scirs2_core/lib.rs
1#![allow(deprecated)]
2#![recursion_limit = "512"]
3#![allow(dead_code)]
4#![allow(unused_variables)]
5#![allow(clippy::needless_borrows_for_generic_args)]
6#![allow(clippy::manual_clamp)]
7#![allow(clippy::if_same_then_else)]
8#![allow(clippy::identity_op)]
9#![allow(clippy::uninlined_format_args)]
10#![allow(clippy::trim_split_whitespace)]
11#![allow(clippy::redundant_closure)]
12#![allow(clippy::unused_enumerate_index)]
13
14//! # ``SciRS2`` Core (Beta 1)
15//!
16//! Core utilities and common functionality for the ``SciRS2`` library.
17//!
18//! This crate provides shared utilities, error types, and common traits
19//! used across the ``SciRS2`` ecosystem of crates.
20//!
21//! ## Beta 1 Features
22//!
23//! - **Stable APIs**: Core functionality with API stability guarantees for production use
24//! - **Advanced Error Diagnostics**: ML-inspired error pattern recognition and domain-specific recovery strategies
25//! - **Performance Optimizations**: Enhanced SIMD operations, adaptive chunking, and intelligent load balancing
26//! - **GPU Acceleration**: CUDA, Metal MPS, and other backend support for accelerated computing
27//! - **Memory Management**: Efficient memory-mapped arrays and adaptive chunking for large datasets
28//!
29//! ## Overview
30//!
31//! * Common error types and traits
32//! * High-performance numerical operations
33//! * SIMD-accelerated computations
34//! * Parallel processing for multi-core systems
35//! * Memory-efficient algorithms
36//! * GPU acceleration abstractions
37//! * Caching and memoization for optimized performance
38//! * Type definitions and conversions
39//! * Physical and mathematical constants
40//! * Configuration system
41//! * Input/output utilities
42//! * Validation utilities
43//! * Numeric traits and conversions
44//! * Memory management utilities
45//! * Logging and diagnostics
46//! * Profiling tools
47//! * Random number generation
48//!
49//! ## Performance Optimizations
50//!
51//! The library provides several performance optimization features:
52//!
53//! * **SIMD Operations**: Uses CPU vector instructions for faster array operations
54//! * **Parallel Processing**: Leverages multi-core systems for improved performance
55//! * **GPU Acceleration**: Provides abstractions for GPU computation (CUDA, WebGPU, Metal)
56//! * **Memory-Efficient Algorithms**: Optimizes memory usage for large-scale computations
57//! * **Caching and Memoization**: Avoids redundant computations
58//! * **Profiling and Instrumentation**: Identifies performance bottlenecks
59//! * **Memory Management**: Efficient memory utilization and pooling
60//!
61//! ## Additional Utilities
62//!
63//! * **Logging**: Structured logging for scientific applications
64//! * **Random Number Generation**: Consistent interface for random sampling
65//! * **Type Conversions**: Safe numeric and complex number conversions
66//!
67//! ## Feature Flags
68//!
69//! These features can be controlled via feature flags:
70//!
71//! * `simd`: Enable SIMD acceleration
72//! * `parallel`: Enable parallel processing
73//! * `cache`: Enable caching and memoization functionality
74//! * `validation`: Enable validation utilities
75//! * `logging`: Enable structured logging and diagnostics
76//! * `gpu`: Enable GPU acceleration abstractions
77//! * `memory_management`: Enable advanced memory management
78//! * `memory_efficient`: Enable memory-efficient array operations and views
79//! * `array`: Enable scientific array types (``MaskedArray``, ``RecordArray``)
80//! * `profiling`: Enable performance profiling tools
81//! * `random`: Enable random number generation utilities
82//! * `types`: Enable type conversion utilities
83//! * `linalg`: Enable linear algebra with BLAS/LAPACK bindings
84//! * `cloud`: Enable cloud storage integration (S3, GCS, Azure)
85//! * `jit`: Enable just-in-time compilation with LLVM
86//! * `ml_pipeline`: Enable ML pipeline integration and real-time processing
87//! * `all`: Enable all features except backend-specific ones
88
89// Re-export modules
90pub mod api_freeze;
91pub mod apiversioning;
92#[cfg(feature = "array")]
93pub mod array;
94pub mod array_protocol;
95#[cfg(feature = "types")]
96pub mod batch_conversions;
97#[cfg(feature = "cache")]
98pub mod cache;
99#[cfg(feature = "cloud")]
100pub mod cloud;
101pub mod config;
102pub mod constants;
103pub mod distributed;
104pub mod ecosystem;
105pub mod error;
106#[cfg(feature = "gpu")]
107pub mod gpu;
108#[cfg(feature = "gpu")]
109pub mod gpu_registry;
110pub mod io;
111#[cfg(feature = "jit")]
112pub mod jit;
113#[cfg(feature = "logging")]
114pub mod logging;
115#[cfg(feature = "memory_management")]
116pub mod memory;
117#[cfg(feature = "memory_efficient")]
118pub mod memory_efficient;
119pub mod metrics;
120#[cfg(feature = "ml_pipeline")]
121pub mod ml_pipeline;
122pub mod ndarray_ext;
123pub mod numeric;
124#[cfg(feature = "parallel")]
125pub mod parallel;
126#[cfg(feature = "parallel")]
127pub mod parallel_ops;
128pub mod performance;
129pub mod performance_optimization;
130#[cfg(feature = "profiling")]
131pub mod profiling;
132#[cfg(feature = "random")]
133pub mod random;
134pub mod resource;
135#[cfg(feature = "simd")]
136pub mod simd;
137pub mod simd_ops;
138#[cfg(feature = "testing")]
139pub mod testing;
140// Universal Functions (ufuncs) module
141pub mod error_templates;
142pub mod safe_ops;
143#[cfg(feature = "types")]
144pub mod types;
145#[cfg(feature = "ufuncs")]
146pub mod ufuncs;
147pub mod units;
148pub mod utils;
149pub mod validation;
150
151// Production-level features for enterprise deployments
152pub mod observability;
153pub mod stability;
154pub mod versioning;
155
156// Advanced optimization and AI features
157pub mod neural_architecture_search;
158pub mod quantum_optimization;
159
160// Advanced Mode Ecosystem Integration
161pub mod advanced_ecosystem_integration;
162
163// Advanced JIT Compilation Framework
164pub mod advanced_jit_compilation;
165
166// Advanced Distributed Computing Framework
167pub mod advanced_distributed_computing;
168
169// Advanced Cloud Storage Framework
170// pub mod distributed_storage; // Module not implemented yet
171
172// Advanced Tensor Cores and Automatic Kernel Tuning Framework
173pub mod advanced_tensor_cores;
174
175// Tensor cores optimization modules
176#[cfg(feature = "gpu")]
177pub mod tensor_cores;
178
179// Benchmarking module
180#[cfg(feature = "benchmarking")]
181pub mod benchmarking;
182
183// Re-exports
184#[cfg(feature = "cache")]
185pub use crate::cache::*;
186#[cfg(feature = "cloud")]
187pub use crate::cloud::{
188 CloudConfig, CloudCredentials, CloudError, CloudObjectMetadata, CloudProvider,
189 CloudStorageClient, EncryptionConfig, EncryptionMethod, HttpMethod, ListResult,
190 TransferOptions,
191};
192pub use crate::config::production as config_production;
193pub use crate::config::{
194 get_config, get_config_value, set_config_value, set_global_config, Config, ConfigValue,
195};
196pub use crate::constants::{math, physical, prefixes};
197pub use crate::error::*;
198#[cfg(feature = "gpu")]
199pub use crate::gpu::*;
200pub use crate::io::*;
201#[cfg(feature = "jit")]
202pub use crate::jit::DataType as JitDataType;
203#[cfg(feature = "jit")]
204pub use crate::jit::{
205 CompiledKernel, ExecutionProfile, JitBackend, JitCompiler, JitConfig, JitError, KernelLanguage,
206 KernelSource, OptimizationLevel, TargetArchitecture,
207};
208#[cfg(feature = "logging")]
209pub use crate::logging::*;
210#[cfg(feature = "memory_management")]
211pub use crate::memory::{
212 format_memory_report, generate_memory_report, global_buffer_pool, track_allocation,
213 track_deallocation, track_resize, BufferPool, ChunkProcessor, ChunkProcessor2D,
214 GlobalBufferPool, ZeroCopyView,
215};
216
217#[cfg(feature = "leak_detection")]
218pub use crate::memory::{
219 LeakCheckGuard, LeakDetectionConfig, LeakDetector, LeakReport, LeakType, MemoryCheckpoint,
220 MemoryLeak, ProfilerTool,
221};
222
223#[cfg(feature = "memory_efficient")]
224pub use crate::memory_efficient::{
225 chunk_wise_binary_op, chunk_wise_op, chunk_wise_reduce, create_disk_array, create_mmap,
226 create_temp_mmap, diagonal_view, evaluate, load_chunks, open_mmap, register_fusion,
227 transpose_view, view_as, view_mut_as, AccessMode, AdaptiveChunking, AdaptiveChunkingBuilder,
228 AdaptiveChunkingParams, AdaptiveChunkingResult, ArithmeticOps, ArrayView, BroadcastOps,
229 ChunkIter, ChunkedArray, ChunkingStrategy, DiskBackedArray, FusedOp, LazyArray, LazyOp,
230 LazyOpKind, MemoryMappedArray, MemoryMappedChunkIter, MemoryMappedChunks, MemoryMappedSlice,
231 MemoryMappedSlicing, OpFusion, OutOfCoreArray, ViewMut, ZeroCopyOps,
232};
233
234// Compression-related types are only available with the memory_compression feature
235#[cfg(feature = "memory_compression")]
236pub use crate::memory_efficient::{
237 CompressedMemMapBuilder, CompressedMemMappedArray, CompressionAlgorithm,
238};
239
240// Re-export the parallel memory-mapped array capabilities
241#[cfg(all(feature = "memory_efficient", feature = "parallel"))]
242pub use crate::memory_efficient::MemoryMappedChunksParallel;
243
244#[cfg(feature = "array")]
245pub use crate::array::{
246 is_masked, mask_array, masked_equal, masked_greater, masked_inside, masked_invalid,
247 masked_less, masked_outside, masked_where, record_array_from_typed_arrays,
248 record_array_fromrecords, ArrayError, FieldValue, MaskedArray, Record, RecordArray, NOMASK,
249};
250
251#[cfg(feature = "memory_metrics")]
252pub use crate::memory::metrics::{
253 clear_snapshots,
254 compare_snapshots,
255 // Utility functions
256 format_bytes,
257 format_duration,
258 take_snapshot,
259 MemoryEvent,
260 MemoryEventType,
261 // Core metrics types
262 MemoryMetricsCollector,
263 MemoryMetricsConfig,
264 // Memory snapshots and leak detection
265 MemorySnapshot,
266 SnapshotDiff,
267 // Tracked memory components
268 TrackedBufferPool,
269 TrackedChunkProcessor,
270 TrackedChunkProcessor2D,
271};
272
273#[cfg(feature = "types")]
274pub use crate::batch_conversions::{
275 utils as batch_utils, BatchConversionConfig, BatchConversionResult, BatchConverter,
276 ElementConversionError,
277};
278#[cfg(all(feature = "memory_metrics", feature = "gpu"))]
279pub use crate::memory::metrics::{setup_gpu_memory_tracking, TrackedGpuBuffer, TrackedGpuContext};
280pub use crate::metrics::{
281 global_healthmonitor, global_metrics_registry, Counter, Gauge, HealthCheck, HealthMonitor,
282 HealthStatus, Histogram, MetricPoint, MetricType, MetricValue, Timer,
283};
284#[cfg(feature = "ml_pipeline")]
285pub use crate::ml_pipeline::DataType as MLDataType;
286#[cfg(feature = "ml_pipeline")]
287pub use crate::ml_pipeline::{
288 DataBatch, DataSample, FeatureConstraint, FeatureSchema, FeatureTransformer, FeatureValue,
289 MLPipeline, MLPipelineError, ModelPredictor, ModelType, PipelineConfig, PipelineMetrics,
290 PipelineNode, TransformType,
291};
292pub use crate::numeric::*;
293#[cfg(feature = "parallel")]
294pub use crate::parallel::*;
295#[cfg(feature = "parallel")]
296pub use crate::parallel_ops::{
297 is_parallel_enabled, num_threads, par_chunks, par_chunks_mut, par_join, par_scope,
298};
299// Re-export all parallel traits and types
300#[cfg(feature = "parallel")]
301pub use crate::parallel_ops::*;
302#[cfg(feature = "profiling")]
303pub use crate::profiling::{profiling_memory_tracker, Profiler};
304#[cfg(feature = "random")]
305pub use crate::random::*;
306pub use crate::resource::{
307 get_available_memory, get_performance_tier, get_recommended_chunk_size,
308 get_recommended_thread_count, get_system_resources, get_total_memory, is_gpu_available,
309 is_simd_supported, DiscoveryConfig, PerformanceTier, ResourceDiscovery, SystemResources,
310};
311#[cfg(feature = "simd")]
312pub use crate::simd::*;
313#[cfg(feature = "testing")]
314pub use crate::testing::{TestConfig, TestResult, TestRunner, TestSuite};
315#[cfg(feature = "types")]
316pub use crate::types::{convert, ComplexConversionError, ComplexExt, ComplexOps};
317pub use crate::units::{
318 convert, global_unit_registry, unit_value, Dimension, UnitDefinition, UnitRegistry, UnitSystem,
319 UnitValue,
320};
321pub use crate::utils::*;
322pub use crate::validation::production as validation_production;
323pub use crate::validation::{
324 check_finite, check_in_bounds, check_positive, checkarray_finite, checkshape,
325};
326
327#[cfg(feature = "data_validation")]
328pub use crate::validation::data::DataType as ValidationDataType;
329#[cfg(feature = "data_validation")]
330pub use crate::validation::data::{
331 Constraint, FieldDefinition, ValidationConfig, ValidationError, ValidationResult,
332 ValidationRule, ValidationSchema, Validator,
333};
334
335// Production-level feature re-exports
336pub use crate::observability::{audit, tracing};
337pub use crate::stability::{
338 global_stability_manager, ApiContract, BreakingChange, BreakingChangeType, ConcurrencyContract,
339 MemoryContract, NumericalContract, PerformanceContract, StabilityGuaranteeManager,
340 StabilityLevel, UsageContext,
341};
342pub use crate::versioning::{
343 compatibility, deprecation, migration, negotiation, semantic, ApiVersion, CompatibilityLevel,
344 SupportStatus, Version, VersionManager,
345};
346
347// Advanced optimization and AI feature re-exports
348pub use crate::neural_architecture_search::{
349 ActivationType, Architecture, ArchitecturePerformance, ConnectionType, HardwareConstraints,
350 LayerType, NASStrategy, NeuralArchitectureSearch, OptimizationObjectives, OptimizerType,
351 SearchResults, SearchSpace,
352};
353pub use crate::quantum_optimization::{
354 OptimizationResult, QuantumOptimizer, QuantumParameters, QuantumState, QuantumStrategy,
355};
356
357// Advanced JIT Compilation re-exports
358// pub use crate::advanced_jit__compilation::{
359// AdaptiveCodeGenerator, CompilationStatistics, JitAnalytics, JitCompilerConfig, JitProfiler,
360// KernelCache, KernelMetadata, KernelPerformance, LlvmCompilationEngine, OptimizationResults,
361// PerformanceImprovement, RuntimeOptimizer, advancedJitCompiler,
362// }; // Missing module
363
364// Advanced Cloud Storage re-exports
365// pub use crate::distributed_storage::{
366// AdaptiveStreamingEngine, CloudPerformanceAnalytics, CloudProviderConfig, CloudProviderId,
367// CloudProviderType, CloudSecurityManager, CloudStorageMonitoring, CloudStorageProvider,
368// DataOptimizationEngine, DownloadRequest, DownloadResponse, IntelligentCacheSystem,
369// ParallelTransferManager, StreamRequest, advancedCloudConfig,
370// advancedCloudStorageCoordinator, UploadRequest, UploadResponse,
371// };
372
373// Benchmarking re-exports
374#[cfg(feature = "benchmarking")]
375pub use crate::benchmarking::{
376 BenchmarkConfig, BenchmarkMeasurement, BenchmarkResult, BenchmarkRunner, BenchmarkStatistics,
377 BenchmarkSuite,
378};
379
380/// ``SciRS2`` core version information
381pub const fn _version() -> &'static str {
382 env!("CARGO_PKG_VERSION")
383}
384
385/// Initialize the library (called automatically)
386#[doc(hidden)]
387#[allow(dead_code)]
388pub fn __init() {
389 use std::sync::Once;
390 static INIT: Once = Once::new();
391
392 INIT.call_once(|| {
393 // Initialize API freeze registry
394 crate::api_freeze::initialize_api_freeze();
395 });
396}
397
398// Ensure initialization happens
399#[doc(hidden)]
400#[used]
401#[cfg_attr(target_os = "linux", link_section = ".init_array")]
402#[cfg_attr(target_os = "macos", link_section = "__DATA,__mod_init_func")]
403#[cfg_attr(target_os = "windows", link_section = ".CRT$XCU")]
404static INIT: extern "C" fn() = {
405 extern "C" fn __init_wrapper() {
406 __init();
407 }
408 __init_wrapper
409};
410
411pub mod alpha6_api {
412 //! Alpha 6 API consistency enhancements and comprehensive usage patterns
413 //!
414 //! This module provides standardized patterns, comprehensive examples,
415 //! and integration guidelines for combining ``SciRS2`` Core features.
416
417 pub mod signatures {
418 //! Standard function signature patterns used throughout ``SciRS2`` Core
419 //!
420 //! All ``SciRS2`` Core functions follow these standardized patterns:
421 //!
422 //! ## Error Handling Pattern
423 //! ```rust
424 //! use scirs2_core::{CoreResult, CoreError, ErrorContext};
425 //!
426 //! fn example_operation<T>(input: T, scale: f64) -> CoreResult<f64>
427 //! where
428 //! T: Into<f64>
429 //! {
430 //! let value = input.into();
431 //! if scale.is_finite() && scale > 0.0 {
432 //! Ok(value * scale)
433 //! } else {
434 //! Err(CoreError::ValueError(ErrorContext::new("Scale must be positive and finite")))
435 //! }
436 //! }
437 //!
438 //! # let result = example_operation(5.0, 2.0);
439 //! # assert!(result.is_ok());
440 //! ```
441 //!
442 //! ## Configuration Pattern
443 //! ```rust
444 //! #[derive(Debug, Clone)]
445 //! pub struct ComputationConfig {
446 //! pub tolerance: f64,
447 //! pub max_iterations: usize,
448 //! pub parallel: bool,
449 //! }
450 //!
451 //! impl Default for ComputationConfig {
452 //! fn default() -> Self {
453 //! Self {
454 //! tolerance: 1e-10,
455 //! max_iterations: 1000,
456 //! parallel: true,
457 //! }
458 //! }
459 //! }
460 //!
461 //! impl ComputationConfig {
462 //! pub fn new() -> Self { Self::default() }
463 //! pub fn with_tolerance(mut self, value: f64) -> Self { self.tolerance = value; self }
464 //! pub fn with_max_iterations(mut self, value: usize) -> Self { self.max_iterations = value; self }
465 //! pub fn with_parallel(mut self, value: bool) -> Self { self.parallel = value; self }
466 //! }
467 //!
468 //! # let config = ComputationConfig::new().with_tolerance(1e-8).with_parallel(false);
469 //! # assert_eq!(config.tolerance, 1e-8);
470 //! ```
471 //!
472 //! ## Resource Management Pattern
473 //! ```rust
474 //! use std::sync::{Arc, Mutex};
475 //!
476 //! #[derive(Debug, Clone)]
477 //! pub struct ResourceConfig {
478 //! max_memory_mb: usize,
479 //! enable_caching: bool,
480 //! }
481 //!
482 //! impl Default for ResourceConfig {
483 //! fn default() -> Self {
484 //! Self {
485 //! max_memory_mb: 1024,
486 //! enable_caching: true,
487 //! }
488 //! }
489 //! }
490 //!
491 //! pub struct ResourceManager<T> {
492 //! inner: Arc<Mutex<T>>,
493 //! config: ResourceConfig,
494 //! }
495 //!
496 //! impl<T> ResourceManager<T> {
497 //! pub fn new(resource: T, config: ResourceConfig) -> Self {
498 //! Self {
499 //! inner: Arc::new(Mutex::new(resource)),
500 //! config,
501 //! }
502 //! }
503 //! pub fn with_default_config(resource: T) -> Self {
504 //! Self::new(resource, ResourceConfig::default())
505 //! }
506 //! pub fn configure(&mut self, config: ResourceConfig) -> &mut Self {
507 //! self.config = config;
508 //! self
509 //! }
510 //! }
511 //!
512 //! # let manager = ResourceManager::with_default_config(vec![1, 2, 3]);
513 //! ```
514
515 use crate::error::CoreResult;
516
517 /// Standard parameter validation pattern
518 pub trait ValidatedParams {
519 /// Validate parameters and return detailed error information
520 fn validate(&self) -> CoreResult<()>;
521 }
522
523 /// Standard configuration builder pattern
524 pub trait ConfigBuilder<T> {
525 /// Build the configuration with validation
526 fn build(self) -> CoreResult<T>;
527 }
528 }
529
530 pub mod examples {
531 //! Comprehensive usage examples demonstrating ``SciRS2`` Core features
532 //!
533 //! These examples show how to use various ``SciRS2`` Core features both
534 //! individually and in combination.
535
536 /// # Basic Error Handling Example
537 ///
538 /// ```
539 /// use scirs2_core::{CoreError, CoreResult, diagnoseerror};
540 ///
541 /// fn scientific_computation(data: &[f64]) -> CoreResult<f64> {
542 /// if data.is_empty() {
543 /// return Err(CoreError::ValidationError(
544 /// scirs2_core::error::ErrorContext::new("Input data cannot be empty")
545 /// ));
546 /// }
547 ///
548 /// // Perform computation...
549 /// Ok(data.iter().sum::<f64>() / data.len() as f64)
550 /// }
551 ///
552 /// // Usage with enhanced error diagnostics
553 /// match scientific_computation(&[]) {
554 /// Ok(result) => println!("Result: {}", result),
555 /// Err(error) => {
556 /// let diagnostics = diagnoseerror(&error);
557 /// println!("Error diagnosis:\n{}", diagnostics);
558 /// }
559 /// }
560 /// ```
561 pub const fn basicerror_handling() {}
562
563 /// # SIMD Operations Example
564 ///
565 /// ```
566 /// # #[cfg(feature = "simd")]
567 /// use scirs2_core::simd::simd_add_f32;
568 /// use ndarray::arr1;
569 ///
570 /// # #[cfg(feature = "simd")]
571 /// fn optimized_array_addition() {
572 /// let a = arr1(&[1.0f32, 2.0, 3.0, 4.0]);
573 /// let b = arr1(&[5.0f32, 6.0, 7.0, 8.0]);
574 ///
575 /// // SIMD implementation for f32 arrays
576 /// let result = simd_add_f32(&a.view(), &b.view());
577 /// println!("SIMD result: {:?}", result);
578 /// }
579 /// ```
580 pub const fn simd_operations() {}
581
582 /// # Memory-Efficient Processing Example
583 ///
584 /// ```
585 /// # #[cfg(feature = "memory_efficient")]
586 /// use scirs2_core::memory_efficient::{
587 /// AdaptiveChunkingParams, WorkloadType, MemoryMappedArray
588 /// };
589 /// use tempfile::NamedTempFile;
590 ///
591 /// # #[cfg(feature = "memory_efficient")]
592 /// fn memory_efficient_processing() -> Result<(), Box<dyn std::error::Error>> {
593 /// // Create optimized chunking parameters
594 /// let params = AdaptiveChunkingParams::for_workload_type(WorkloadType::ComputeIntensive);
595 ///
596 /// // Create a temporary file for demonstration
597 /// let temp_file = NamedTempFile::new()?;
598 /// let data: Vec<f64> = (0..1000000).map(|i| i as f64).collect();
599 ///
600 /// // Memory-mapped processing for large datasets
601 /// // let mmap = MemoryMappedArray::<f64>::create_from_data(temp_file.path(), &data, &[1000000])?;
602 /// // let result = mmap.adaptive_chunking(params)?;
603 ///
604 /// println!("Adaptive chunking completed");
605 /// Ok(())
606 /// }
607 /// ```
608 pub const fn memory_efficient_processing() {}
609 }
610
611 pub mod integration_patterns {
612 //! Guidelines and patterns for combining multiple ``SciRS2`` Core features
613 //!
614 //! This module demonstrates how to effectively combine various features
615 //! for optimal performance and functionality.
616
617 /// # High-Performance Scientific Pipeline
618 ///
619 /// Combines SIMD operations, parallel processing, memory-efficient algorithms,
620 /// and comprehensive error handling for optimal performance.
621 ///
622 /// ```
623 /// use scirs2_core::{CoreResult, CoreError};
624 /// # #[cfg(all(feature = "simd", feature = "parallel", feature = "memory_efficient"))]
625 /// use scirs2_core::{
626 /// memory_efficient::AdaptiveChunkingParams,
627 /// };
628 ///
629 /// /// High-performance pipeline configuration
630 /// pub struct ScientificPipelineConfig {
631 /// pub use_simd: bool,
632 /// pub use_parallel: bool,
633 /// pub workload_type: Option<String>, // Would be WorkloadType in real usage
634 /// pub error_tracking: bool,
635 /// }
636 ///
637 /// impl Default for ScientificPipelineConfig {
638 /// fn default() -> Self {
639 /// Self {
640 /// use_simd: true,
641 /// use_parallel: true,
642 /// workload_type: Some("ComputeIntensive".to_string()),
643 /// error_tracking: true,
644 /// }
645 /// }
646 /// }
647 ///
648 /// /// High-performance scientific computation pipeline
649 /// pub fn scientific_pipeline<T>(
650 /// data: &[T],
651 /// config: ScientificPipelineConfig,
652 /// ) -> CoreResult<Vec<T>>
653 /// where
654 /// T: Clone + Copy + Send + Sync + 'static,
655 /// {
656 /// // Input validation
657 /// if data.is_empty() {
658 /// let error = CoreError::ValidationError(
659 /// scirs2_core::error::ErrorContext::new("Input data cannot be empty")
660 /// );
661 ///
662 /// if config.error_tracking {
663 /// // Error tracking would be implemented here
664 /// eprintln!("Error in scientificpipeline: {:?}", error);
665 /// }
666 ///
667 /// return Err(error);
668 /// }
669 ///
670 /// // Configure adaptive chunking based on workload
671 /// # #[cfg(feature = "memory_efficient")]
672 /// let chunking_params = if let Some(workload_str) = &config.workload_type {
673 /// // AdaptiveChunkingParams::for_workload_type(WorkloadType::ComputeIntensive)
674 /// scirs2_core::memory_efficient::AdaptiveChunkingParams::default()
675 /// } else {
676 /// scirs2_core::memory_efficient::AdaptiveChunkingParams::default()
677 /// };
678 ///
679 /// // Process data with selected optimizations
680 /// let mut result = Vec::with_capacity(data.len());
681 ///
682 /// // Simulate processing (in real implementation, would use SIMD/parallel features)
683 /// for item in data {
684 /// result.push(*item);
685 /// }
686 ///
687 /// Ok(result)
688 /// }
689 /// ```
690 pub const fn high_performance_pipeline() {}
691
692 /// # Robust Error Handling with Recovery
693 ///
694 /// Demonstrates advanced error handling with automatic recovery strategies
695 /// and comprehensive diagnostics.
696 ///
697 /// ```
698 /// use scirs2_core::{CoreResult, CoreError};
699 /// use scirs2_core::error::{
700 /// diagnoseerror_advanced, get_recovery_strategies, RecoverableError
701 /// };
702 ///
703 /// /// Robust computation with automatic error recovery
704 /// pub fn robust_computation(
705 /// data: &[f64],
706 /// domain: &str,
707 /// ) -> CoreResult<f64> {
708 /// // Attempt computation
709 /// match perform_computation(data) {
710 /// Ok(result) => Ok(result),
711 /// Err(error) => {
712 /// // Get comprehensive diagnostics
713 /// let diagnostics = diagnoseerror_advanced(
714 /// &error,
715 /// Some("matrix_computation"),
716 /// Some(domain)
717 /// );
718 ///
719 /// // Get domain-specific recovery strategies
720 /// let strategies = get_recovery_strategies(&error, domain);
721 ///
722 /// // Try recovery strategies
723 /// for strategy in &strategies {
724 /// if let Ok(result) = try_recovery_strategy(data, strategy) {
725 /// return Ok(result);
726 /// }
727 /// }
728 ///
729 /// // If all recovery attempts fail, return enhanced error
730 /// Err(error)
731 /// }
732 /// }
733 /// }
734 ///
735 /// fn perform_computation(data: &[f64]) -> CoreResult<f64> {
736 /// // Simulate computation that might fail
737 /// if data.len() < 2 {
738 /// return Err(CoreError::DomainError(
739 /// scirs2_core::error::ErrorContext::new("Insufficient data for computation")
740 /// ));
741 /// }
742 /// Ok(data.iter().sum::<f64>() / data.len() as f64)
743 /// }
744 ///
745 /// fn try_recovery_strategy(data: &[f64], strategy: &str) -> CoreResult<f64> {
746 /// // Implement recovery strategy based on suggestion
747 /// if strategy.contains("default") {
748 /// Ok(0.0) // Return safe default
749 /// } else {
750 /// Err(CoreError::ComputationError(
751 /// scirs2_core::error::ErrorContext::new("Recovery failed")
752 /// ))
753 /// }
754 /// }
755 /// ```
756 pub const fn robusterror_handling() {}
757
758 /// # Performance Monitoring and Optimization
759 ///
760 /// Shows how to combine profiling, memory tracking, and adaptive optimization
761 /// for continuous performance improvement.
762 ///
763 /// ```
764 /// use scirs2_core::CoreResult;
765 /// # #[cfg(feature = "profiling")]
766 /// use scirs2_core::{Profiler, Timer};
767 /// use std::time::Duration;
768 ///
769 /// /// Performance-monitored computation wrapper
770 /// pub struct MonitoredComputation {
771 /// name: String,
772 /// # #[cfg(feature = "profiling")]
773 /// profiler: Option<Profiler>,
774 /// }
775 ///
776 /// impl MonitoredComputation {
777 /// pub fn new(name: &str) -> Self {
778 /// Self {
779 /// name: name.to_string(),
780 /// # #[cfg(feature = "profiling")]
781 /// profiler: Some(Profiler::new()),
782 /// }
783 /// }
784 ///
785 /// pub fn execute<F, T>(&mut self, operation: F) -> CoreResult<T>
786 /// where
787 /// F: FnOnce() -> CoreResult<T>,
788 /// {
789 /// # #[cfg(feature = "profiling")]
790 /// let timer = Timer::new(self.name.clone());
791 /// # #[cfg(feature = "profiling")]
792 /// let timer_guard = timer.start();
793 ///
794 /// let result = operation()?;
795 ///
796 /// # #[cfg(feature = "profiling")]
797 /// if let Some(profiler) = &self.profiler {
798 /// // Log performance metrics
799 /// println!("Operation '{}' completed", self.name);
800 /// }
801 ///
802 /// Ok(result)
803 /// }
804 /// }
805 /// ```
806 pub const fn performancemonitoring() {}
807 }
808
809 pub mod type_system {
810 //! Comprehensive type system documentation and conversion patterns
811 //!
812 //! This module documents the ``SciRS2`` Core type system and provides
813 //! guidelines for safe and efficient type conversions.
814
815 /// # Type Safety Patterns
816 ///
817 /// ``SciRS2`` Core uses the Rust type system to ensure safety and correctness:
818 ///
819 /// ## Numeric Type Safety
820 /// ```
821 /// use scirs2_core::numeric::{RealNumber, ScientificNumber};
822 ///
823 /// fn safe_numeric_operation<T>(value: T) -> T
824 /// where
825 /// T: RealNumber + ScientificNumber,
826 /// {
827 /// // Type-safe operations guaranteed by trait bounds
828 /// ScientificNumber::sqrt(ScientificNumber::abs(value))
829 /// }
830 /// ```
831 ///
832 /// ## Error Type Safety
833 /// ```
834 /// use scirs2_core::{CoreResult, CoreError};
835 ///
836 /// fn type_safeerror_handling() -> CoreResult<f64> {
837 /// // All errors are properly typed and provide context
838 /// Err(CoreError::ValidationError(
839 /// scirs2_core::error::ErrorContext::new("Type validation failed")
840 /// ))
841 /// }
842 /// ```
843 ///
844 /// ## Generic Parameter Patterns
845 /// ```
846 /// use scirs2_core::CoreResult;
847 ///
848 /// // Standard generic function pattern
849 /// fn generic_operation<T, U>(input: T) -> CoreResult<U>
850 /// where
851 /// T: Clone + Send + Sync,
852 /// U: Default + Send + Sync,
853 /// {
854 /// // Implementation...
855 /// Ok(U::default())
856 /// }
857 /// ```
858 pub const fn type_safety_patterns() {}
859 }
860}