<ConnectionType>,
58 pub skip_connection_prob: f64,
60 pub dropout_range: (f64, f64),
62}
63
64#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
66pub enum LayerType {
67 Dense,
68 Convolution1D,
69 Convolution2D,
70 ConvolutionDepthwise,
71 ConvolutionSeparable,
72 LSTM,
73 GRU,
74 Attention,
75 SelfAttention,
76 MultiHeadAttention,
77 BatchNorm,
78 LayerNorm,
79 GroupNorm,
80 Dropout,
81 MaxPool1D,
82 MaxPool2D,
83 AvgPool1D,
84 AvgPool2D,
85 GlobalAvgPool,
86 MaxPooling,
87 AveragePooling,
88 GlobalAveragePooling,
89 Flatten,
90 Reshape,
91 Embedding,
92 PositionalEncoding,
93}
94
95#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
97pub enum ActivationType {
98 ReLU,
99 LeakyReLU,
100 ELU,
101 Swish,
102 GELU,
103 Tanh,
104 Sigmoid,
105 Softmax,
106 Mish,
107 HardSwish,
108}
109
110#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
112pub enum OptimizerType {
113 Adam,
114 AdamW,
115 SGD,
116 RMSprop,
117 Adagrad,
118 AdaDelta,
119 Lion,
120 Lamb,
121}
122
123#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
125pub enum ConnectionType {
126 Sequential,
127 Residual,
128 DenseNet,
129 Inception,
130 MobileNet,
131 EfficientNet,
132 Transformer,
133 Skip,
134}
135
136#[derive(Debug, Clone)]
138pub struct Architecture {
139 pub id: String,
141 pub layers: Vec<LayerConfig>,
143 pub globalconfig: GlobalConfig,
145 pub connections: Vec<Connection>,
147 pub metadata: ArchitectureMetadata,
149 pub fitness: f64,
151 pub optimizer: OptimizerType,
153 pub loss_function: String,
155 pub metrics: Vec<String>,
157}
158
159#[derive(Debug, Clone)]
161pub struct LayerConfig {
162 pub layer_type: LayerType,
164 pub parameters: LayerParameters,
166 pub activation: Option<ActivationType>,
168 pub skippable: bool,
170}
171
172#[derive(Debug, Clone)]
174pub struct LayerParameters {
175 pub units: Option<usize>,
177 pub kernel_size: Option<(usize, usize)>,
179 pub stride: Option<(usize, usize)>,
181 pub padding: Option<(usize, usize)>,
183 pub dropout_rate: Option<f64>,
185 pub num_heads: Option<usize>,
187 pub hidden_dim: Option<usize>,
189 pub custom: HashMap<String, f64>,
191}
192
193#[derive(Debug, Clone)]
195pub struct GlobalConfig {
196 pub inputshape: Vec<usize>,
198 pub output_size: usize,
200 pub learningrate: f64,
202 pub batch_size: usize,
204 pub optimizer: OptimizerType,
206 pub loss_function: String,
208 pub epochs: usize,
210}
211
212#[derive(Debug, Clone)]
214pub struct Connection {
215 pub from: usize,
217 pub to: usize,
219 pub connection_type: ConnectionType,
221 pub weight: f64,
223}
224
225#[derive(Debug, Clone)]
227pub struct ArchitectureMetadata {
228 pub generation: usize,
230 pub parents: Vec<String>,
232 pub created_at: Instant,
234 pub search_strategy: NASStrategy,
236 pub estimated_flops: u64,
238 pub estimated_memory: usize,
240 pub estimated_latency: Duration,
242}
243
244#[derive(Debug, Clone)]
246pub struct ArchitecturePerformance {
247 pub accuracy: f64,
249 pub loss: f64,
251 pub latency: Duration,
253 pub memory_usage: usize,
255 pub energy_consumption: f64,
257 pub model_size: usize,
259 pub flops: u64,
261 pub training_time: Duration,
263 pub custom_metrics: HashMap<String, f64>,
265}
266
267#[derive(Debug, Clone)]
269pub struct OptimizationObjectives {
270 pub accuracy_weight: f64,
272 pub latency_weight: f64,
274 pub memory_weight: f64,
276 pub energy_weight: f64,
278 pub size_weight: f64,
280 pub training_time_weight: f64,
282 pub custom_weights: HashMap<String, f64>,
284}
285
286#[derive(Debug, Clone)]
288pub struct HardwareConstraints {
289 pub max_memory: Option<usize>,
291 pub max_latency: Option<Duration>,
293 pub max_energy: Option<f64>,
295 pub max_parameters: Option<usize>,
297 pub target_platform: HardwarePlatform,
299 pub compute_units: usize,
301 pub memorybandwidth: f64,
303}
304
305#[derive(Debug, Clone, Copy, PartialEq, Eq)]
307pub enum HardwarePlatform {
308 CPU,
309 GPU,
310 TPU,
311 Mobile,
312 Edge,
313 Embedded,
314 FPGA,
315 ASIC,
316}
317
318#[derive(Debug, Clone)]
320pub enum ArchitecturePattern {
321 LayerSequence {
323 sequence: Vec<String>,
324 frequency: usize,
325 performance_correlation: f64,
326 },
327 DepthRange {
329 min_depth: usize,
330 max_depth: usize,
331 avg_performance: f64,
332 confidence: f64,
333 },
334 ConnectionType {
336 connection_type: String,
337 usage_frequency: usize,
338 avg_performance: f64,
339 },
340 ActivationFunction {
342 activation: String,
343 effectiveness: f64,
344 usage_count: usize,
345 },
346 ParameterScaling {
348 layer_type: String,
349 optimal_range: (f64, f64),
350 scaling_factor: f64,
351 },
352 RegularizationPattern {
354 technique: String,
355 optimal_strength: f64,
356 applicable_layers: Vec<String>,
357 },
358}
359
360#[derive(Debug, Clone)]
362pub struct MetaKnowledgeBase {
363 pub domain_patterns: HashMap<String, Vec<ArchitecturePattern>>,
365 pub transfer_mappings: HashMap<String, Vec<TransferMapping>>,
367 pub performance_predictors: HashMap<String, PerformancePredictor>,
369 pub best_practices: Vec<BestPractice>,
371}
372
373#[derive(Debug, Clone)]
374pub struct TransferMapping {
375 pub source_domain: String,
376 pub target_domain: String,
377 pub mapping_quality: f64,
378}
379
380#[derive(Debug, Clone)]
381pub struct PerformancePredictor {
382 pub name: String,
383 pub accuracy: f64,
384}
385
386#[derive(Debug, Clone)]
387pub struct BestPractice {
388 pub name: String,
389 pub description: String,
390 pub effectiveness: f64,
391}
392
393#[derive(Debug, Clone)]
394pub struct SearchHistory {
395 pub evaluations: Vec<ArchitecturePerformance>,
396 pub best_architectures: Vec<Architecture>,
397}
398
399#[derive(Debug, Clone)]
400pub struct ProgressiveSearchController {
401 pub current_complexity: usize,
402 pub max_complexity: usize,
403}
404
405#[derive(Debug, Clone)]
406pub struct SearchConfig {
407 pub strategy: NASStrategy,
408 pub max_evaluations: usize,
409 pub population_size: usize,
410 pub max_generations: usize,
411}
412
413#[derive(Debug, Clone)]
414pub struct SearchProgress {
415 pub generation: usize,
416 pub best_fitness: f64,
417 pub avg_fitness: f64,
418}
419
420#[derive(Debug, Clone)]
421pub struct ResourceUsage {
422 pub cpu_time: Duration,
423 pub memory_peak: usize,
424 pub evaluations_count: usize,
425}
426
427#[derive(Debug, Clone)]
428pub struct SearchStatistics {
429 pub total_evaluations: usize,
430 pub successful_evaluations: usize,
431 pub convergence_generation: Option<usize>,
432}
433
434#[derive(Debug, Clone)]
436pub struct SearchResults {
437 pub best_architecture: Option<(Architecture, ArchitecturePerformance)>,
439 pub all_evaluated: Vec<(Architecture, ArchitecturePerformance)>,
441 pub progress_history: Vec<SearchProgress>,
443 pub resource_usage: ResourceUsage,
445 pub statistics: SearchStatistics,
447 pub meta_knowledge: MetaKnowledgeBase,
449 pub searchconfig: SearchConfig,
451}
452
453#[allow(dead_code)]
455pub struct NeuralArchitectureSearch {
456 search_space: SearchSpace,
458 strategy: NASStrategy,
460 objectives: OptimizationObjectives,
462 constraints: HardwareConstraints,
464 population: Arc<RwLock<Vec<Architecture>>>,
466 performance_cache: Arc<RwLock<HashMap<String, ArchitecturePerformance>>>,
468 meta_knowledge: Arc<RwLock<MetaKnowledgeBase>>,
470 search_history: Arc<Mutex<SearchHistory>>,
472 quantum_optimizer: Option<QuantumOptimizer>,
474 progressive_controller: Arc<Mutex<ProgressiveSearchController>>,
476 pub config: SearchConfig,
478}
479
480impl NeuralArchitectureSearch {
481 #[allow(clippy::too_many_arguments)]
483 pub fn new(
484 search_space: SearchSpace,
485 strategy: NASStrategy,
486 objectives: OptimizationObjectives,
487 constraints: HardwareConstraints,
488 config: SearchConfig,
489 ) -> CoreResult<Self> {
490 Ok(Self {
491 search_space,
492 strategy,
493 objectives,
494 constraints,
495 population: Arc::new(RwLock::new(Vec::new())),
496 performance_cache: Arc::new(RwLock::new(HashMap::new())),
497 meta_knowledge: Arc::new(RwLock::new(MetaKnowledgeBase {
498 domain_patterns: HashMap::new(),
499 transfer_mappings: HashMap::new(),
500 performance_predictors: HashMap::new(),
501 best_practices: Vec::new(),
502 })),
503 search_history: Arc::new(Mutex::new(SearchHistory {
504 evaluations: Vec::new(),
505 best_architectures: Vec::new(),
506 })),
507 quantum_optimizer: None,
508 progressive_controller: Arc::new(Mutex::new(ProgressiveSearchController {
509 current_complexity: 1,
510 max_complexity: 10,
511 })),
512 config,
513 })
514 }
515
516 pub fn search(&mut self) -> CoreResult<SearchResults> {
518 match self.strategy {
519 NASStrategy::Evolutionary => self.evolutionary_search(),
520 NASStrategy::Differentiable => self.differentiable_search(),
521 NASStrategy::Progressive => self.progressive_search(),
522 NASStrategy::ReinforcementLearning => self.reinforcement_learning_search(),
523 NASStrategy::Random => self.random_search(),
524 NASStrategy::QuantumEnhanced => self.quantum_enhanced_search(),
525 NASStrategy::Hybrid => self.hybrid_search(),
526 }
527 }
528
529 pub fn generate_random_architecture(&self) -> CoreResult<Architecture> {
531 use std::collections::hash_map::DefaultHasher;
532 use std::hash::{Hash, Hasher};
533
534 let mut hasher = DefaultHasher::new();
535 std::time::SystemTime::now().hash(&mut hasher);
536
537 let mut rng = rand::rng();
538 let num_layers = self.search_space.depth_range.0
539 + (rng.random::<f64>()
540 * (self.search_space.depth_range.1 - self.search_space.depth_range.0) as f64)
541 as usize;
542
543 let mut layers = Vec::new();
544 let mut connections = Vec::new();
545
546 for i in 0..num_layers {
547 let layer_type_idx =
548 (rng.random::<f64>() * self.search_space.layer_types.len() as f64) as usize;
549 let layer_type = self.search_space.layer_types[layer_type_idx];
550
551 let activation_idx =
552 (rng.random::<f64>() * self.search_space.activations.len() as f64) as usize;
553 let activation = Some(self.search_space.activations[activation_idx]);
554
555 let units = self.search_space.width_range.0
556 + (rng.random::<f64>()
557 * (self.search_space.width_range.1 - self.search_space.width_range.0) as f64)
558 as usize;
559
560 layers.push(LayerConfig {
561 layer_type,
562 parameters: LayerParameters {
563 units: Some(units),
564 kernel_size: None,
565 stride: None,
566 padding: None,
567 dropout_rate: Some(0.2),
568 num_heads: None,
569 hidden_dim: None,
570 custom: HashMap::new(),
571 },
572 activation,
573 skippable: false,
574 });
575
576 if i > 0 {
578 connections.push(Connection {
579 from: i.saturating_sub(1),
580 to: i,
581 connection_type: ConnectionType::Sequential,
582 weight: 1.0,
583 });
584 }
585 }
586
587 let optimizer_idx =
588 (rng.random::<f64>() * self.search_space.optimizers.len() as f64) as usize;
589
590 Ok(Architecture {
591 id: format!("{}", hasher.finish()),
592 layers,
593 globalconfig: GlobalConfig {
594 inputshape: vec![224, 224, 3], output_size: 1000, learningrate: 0.001,
597 batch_size: 32,
598 optimizer: self.search_space.optimizers[optimizer_idx],
599 loss_function: "categorical_crossentropy".to_string(),
600 epochs: 100,
601 },
602 connections,
603 metadata: ArchitectureMetadata {
604 generation: 0,
605 parents: Vec::new(),
606 created_at: Instant::now(),
607 search_strategy: self.strategy,
608 estimated_flops: 1_000_000, estimated_memory: 1024 * 1024, estimated_latency: Duration::from_millis(10),
611 },
612 fitness: 0.0,
613 optimizer: self.search_space.optimizers[optimizer_idx],
614 loss_function: "categorical_crossentropy".to_string(),
615 metrics: vec!["accuracy".to_string()],
616 })
617 }
618
619 fn evolutionary_search(&mut self) -> CoreResult<SearchResults> {
621 let mut population = Vec::new();
623 for _ in 0..self.config.population_size {
624 population.push(self.generate_random_architecture()?);
625 }
626
627 let mut best_architecture: Option<(Architecture, ArchitecturePerformance)> = None;
628 let mut progress_history = Vec::new();
629
630 for generation in 0..self.config.max_generations {
631 let mut evaluated = Vec::new();
633 for arch in &population {
634 let performance = self.evaluate_architecture(arch)?;
635 evaluated.push((arch.clone(), performance));
636 }
637
638 evaluated.sort_by(|a, b| b.1.accuracy.partial_cmp(&a.1.accuracy).unwrap());
640
641 if let Some((arch, perf)) = evaluated.first() {
643 if best_architecture.is_none()
644 || perf.accuracy > best_architecture.as_ref().unwrap().1.accuracy
645 {
646 best_architecture = Some((arch.clone(), perf.clone()));
647 }
648 }
649
650 let avg_fitness =
652 evaluated.iter().map(|(_, p)| p.accuracy).sum::<f64>() / evaluated.len() as f64;
653 progress_history.push(SearchProgress {
654 generation,
655 best_fitness: best_architecture.as_ref().unwrap().1.accuracy,
656 avg_fitness,
657 });
658
659 let elite_size = self.config.population_size / 4;
661 let mut next_population = Vec::new();
662
663 for arch_ in evaluated.iter().take(elite_size) {
665 next_population.push(arch_.0.clone());
666 }
667
668 let mut rng = rand::rng();
670 while next_population.len() < self.config.population_size {
671 let parent1_idx = (rng.random::<f64>() * elite_size as f64) as usize;
672 let parent2_idx = (rng.random::<f64>() * elite_size as f64) as usize;
673
674 let (child1, child2) =
675 self.crossover(&evaluated[parent1_idx].0, &evaluated[parent2_idx].0)?;
676
677 let mutated_child1 = self.mutate(&child1)?;
678 let mutated_child2 = self.mutate(&child2)?;
679
680 next_population.push(mutated_child1);
681 if next_population.len() < self.config.population_size {
682 next_population.push(mutated_child2);
683 }
684 }
685
686 population = next_population;
687 }
688
689 Ok(SearchResults {
690 best_architecture,
691 all_evaluated: Vec::new(),
692 progress_history,
693 resource_usage: ResourceUsage {
694 cpu_time: Duration::from_secs(0),
695 memory_peak: 0,
696 evaluations_count: 0,
697 },
698 statistics: SearchStatistics {
699 total_evaluations: 0,
700 successful_evaluations: 0,
701 convergence_generation: None,
702 },
703 meta_knowledge: MetaKnowledgeBase {
704 domain_patterns: HashMap::new(),
705 transfer_mappings: HashMap::new(),
706 performance_predictors: HashMap::new(),
707 best_practices: Vec::new(),
708 },
709 searchconfig: self.config.clone(),
710 })
711 }
712
713 fn crossover(
715 &self,
716 parent1: &Architecture,
717 parent2: &Architecture,
718 ) -> CoreResult<(Architecture, Architecture)> {
719 let mut rng = rand::rng();
720 let crossover_point = (rng.random::<f64>() * parent1.layers.len() as f64) as usize;
721
722 let mut child1_layers = parent1.layers[..crossover_point].to_vec();
723 child1_layers.extend_from_slice(&parent2.layers[crossover_point..]);
724
725 let mut child2_layers = parent2.layers[..crossover_point].to_vec();
726 child2_layers.extend_from_slice(&parent1.layers[crossover_point..]);
727
728 let child1 = Architecture {
729 id: format!(
730 "child1_{}",
731 std::time::SystemTime::now()
732 .duration_since(std::time::UNIX_EPOCH)
733 .unwrap()
734 .as_nanos()
735 ),
736 layers: child1_layers,
737 globalconfig: parent1.globalconfig.clone(),
738 connections: parent1.connections.clone(), metadata: ArchitectureMetadata {
740 generation: parent1.metadata.generation + 1,
741 parents: vec![parent1.id.clone(), parent2.id.clone()],
742 created_at: Instant::now(),
743 search_strategy: self.strategy,
744 estimated_flops: (parent1.metadata.estimated_flops
745 + parent2.metadata.estimated_flops)
746 / 2,
747 estimated_memory: (parent1.metadata.estimated_memory
748 + parent2.metadata.estimated_memory)
749 / 2,
750 estimated_latency: (parent1.metadata.estimated_latency
751 + parent2.metadata.estimated_latency)
752 / 2,
753 },
754 fitness: 0.0,
755 optimizer: parent1.optimizer,
756 loss_function: parent1.loss_function.clone(),
757 metrics: parent1.metrics.clone(),
758 };
759
760 let child2 = Architecture {
761 id: format!(
762 "child2_{}",
763 std::time::SystemTime::now()
764 .duration_since(std::time::UNIX_EPOCH)
765 .unwrap()
766 .as_nanos()
767 ),
768 layers: child2_layers,
769 globalconfig: parent2.globalconfig.clone(),
770 connections: parent2.connections.clone(), metadata: ArchitectureMetadata {
772 generation: parent2.metadata.generation + 1,
773 parents: vec![parent1.id.clone(), parent2.id.clone()],
774 created_at: Instant::now(),
775 search_strategy: self.strategy,
776 estimated_flops: (parent1.metadata.estimated_flops
777 + parent2.metadata.estimated_flops)
778 / 2,
779 estimated_memory: (parent1.metadata.estimated_memory
780 + parent2.metadata.estimated_memory)
781 / 2,
782 estimated_latency: (parent1.metadata.estimated_latency
783 + parent2.metadata.estimated_latency)
784 / 2,
785 },
786 fitness: 0.0,
787 optimizer: parent2.optimizer,
788 loss_function: parent2.loss_function.clone(),
789 metrics: parent2.metrics.clone(),
790 };
791
792 Ok((child1, child2))
793 }
794
795 fn mutate(&self, architecture: &Architecture) -> CoreResult<Architecture> {
797 let mut mutated = architecture.clone();
798 let mut rng = rand::rng();
799
800 if rng.random::<f64>() < 0.1 {
802 if !mutated.layers.is_empty() {
804 let layer_idx = (rng.random::<f64>() * mutated.layers.len() as f64) as usize;
805 let new_type_idx =
806 (rng.random::<f64>() * self.search_space.layer_types.len() as f64) as usize;
807 mutated.layers[layer_idx].layer_type = self.search_space.layer_types[new_type_idx];
808 }
809 }
810
811 if rng.random::<f64>() < 0.1 {
812 if !mutated.layers.is_empty() {
814 let layer_idx = (rng.random::<f64>() * mutated.layers.len() as f64) as usize;
815 let new_activation_idx =
816 (rng.random::<f64>() * self.search_space.activations.len() as f64) as usize;
817 mutated.layers[layer_idx].activation =
818 Some(self.search_space.activations[new_activation_idx]);
819 }
820 }
821
822 Ok(mutated)
823 }
824
825 #[allow(dead_code)]
827 fn evaluate_architecture(
828 &self,
829 architecture: &Architecture,
830 ) -> CoreResult<ArchitecturePerformance> {
831 let mut rng = rand::rng();
833 let complexity_penalty = architecture.layers.len() as f64 * 0.01;
834 let accuracy = 0.8 - complexity_penalty + rng.random::<f64>() * 0.1;
835
836 Ok(ArchitecturePerformance {
837 accuracy: accuracy.clamp(0.0, 1.0),
838 loss: 1.0 - accuracy,
839 latency: Duration::from_millis(10 + architecture.layers.len() as u64),
840 memory_usage: architecture.layers.len() * 1024 * 1024,
841 energy_consumption: architecture.layers.len() as f64 * 0.1,
842 model_size: architecture.layers.len() * 1000,
843 flops: architecture.layers.len() as u64 * 1_000_000,
844 training_time: Duration::from_secs(architecture.layers.len() as u64 * 10),
845 custom_metrics: HashMap::new(),
846 })
847 }
848
849 fn differentiable_search(&mut self) -> CoreResult<SearchResults> {
851 Ok(SearchResults {
853 best_architecture: None,
854 all_evaluated: Vec::new(),
855 progress_history: Vec::new(),
856 resource_usage: ResourceUsage {
857 cpu_time: Duration::from_secs(0),
858 memory_peak: 0,
859 evaluations_count: 0,
860 },
861 statistics: SearchStatistics {
862 total_evaluations: 0,
863 successful_evaluations: 0,
864 convergence_generation: None,
865 },
866 meta_knowledge: MetaKnowledgeBase {
867 domain_patterns: HashMap::new(),
868 transfer_mappings: HashMap::new(),
869 performance_predictors: HashMap::new(),
870 best_practices: Vec::new(),
871 },
872 searchconfig: self.config.clone(),
873 })
874 }
875
876 fn progressive_search(&mut self) -> CoreResult<SearchResults> {
878 Ok(SearchResults {
880 best_architecture: None,
881 all_evaluated: Vec::new(),
882 progress_history: Vec::new(),
883 resource_usage: ResourceUsage {
884 cpu_time: Duration::from_secs(0),
885 memory_peak: 0,
886 evaluations_count: 0,
887 },
888 statistics: SearchStatistics {
889 total_evaluations: 0,
890 successful_evaluations: 0,
891 convergence_generation: None,
892 },
893 meta_knowledge: MetaKnowledgeBase {
894 domain_patterns: HashMap::new(),
895 transfer_mappings: HashMap::new(),
896 performance_predictors: HashMap::new(),
897 best_practices: Vec::new(),
898 },
899 searchconfig: self.config.clone(),
900 })
901 }
902
903 fn reinforcement_learning_search(&mut self) -> CoreResult<SearchResults> {
905 Ok(SearchResults {
907 best_architecture: None,
908 all_evaluated: Vec::new(),
909 progress_history: Vec::new(),
910 resource_usage: ResourceUsage {
911 cpu_time: Duration::from_secs(0),
912 memory_peak: 0,
913 evaluations_count: 0,
914 },
915 statistics: SearchStatistics {
916 total_evaluations: 0,
917 successful_evaluations: 0,
918 convergence_generation: None,
919 },
920 meta_knowledge: MetaKnowledgeBase {
921 domain_patterns: HashMap::new(),
922 transfer_mappings: HashMap::new(),
923 performance_predictors: HashMap::new(),
924 best_practices: Vec::new(),
925 },
926 searchconfig: self.config.clone(),
927 })
928 }
929
930 fn random_search(&mut self) -> CoreResult<SearchResults> {
932 let mut best_architecture: Option<(Architecture, ArchitecturePerformance)> = None;
933 let mut all_evaluated = Vec::new();
934
935 for i in 0..self.config.max_evaluations {
936 let arch = self.generate_random_architecture()?;
937 let performance = self.evaluate_architecture(&arch)?;
938
939 if best_architecture.is_none()
940 || performance.accuracy > best_architecture.as_ref().unwrap().1.accuracy
941 {
942 best_architecture = Some((arch.clone(), performance.clone()));
943 }
944
945 all_evaluated.push((arch, performance));
946
947 if let Some((_, ref perf)) = best_architecture {
949 if perf.accuracy > 0.95 {
950 break;
951 }
952 }
953
954 if i % 100 == 0 {
956 if let Some((_, ref perf)) = best_architecture {
957 println!(
958 "Random search iteration {}: best accuracy = {:.4}",
959 i, perf.accuracy
960 );
961 }
962 }
963 }
964
965 Ok(SearchResults {
966 best_architecture,
967 all_evaluated,
968 progress_history: Vec::new(),
969 resource_usage: ResourceUsage {
970 cpu_time: Duration::from_secs(0),
971 memory_peak: 0,
972 evaluations_count: 0,
973 },
974 statistics: SearchStatistics {
975 total_evaluations: 0,
976 successful_evaluations: 0,
977 convergence_generation: None,
978 },
979 meta_knowledge: MetaKnowledgeBase {
980 domain_patterns: HashMap::new(),
981 transfer_mappings: HashMap::new(),
982 performance_predictors: HashMap::new(),
983 best_practices: Vec::new(),
984 },
985 searchconfig: self.config.clone(),
986 })
987 }
988
989 fn quantum_enhanced_search(&mut self) -> CoreResult<SearchResults> {
991 Ok(SearchResults {
993 best_architecture: None,
994 all_evaluated: Vec::new(),
995 progress_history: Vec::new(),
996 resource_usage: ResourceUsage {
997 cpu_time: Duration::from_secs(0),
998 memory_peak: 0,
999 evaluations_count: 0,
1000 },
1001 statistics: SearchStatistics {
1002 total_evaluations: 0,
1003 successful_evaluations: 0,
1004 convergence_generation: None,
1005 },
1006 meta_knowledge: MetaKnowledgeBase {
1007 domain_patterns: HashMap::new(),
1008 transfer_mappings: HashMap::new(),
1009 performance_predictors: HashMap::new(),
1010 best_practices: Vec::new(),
1011 },
1012 searchconfig: self.config.clone(),
1013 })
1014 }
1015
1016 fn hybrid_search(&mut self) -> CoreResult<SearchResults> {
1018 Ok(SearchResults {
1020 best_architecture: None,
1021 all_evaluated: Vec::new(),
1022 progress_history: Vec::new(),
1023 resource_usage: ResourceUsage {
1024 cpu_time: Duration::from_secs(0),
1025 memory_peak: 0,
1026 evaluations_count: 0,
1027 },
1028 statistics: SearchStatistics {
1029 total_evaluations: 0,
1030 successful_evaluations: 0,
1031 convergence_generation: None,
1032 },
1033 meta_knowledge: MetaKnowledgeBase {
1034 domain_patterns: HashMap::new(),
1035 transfer_mappings: HashMap::new(),
1036 performance_predictors: HashMap::new(),
1037 best_practices: Vec::new(),
1038 },
1039 searchconfig: self.config.clone(),
1040 })
1041 }
1042}
1043
1044impl Default for SearchSpace {
1045 fn default() -> Self {
1046 Self {
1047 layer_types: vec![
1048 LayerType::Dense,
1049 LayerType::Convolution2D,
1050 LayerType::LSTM,
1051 LayerType::Attention,
1052 ],
1053 depth_range: (3, 20),
1054 width_range: (32, 512),
1055 activations: vec![
1056 ActivationType::ReLU,
1057 ActivationType::Swish,
1058 ActivationType::GELU,
1059 ],
1060 optimizers: vec![
1061 OptimizerType::Adam,
1062 OptimizerType::AdamW,
1063 OptimizerType::SGD,
1064 ],
1065 connections: vec![
1066 ConnectionType::Sequential,
1067 ConnectionType::Residual,
1068 ConnectionType::Skip,
1069 ],
1070 skip_connection_prob: 0.2,
1071 dropout_range: (0.0, 0.5),
1072 }
1073 }
1074}
1075
1076impl Default for OptimizationObjectives {
1077 fn default() -> Self {
1078 Self {
1079 accuracy_weight: 1.0,
1080 latency_weight: 0.2,
1081 memory_weight: 0.1,
1082 energy_weight: 0.1,
1083 size_weight: 0.1,
1084 training_time_weight: 0.05,
1085 custom_weights: HashMap::new(),
1086 }
1087 }
1088}
1089
1090impl Default for HardwareConstraints {
1091 fn default() -> Self {
1092 Self {
1093 max_memory: Some(8 * 1024 * 1024 * 1024), max_latency: Some(Duration::from_millis(100)),
1095 max_energy: Some(10.0), max_parameters: Some(100_000_000), target_platform: HardwarePlatform::GPU,
1098 compute_units: 16,
1099 memorybandwidth: 1000.0, }
1101 }
1102}
1103
1104impl Default for SearchConfig {
1105 fn default() -> Self {
1106 Self {
1107 strategy: NASStrategy::Evolutionary,
1108 max_evaluations: 1000,
1109 population_size: 50,
1110 max_generations: 100,
1111 }
1112 }
1113}