scirs2_core/
lib.rs

1#![allow(deprecated)]
2#![recursion_limit = "512"]
3#![allow(dead_code)]
4#![allow(unused_variables)]
5#![allow(clippy::needless_borrows_for_generic_args)]
6#![allow(clippy::manual_clamp)]
7#![allow(clippy::if_same_then_else)]
8#![allow(clippy::identity_op)]
9#![allow(clippy::uninlined_format_args)]
10#![allow(clippy::trim_split_whitespace)]
11#![allow(clippy::redundant_closure)]
12#![allow(clippy::unused_enumerate_index)]
13
14//! # ``SciRS2`` Core (Beta 1)
15//!
16//! Core utilities and common functionality for the ``SciRS2`` library.
17//!
18//! This crate provides shared utilities, error types, and common traits
19//! used across the ``SciRS2`` ecosystem of crates.
20//!
21//! ## Beta 1 Features
22//!
23//! - **Stable APIs**: Core functionality with API stability guarantees for production use
24//! - **Advanced Error Diagnostics**: ML-inspired error pattern recognition and domain-specific recovery strategies
25//! - **Performance Optimizations**: Enhanced SIMD operations, adaptive chunking, and intelligent load balancing
26//! - **GPU Acceleration**: CUDA, Metal MPS, and other backend support for accelerated computing
27//! - **Memory Management**: Efficient memory-mapped arrays and adaptive chunking for large datasets
28//!
29//! ## Overview
30//!
31//! * Common error types and traits
32//! * High-performance numerical operations
33//!   * SIMD-accelerated computations
34//!   * Parallel processing for multi-core systems
35//!   * Memory-efficient algorithms
36//!   * GPU acceleration abstractions
37//! * Caching and memoization for optimized performance
38//! * Type definitions and conversions
39//! * Physical and mathematical constants
40//! * Configuration system
41//! * Input/output utilities
42//! * Validation utilities
43//! * Numeric traits and conversions
44//! * Memory management utilities
45//! * Logging and diagnostics
46//! * Profiling tools
47//! * Random number generation
48//!
49//! ## Performance Optimizations
50//!
51//! The library provides several performance optimization features:
52//!
53//! * **SIMD Operations**: Uses CPU vector instructions for faster array operations
54//! * **Parallel Processing**: Leverages multi-core systems for improved performance
55//! * **GPU Acceleration**: Provides abstractions for GPU computation (CUDA, WebGPU, Metal)
56//! * **Memory-Efficient Algorithms**: Optimizes memory usage for large-scale computations
57//! * **Caching and Memoization**: Avoids redundant computations
58//! * **Profiling and Instrumentation**: Identifies performance bottlenecks
59//! * **Memory Management**: Efficient memory utilization and pooling
60//!
61//! ## Additional Utilities
62//!
63//! * **Logging**: Structured logging for scientific applications
64//! * **Random Number Generation**: Consistent interface for random sampling
65//! * **Type Conversions**: Safe numeric and complex number conversions
66//!
67//! ## Feature Flags
68//!
69//! These features can be controlled via feature flags:
70//!
71//! * `simd`: Enable SIMD acceleration
72//! * `parallel`: Enable parallel processing
73//! * `cache`: Enable caching and memoization functionality
74//! * `validation`: Enable validation utilities
75//! * `logging`: Enable structured logging and diagnostics
76//! * `gpu`: Enable GPU acceleration abstractions
77//! * `memory_management`: Enable advanced memory management
78//! * `memory_efficient`: Enable memory-efficient array operations and views
79//! * `array`: Enable scientific array types (``MaskedArray``, ``RecordArray``)
80//! * `profiling`: Enable performance profiling tools
81//! * `random`: Enable random number generation utilities
82//! * `types`: Enable type conversion utilities
83//! * `linalg`: Enable linear algebra with BLAS/LAPACK bindings
84//! * `cloud`: Enable cloud storage integration (S3, GCS, Azure)
85//! * `jit`: Enable just-in-time compilation with LLVM
86//! * `ml_pipeline`: Enable ML pipeline integration and real-time processing
87//! * `all`: Enable all features except backend-specific ones
88
89// Re-export modules
90pub mod api_freeze;
91pub mod apiversioning;
92#[cfg(feature = "array")]
93pub mod array;
94pub mod array_protocol;
95#[cfg(feature = "types")]
96pub mod batch_conversions;
97#[cfg(feature = "cache")]
98pub mod cache;
99#[cfg(feature = "cloud")]
100pub mod cloud;
101pub mod config;
102pub mod constants;
103pub mod distributed;
104pub mod ecosystem;
105pub mod error;
106#[cfg(feature = "gpu")]
107pub mod gpu;
108#[cfg(feature = "gpu")]
109pub mod gpu_registry;
110pub mod io;
111#[cfg(feature = "jit")]
112pub mod jit;
113#[cfg(feature = "logging")]
114pub mod logging;
115#[cfg(feature = "memory_management")]
116pub mod memory;
117#[cfg(feature = "memory_efficient")]
118pub mod memory_efficient;
119pub mod metrics;
120#[cfg(feature = "ml_pipeline")]
121pub mod ml_pipeline;
122pub mod ndarray_ext;
123pub mod numeric;
124#[cfg(feature = "parallel")]
125pub mod parallel;
126#[cfg(feature = "parallel")]
127pub mod parallel_ops;
128pub mod performance;
129pub mod performance_optimization;
130#[cfg(feature = "profiling")]
131pub mod profiling;
132#[cfg(feature = "random")]
133pub mod random;
134pub mod resource;
135#[cfg(feature = "simd")]
136pub mod simd;
137pub mod simd_ops;
138#[cfg(feature = "testing")]
139pub mod testing;
140// Universal Functions (ufuncs) module
141pub mod error_templates;
142pub mod safe_ops;
143#[cfg(feature = "types")]
144pub mod types;
145#[cfg(feature = "ufuncs")]
146pub mod ufuncs;
147pub mod units;
148pub mod utils;
149pub mod validation;
150
151// Production-level features for enterprise deployments
152pub mod observability;
153pub mod stability;
154pub mod versioning;
155
156// Advanced optimization and AI features
157pub mod neural_architecture_search;
158pub mod quantum_optimization;
159
160// Advanced Mode Ecosystem Integration
161pub mod advanced_ecosystem_integration;
162
163// Advanced JIT Compilation Framework
164pub mod advanced_jit_compilation;
165
166// Advanced Distributed Computing Framework
167pub mod advanced_distributed_computing;
168
169// Advanced Cloud Storage Framework
170// pub mod distributed_storage; // Module not implemented yet
171
172// Advanced Tensor Cores and Automatic Kernel Tuning Framework
173pub mod advanced_tensor_cores;
174
175// Tensor cores optimization modules
176#[cfg(feature = "gpu")]
177pub mod tensor_cores;
178
179// Benchmarking module
180#[cfg(feature = "benchmarking")]
181pub mod benchmarking;
182
183// Re-exports
184#[cfg(feature = "cache")]
185pub use crate::cache::*;
186#[cfg(feature = "cloud")]
187pub use crate::cloud::{
188    CloudConfig, CloudCredentials, CloudError, CloudObjectMetadata, CloudProvider,
189    CloudStorageClient, EncryptionConfig, EncryptionMethod, HttpMethod, ListResult,
190    TransferOptions,
191};
192pub use crate::config::production as config_production;
193pub use crate::config::{
194    get_config, get_config_value, set_config_value, set_global_config, Config, ConfigValue,
195};
196pub use crate::constants::{math, physical, prefixes};
197pub use crate::error::*;
198#[cfg(feature = "gpu")]
199pub use crate::gpu::*;
200pub use crate::io::*;
201#[cfg(feature = "jit")]
202pub use crate::jit::DataType as JitDataType;
203#[cfg(feature = "jit")]
204pub use crate::jit::{
205    CompiledKernel, ExecutionProfile, JitBackend, JitCompiler, JitConfig, JitError, KernelLanguage,
206    KernelSource, OptimizationLevel, TargetArchitecture,
207};
208#[cfg(feature = "logging")]
209pub use crate::logging::*;
210#[cfg(feature = "memory_management")]
211pub use crate::memory::{
212    format_memory_report, generate_memory_report, global_buffer_pool, track_allocation,
213    track_deallocation, track_resize, BufferPool, ChunkProcessor, ChunkProcessor2D,
214    GlobalBufferPool, ZeroCopyView,
215};
216
217#[cfg(feature = "leak_detection")]
218pub use crate::memory::{
219    LeakCheckGuard, LeakDetectionConfig, LeakDetector, LeakReport, LeakType, MemoryCheckpoint,
220    MemoryLeak, ProfilerTool,
221};
222
223#[cfg(feature = "memory_efficient")]
224pub use crate::memory_efficient::{
225    chunk_wise_binary_op, chunk_wise_op, chunk_wise_reduce, create_disk_array, create_mmap,
226    create_temp_mmap, diagonal_view, evaluate, load_chunks, open_mmap, register_fusion,
227    transpose_view, view_as, view_mut_as, AccessMode, AdaptiveChunking, AdaptiveChunkingBuilder,
228    AdaptiveChunkingParams, AdaptiveChunkingResult, ArithmeticOps, ArrayView, BroadcastOps,
229    ChunkIter, ChunkedArray, ChunkingStrategy, DiskBackedArray, FusedOp, LazyArray, LazyOp,
230    LazyOpKind, MemoryMappedArray, MemoryMappedChunkIter, MemoryMappedChunks, MemoryMappedSlice,
231    MemoryMappedSlicing, OpFusion, OutOfCoreArray, ViewMut, ZeroCopyOps,
232};
233
234// Compression-related types are only available with the memory_compression feature
235#[cfg(feature = "memory_compression")]
236pub use crate::memory_efficient::{
237    CompressedMemMapBuilder, CompressedMemMappedArray, CompressionAlgorithm,
238};
239
240// Re-export the parallel memory-mapped array capabilities
241#[cfg(all(feature = "memory_efficient", feature = "parallel"))]
242pub use crate::memory_efficient::MemoryMappedChunksParallel;
243
244#[cfg(feature = "array")]
245pub use crate::array::{
246    is_masked, mask_array, masked_equal, masked_greater, masked_inside, masked_invalid,
247    masked_less, masked_outside, masked_where, record_array_from_typed_arrays,
248    record_array_fromrecords, ArrayError, FieldValue, MaskedArray, Record, RecordArray, NOMASK,
249};
250
251#[cfg(feature = "memory_metrics")]
252pub use crate::memory::metrics::{
253    clear_snapshots,
254    compare_snapshots,
255    // Utility functions
256    format_bytes,
257    format_duration,
258    take_snapshot,
259    MemoryEvent,
260    MemoryEventType,
261    // Core metrics types
262    MemoryMetricsCollector,
263    MemoryMetricsConfig,
264    // Memory snapshots and leak detection
265    MemorySnapshot,
266    SnapshotDiff,
267    // Tracked memory components
268    TrackedBufferPool,
269    TrackedChunkProcessor,
270    TrackedChunkProcessor2D,
271};
272
273#[cfg(feature = "types")]
274pub use crate::batch_conversions::{
275    utils as batch_utils, BatchConversionConfig, BatchConversionResult, BatchConverter,
276    ElementConversionError,
277};
278#[cfg(all(feature = "memory_metrics", feature = "gpu"))]
279pub use crate::memory::metrics::{setup_gpu_memory_tracking, TrackedGpuBuffer, TrackedGpuContext};
280pub use crate::metrics::{
281    global_healthmonitor, global_metrics_registry, Counter, Gauge, HealthCheck, HealthMonitor,
282    HealthStatus, Histogram, MetricPoint, MetricType, MetricValue, Timer,
283};
284#[cfg(feature = "ml_pipeline")]
285pub use crate::ml_pipeline::DataType as MLDataType;
286#[cfg(feature = "ml_pipeline")]
287pub use crate::ml_pipeline::{
288    DataBatch, DataSample, FeatureConstraint, FeatureSchema, FeatureTransformer, FeatureValue,
289    MLPipeline, MLPipelineError, ModelPredictor, ModelType, PipelineConfig, PipelineMetrics,
290    PipelineNode, TransformType,
291};
292pub use crate::numeric::*;
293#[cfg(feature = "parallel")]
294pub use crate::parallel::*;
295#[cfg(feature = "parallel")]
296pub use crate::parallel_ops::{
297    is_parallel_enabled, num_threads, par_chunks, par_chunks_mut, par_join, par_scope,
298};
299// Re-export all parallel traits and types
300#[cfg(feature = "parallel")]
301pub use crate::parallel_ops::*;
302#[cfg(feature = "profiling")]
303pub use crate::profiling::{profiling_memory_tracker, Profiler};
304#[cfg(feature = "random")]
305pub use crate::random::*;
306pub use crate::resource::{
307    get_available_memory, get_performance_tier, get_recommended_chunk_size,
308    get_recommended_thread_count, get_system_resources, get_total_memory, is_gpu_available,
309    is_simd_supported, DiscoveryConfig, PerformanceTier, ResourceDiscovery, SystemResources,
310};
311#[cfg(feature = "simd")]
312pub use crate::simd::*;
313#[cfg(feature = "testing")]
314pub use crate::testing::{TestConfig, TestResult, TestRunner, TestSuite};
315#[cfg(feature = "types")]
316pub use crate::types::{convert, ComplexConversionError, ComplexExt, ComplexOps};
317pub use crate::units::{
318    convert, global_unit_registry, unit_value, Dimension, UnitDefinition, UnitRegistry, UnitSystem,
319    UnitValue,
320};
321pub use crate::utils::*;
322pub use crate::validation::production as validation_production;
323pub use crate::validation::{
324    check_finite, check_in_bounds, check_positive, checkarray_finite, checkshape,
325};
326
327#[cfg(feature = "data_validation")]
328pub use crate::validation::data::DataType as ValidationDataType;
329#[cfg(feature = "data_validation")]
330pub use crate::validation::data::{
331    Constraint, FieldDefinition, ValidationConfig, ValidationError, ValidationResult,
332    ValidationRule, ValidationSchema, Validator,
333};
334
335// Production-level feature re-exports
336pub use crate::observability::{audit, tracing};
337pub use crate::stability::{
338    global_stability_manager, ApiContract, BreakingChange, BreakingChangeType, ConcurrencyContract,
339    MemoryContract, NumericalContract, PerformanceContract, StabilityGuaranteeManager,
340    StabilityLevel, UsageContext,
341};
342pub use crate::versioning::{
343    compatibility, deprecation, migration, negotiation, semantic, ApiVersion, CompatibilityLevel,
344    SupportStatus, Version, VersionManager,
345};
346
347// Advanced optimization and AI feature re-exports
348pub use crate::neural_architecture_search::{
349    ActivationType, Architecture, ArchitecturePerformance, ConnectionType, HardwareConstraints,
350    LayerType, NASStrategy, NeuralArchitectureSearch, OptimizationObjectives, OptimizerType,
351    SearchResults, SearchSpace,
352};
353pub use crate::quantum_optimization::{
354    OptimizationResult, QuantumOptimizer, QuantumParameters, QuantumState, QuantumStrategy,
355};
356
357// Advanced JIT Compilation re-exports
358// pub use crate::advanced_jit__compilation::{
359//     AdaptiveCodeGenerator, CompilationStatistics, JitAnalytics, JitCompilerConfig, JitProfiler,
360//     KernelCache, KernelMetadata, KernelPerformance, LlvmCompilationEngine, OptimizationResults,
361//     PerformanceImprovement, RuntimeOptimizer, advancedJitCompiler,
362// }; // Missing module
363
364// Advanced Cloud Storage re-exports
365// pub use crate::distributed_storage::{
366//     AdaptiveStreamingEngine, CloudPerformanceAnalytics, CloudProviderConfig, CloudProviderId,
367//     CloudProviderType, CloudSecurityManager, CloudStorageMonitoring, CloudStorageProvider,
368//     DataOptimizationEngine, DownloadRequest, DownloadResponse, IntelligentCacheSystem,
369//     ParallelTransferManager, StreamRequest, advancedCloudConfig,
370//     advancedCloudStorageCoordinator, UploadRequest, UploadResponse,
371// };
372
373// Benchmarking re-exports
374#[cfg(feature = "benchmarking")]
375pub use crate::benchmarking::{
376    BenchmarkConfig, BenchmarkMeasurement, BenchmarkResult, BenchmarkRunner, BenchmarkStatistics,
377    BenchmarkSuite,
378};
379
380/// ``SciRS2`` core version information
381pub const fn _version() -> &'static str {
382    env!("CARGO_PKG_VERSION")
383}
384
385/// Initialize the library (called automatically)
386#[doc(hidden)]
387#[allow(dead_code)]
388pub fn __init() {
389    use std::sync::Once;
390    static INIT: Once = Once::new();
391
392    INIT.call_once(|| {
393        // Initialize API freeze registry
394        crate::api_freeze::initialize_api_freeze();
395    });
396}
397
398// Ensure initialization happens
399#[doc(hidden)]
400#[used]
401#[cfg_attr(target_os = "linux", link_section = ".init_array")]
402#[cfg_attr(target_os = "macos", link_section = "__DATA,__mod_init_func")]
403#[cfg_attr(target_os = "windows", link_section = ".CRT$XCU")]
404static INIT: extern "C" fn() = {
405    extern "C" fn __init_wrapper() {
406        __init();
407    }
408    __init_wrapper
409};
410
411pub mod alpha6_api {
412    //! Alpha 6 API consistency enhancements and comprehensive usage patterns
413    //!
414    //! This module provides standardized patterns, comprehensive examples,
415    //! and integration guidelines for combining ``SciRS2`` Core features.
416
417    pub mod signatures {
418        //! Standard function signature patterns used throughout ``SciRS2`` Core
419        //!
420        //! All ``SciRS2`` Core functions follow these standardized patterns:
421        //!
422        //! ## Error Handling Pattern
423        //! ```rust
424        //! use scirs2_core::{CoreResult, CoreError, ErrorContext};
425        //!
426        //! fn example_operation<T>(input: T, scale: f64) -> CoreResult<f64>
427        //! where
428        //!     T: Into<f64>
429        //! {
430        //!     let value = input.into();
431        //!     if scale.is_finite() && scale > 0.0 {
432        //!         Ok(value * scale)
433        //!     } else {
434        //!         Err(CoreError::ValueError(ErrorContext::new("Scale must be positive and finite")))
435        //!     }
436        //! }
437        //!
438        //! # let result = example_operation(5.0, 2.0);
439        //! # assert!(result.is_ok());
440        //! ```
441        //!
442        //! ## Configuration Pattern
443        //! ```rust
444        //! #[derive(Debug, Clone)]
445        //! pub struct ComputationConfig {
446        //!     pub tolerance: f64,
447        //!     pub max_iterations: usize,
448        //!     pub parallel: bool,
449        //! }
450        //!
451        //! impl Default for ComputationConfig {
452        //!     fn default() -> Self {
453        //!         Self {
454        //!             tolerance: 1e-10,
455        //!             max_iterations: 1000,
456        //!             parallel: true,
457        //!         }
458        //!     }
459        //! }
460        //!
461        //! impl ComputationConfig {
462        //!     pub fn new() -> Self { Self::default() }
463        //!     pub fn with_tolerance(mut self, value: f64) -> Self { self.tolerance = value; self }
464        //!     pub fn with_max_iterations(mut self, value: usize) -> Self { self.max_iterations = value; self }
465        //!     pub fn with_parallel(mut self, value: bool) -> Self { self.parallel = value; self }
466        //! }
467        //!
468        //! # let config = ComputationConfig::new().with_tolerance(1e-8).with_parallel(false);
469        //! # assert_eq!(config.tolerance, 1e-8);
470        //! ```
471        //!
472        //! ## Resource Management Pattern
473        //! ```rust
474        //! use std::sync::{Arc, Mutex};
475        //!
476        //! #[derive(Debug, Clone)]
477        //! pub struct ResourceConfig {
478        //!     max_memory_mb: usize,
479        //!     enable_caching: bool,
480        //! }
481        //!
482        //! impl Default for ResourceConfig {
483        //!     fn default() -> Self {
484        //!         Self {
485        //!             max_memory_mb: 1024,
486        //!             enable_caching: true,
487        //!         }
488        //!     }
489        //! }
490        //!
491        //! pub struct ResourceManager<T> {
492        //!     inner: Arc<Mutex<T>>,
493        //!     config: ResourceConfig,
494        //! }
495        //!
496        //! impl<T> ResourceManager<T> {
497        //!     pub fn new(resource: T, config: ResourceConfig) -> Self {
498        //!         Self {
499        //!             inner: Arc::new(Mutex::new(resource)),
500        //!             config,
501        //!         }
502        //!     }
503        //!     pub fn with_default_config(resource: T) -> Self {
504        //!         Self::new(resource, ResourceConfig::default())
505        //!     }
506        //!     pub fn configure(&mut self, config: ResourceConfig) -> &mut Self {
507        //!         self.config = config;
508        //!         self
509        //!     }
510        //! }
511        //!
512        //! # let manager = ResourceManager::with_default_config(vec![1, 2, 3]);
513        //! ```
514
515        use crate::error::CoreResult;
516
517        /// Standard parameter validation pattern
518        pub trait ValidatedParams {
519            /// Validate parameters and return detailed error information
520            fn validate(&self) -> CoreResult<()>;
521        }
522
523        /// Standard configuration builder pattern
524        pub trait ConfigBuilder<T> {
525            /// Build the configuration with validation
526            fn build(self) -> CoreResult<T>;
527        }
528    }
529
530    pub mod examples {
531        //! Comprehensive usage examples demonstrating ``SciRS2`` Core features
532        //!
533        //! These examples show how to use various ``SciRS2`` Core features both
534        //! individually and in combination.
535
536        /// # Basic Error Handling Example
537        ///
538        /// ```
539        /// use scirs2_core::{CoreError, CoreResult, diagnoseerror};
540        ///
541        /// fn scientific_computation(data: &[f64]) -> CoreResult<f64> {
542        ///     if data.is_empty() {
543        ///         return Err(CoreError::ValidationError(
544        ///             scirs2_core::error::ErrorContext::new("Input data cannot be empty")
545        ///         ));
546        ///     }
547        ///     
548        ///     // Perform computation...
549        ///     Ok(data.iter().sum::<f64>() / data.len() as f64)
550        /// }
551        ///
552        /// // Usage with enhanced error diagnostics
553        /// match scientific_computation(&[]) {
554        ///     Ok(result) => println!("Result: {}", result),
555        ///     Err(error) => {
556        ///         let diagnostics = diagnoseerror(&error);
557        ///         println!("Error diagnosis:\n{}", diagnostics);
558        ///     }
559        /// }
560        /// ```
561        pub const fn basicerror_handling() {}
562
563        /// # SIMD Operations Example
564        ///
565        /// ```
566        /// # #[cfg(feature = "simd")]
567        /// use scirs2_core::simd::simd_add_f32;
568        /// use ndarray::arr1;
569        ///
570        /// # #[cfg(feature = "simd")]
571        /// fn optimized_array_addition() {
572        ///     let a = arr1(&[1.0f32, 2.0, 3.0, 4.0]);
573        ///     let b = arr1(&[5.0f32, 6.0, 7.0, 8.0]);
574        ///     
575        ///     // SIMD implementation for f32 arrays
576        ///     let result = simd_add_f32(&a.view(), &b.view());
577        ///     println!("SIMD result: {:?}", result);
578        /// }
579        /// ```
580        pub const fn simd_operations() {}
581
582        /// # Memory-Efficient Processing Example
583        ///
584        /// ```
585        /// # #[cfg(feature = "memory_efficient")]
586        /// use scirs2_core::memory_efficient::{
587        ///     AdaptiveChunkingParams, WorkloadType, MemoryMappedArray
588        /// };
589        /// use tempfile::NamedTempFile;
590        ///
591        /// # #[cfg(feature = "memory_efficient")]
592        /// fn memory_efficient_processing() -> Result<(), Box<dyn std::error::Error>> {
593        ///     // Create optimized chunking parameters
594        ///     let params = AdaptiveChunkingParams::for_workload_type(WorkloadType::ComputeIntensive);
595        ///     
596        ///     // Create a temporary file for demonstration
597        ///     let temp_file = NamedTempFile::new()?;
598        ///     let data: Vec<f64> = (0..1000000).map(|i| i as f64).collect();
599        ///     
600        ///     // Memory-mapped processing for large datasets
601        ///     // let mmap = MemoryMappedArray::<f64>::create_from_data(temp_file.path(), &data, &[1000000])?;
602        ///     // let result = mmap.adaptive_chunking(params)?;
603        ///     
604        ///     println!("Adaptive chunking completed");
605        ///     Ok(())
606        /// }
607        /// ```
608        pub const fn memory_efficient_processing() {}
609    }
610
611    pub mod integration_patterns {
612        //! Guidelines and patterns for combining multiple ``SciRS2`` Core features
613        //!
614        //! This module demonstrates how to effectively combine various features
615        //! for optimal performance and functionality.
616
617        /// # High-Performance Scientific Pipeline
618        ///
619        /// Combines SIMD operations, parallel processing, memory-efficient algorithms,
620        /// and comprehensive error handling for optimal performance.
621        ///
622        /// ```
623        /// use scirs2_core::{CoreResult, CoreError};
624        /// # #[cfg(all(feature = "simd", feature = "parallel", feature = "memory_efficient"))]
625        /// use scirs2_core::{
626        ///     memory_efficient::AdaptiveChunkingParams,
627        /// };
628        ///
629        /// /// High-performance pipeline configuration
630        /// pub struct ScientificPipelineConfig {
631        ///     pub use_simd: bool,
632        ///     pub use_parallel: bool,
633        ///     pub workload_type: Option<String>, // Would be WorkloadType in real usage
634        ///     pub error_tracking: bool,
635        /// }
636        ///
637        /// impl Default for ScientificPipelineConfig {
638        ///     fn default() -> Self {
639        ///         Self {
640        ///             use_simd: true,
641        ///             use_parallel: true,
642        ///             workload_type: Some("ComputeIntensive".to_string()),
643        ///             error_tracking: true,
644        ///         }
645        ///     }
646        /// }
647        ///
648        /// /// High-performance scientific computation pipeline
649        /// pub fn scientific_pipeline<T>(
650        ///     data: &[T],
651        ///     config: ScientificPipelineConfig,
652        /// ) -> CoreResult<Vec<T>>
653        /// where
654        ///     T: Clone + Copy + Send + Sync + 'static,
655        /// {
656        ///     // Input validation
657        ///     if data.is_empty() {
658        ///         let error = CoreError::ValidationError(
659        ///             scirs2_core::error::ErrorContext::new("Input data cannot be empty")
660        ///         );
661        ///         
662        ///         if config.error_tracking {
663        ///             // Error tracking would be implemented here
664        ///             eprintln!("Error in scientificpipeline: {:?}", error);
665        ///         }
666        ///         
667        ///         return Err(error);
668        ///     }
669        ///
670        ///     // Configure adaptive chunking based on workload
671        /// #   #[cfg(feature = "memory_efficient")]
672        ///     let chunking_params = if let Some(workload_str) = &config.workload_type {
673        ///         // AdaptiveChunkingParams::for_workload_type(WorkloadType::ComputeIntensive)
674        ///         scirs2_core::memory_efficient::AdaptiveChunkingParams::default()
675        ///     } else {
676        ///         scirs2_core::memory_efficient::AdaptiveChunkingParams::default()
677        ///     };
678        ///
679        ///     // Process data with selected optimizations
680        ///     let mut result = Vec::with_capacity(data.len());
681        ///     
682        ///     // Simulate processing (in real implementation, would use SIMD/parallel features)
683        ///     for item in data {
684        ///         result.push(*item);
685        ///     }
686        ///
687        ///     Ok(result)
688        /// }
689        /// ```
690        pub const fn high_performance_pipeline() {}
691
692        /// # Robust Error Handling with Recovery
693        ///
694        /// Demonstrates advanced error handling with automatic recovery strategies
695        /// and comprehensive diagnostics.
696        ///
697        /// ```
698        /// use scirs2_core::{CoreResult, CoreError};
699        /// use scirs2_core::error::{
700        ///     diagnoseerror_advanced, get_recovery_strategies, RecoverableError
701        /// };
702        ///
703        /// /// Robust computation with automatic error recovery
704        /// pub fn robust_computation(
705        ///     data: &[f64],
706        ///     domain: &str,
707        /// ) -> CoreResult<f64> {
708        ///     // Attempt computation
709        ///     match perform_computation(data) {
710        ///         Ok(result) => Ok(result),
711        ///         Err(error) => {
712        ///             // Get comprehensive diagnostics
713        ///             let diagnostics = diagnoseerror_advanced(
714        ///                 &error,
715        ///                 Some("matrix_computation"),
716        ///                 Some(domain)
717        ///             );
718        ///             
719        ///             // Get domain-specific recovery strategies
720        ///             let strategies = get_recovery_strategies(&error, domain);
721        ///             
722        ///             // Try recovery strategies
723        ///             for strategy in &strategies {
724        ///                 if let Ok(result) = try_recovery_strategy(data, strategy) {
725        ///                     return Ok(result);
726        ///                 }
727        ///             }
728        ///             
729        ///             // If all recovery attempts fail, return enhanced error
730        ///             Err(error)
731        ///         }
732        ///     }
733        /// }
734        ///
735        /// fn perform_computation(data: &[f64]) -> CoreResult<f64> {
736        ///     // Simulate computation that might fail
737        ///     if data.len() < 2 {
738        ///         return Err(CoreError::DomainError(
739        ///             scirs2_core::error::ErrorContext::new("Insufficient data for computation")
740        ///         ));
741        ///     }
742        ///     Ok(data.iter().sum::<f64>() / data.len() as f64)
743        /// }
744        ///
745        /// fn try_recovery_strategy(data: &[f64], strategy: &str) -> CoreResult<f64> {
746        ///     // Implement recovery strategy based on suggestion
747        ///     if strategy.contains("default") {
748        ///         Ok(0.0) // Return safe default
749        ///     } else {
750        ///         Err(CoreError::ComputationError(
751        ///             scirs2_core::error::ErrorContext::new("Recovery failed")
752        ///         ))
753        ///     }
754        /// }
755        /// ```
756        pub const fn robusterror_handling() {}
757
758        /// # Performance Monitoring and Optimization
759        ///
760        /// Shows how to combine profiling, memory tracking, and adaptive optimization
761        /// for continuous performance improvement.
762        ///
763        /// ```
764        /// use scirs2_core::CoreResult;
765        /// # #[cfg(feature = "profiling")]
766        /// use scirs2_core::{Profiler, Timer};
767        /// use std::time::Duration;
768        ///
769        /// /// Performance-monitored computation wrapper
770        /// pub struct MonitoredComputation {
771        ///     name: String,
772        ///     # #[cfg(feature = "profiling")]
773        ///     profiler: Option<Profiler>,
774        /// }
775        ///
776        /// impl MonitoredComputation {
777        ///     pub fn new(name: &str) -> Self {
778        ///         Self {
779        ///             name: name.to_string(),
780        ///             # #[cfg(feature = "profiling")]
781        ///             profiler: Some(Profiler::new()),
782        ///         }
783        ///     }
784        ///
785        ///     pub fn execute<F, T>(&mut self, operation: F) -> CoreResult<T>
786        ///     where
787        ///         F: FnOnce() -> CoreResult<T>,
788        ///     {
789        ///         # #[cfg(feature = "profiling")]
790        ///         let timer = Timer::new(self.name.clone());
791        ///         # #[cfg(feature = "profiling")]
792        ///         let timer_guard = timer.start();
793        ///         
794        ///         let result = operation()?;
795        ///         
796        ///         # #[cfg(feature = "profiling")]
797        ///         if let Some(profiler) = &self.profiler {
798        ///             // Log performance metrics
799        ///             println!("Operation '{}' completed", self.name);
800        ///         }
801        ///         
802        ///         Ok(result)
803        ///     }
804        /// }
805        /// ```
806        pub const fn performancemonitoring() {}
807    }
808
809    pub mod type_system {
810        //! Comprehensive type system documentation and conversion patterns
811        //!
812        //! This module documents the ``SciRS2`` Core type system and provides
813        //! guidelines for safe and efficient type conversions.
814
815        /// # Type Safety Patterns
816        ///
817        /// ``SciRS2`` Core uses the Rust type system to ensure safety and correctness:
818        ///
819        /// ## Numeric Type Safety
820        /// ```
821        /// use scirs2_core::numeric::{RealNumber, ScientificNumber};
822        ///
823        /// fn safe_numeric_operation<T>(value: T) -> T
824        /// where
825        ///     T: RealNumber + ScientificNumber,
826        /// {
827        ///     // Type-safe operations guaranteed by trait bounds
828        ///     ScientificNumber::sqrt(ScientificNumber::abs(value))
829        /// }
830        /// ```
831        ///
832        /// ## Error Type Safety
833        /// ```
834        /// use scirs2_core::{CoreResult, CoreError};
835        ///
836        /// fn type_safeerror_handling() -> CoreResult<f64> {
837        ///     // All errors are properly typed and provide context
838        ///     Err(CoreError::ValidationError(
839        ///         scirs2_core::error::ErrorContext::new("Type validation failed")
840        ///     ))
841        /// }
842        /// ```
843        ///
844        /// ## Generic Parameter Patterns
845        /// ```
846        /// use scirs2_core::CoreResult;
847        ///
848        /// // Standard generic function pattern
849        /// fn generic_operation<T, U>(input: T) -> CoreResult<U>
850        /// where
851        ///     T: Clone + Send + Sync,
852        ///     U: Default + Send + Sync,
853        /// {
854        ///     // Implementation...
855        ///     Ok(U::default())
856        /// }
857        /// ```
858        pub const fn type_safety_patterns() {}
859    }
860}