scirs2_core/
advanced_ecosystem_integration.rs

1//! Advanced Mode Ecosystem Integration
2//!
3//! This module provides comprehensive integration testing and coordination for all
4//! scirs2-* modules operating in Advanced mode. It enables intelligent cross-module
5//! communication, performance optimization, and unified orchestration of advanced
6//! AI-driven scientific computing capabilities.
7//!
8//! # Features
9//!
10//! - **Cross-Module Communication**: Seamless data flow between Advanced modules
11//! - **Unified Performance Optimization**: Global optimization across the ecosystem
12//! - **Intelligent Resource Management**: Coordinated CPU/GPU/QPU allocation
13//! - **Adaptive Load Balancing**: Dynamic workload distribution
14//! - **Real-time Monitoring**: Performance tracking across all modules
15//! - **Fault Tolerance**: Automatic recovery and failover mechanisms
16//! - **API Compatibility**: Unified interface for all Advanced capabilities
17
18use crate::distributed::{
19    cluster::{SpecializedRequirement, SpecializedUnit},
20    ResourceRequirements,
21};
22use crate::error::{CoreError, CoreResult, ErrorContext};
23use std::collections::HashMap;
24use std::sync::{Arc, Mutex, RwLock};
25use std::thread;
26use std::time::{Duration, Instant};
27
28use serde::{Deserialize, Serialize};
29
30/// Central coordinator for advanced mode ecosystem
31#[allow(dead_code)]
32#[derive(Debug)]
33pub struct AdvancedEcosystemCoordinator {
34    /// Registered advanced modules
35    modules: Arc<RwLock<HashMap<String, Box<dyn AdvancedModule + Send + Sync>>>>,
36    /// Performance monitor
37    performancemonitor: Arc<Mutex<EcosystemPerformanceMonitor>>,
38    /// Resource manager
39    resource_manager: Arc<Mutex<EcosystemResourceManager>>,
40    /// Communication hub
41    communication_hub: Arc<Mutex<ModuleCommunicationHub>>,
42    /// Configuration
43    config: AdvancedEcosystemConfig,
44    /// Status tracker
45    status: Arc<RwLock<EcosystemStatus>>,
46}
47
48/// Configuration for advanced ecosystem
49#[allow(dead_code)]
50#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct AdvancedEcosystemConfig {
52    /// Enable cross-module optimization
53    pub enable_cross_module_optimization: bool,
54    /// Enable adaptive load balancing
55    pub enable_adaptive_load_balancing: bool,
56    /// Enable fault tolerance
57    pub enable_fault_tolerance: bool,
58    /// Maximum memory usage per module (MB)
59    pub max_memory_per_module: usize,
60    /// Performance monitoring interval (ms)
61    pub monitoring_interval_ms: u64,
62    /// Resource rebalancing threshold
63    pub rebalancing_threshold: f64,
64    /// Communication timeout (ms)
65    pub communication_timeout_ms: u64,
66}
67
68impl Default for AdvancedEcosystemConfig {
69    fn default() -> Self {
70        Self {
71            enable_cross_module_optimization: true,
72            enable_adaptive_load_balancing: true,
73            enable_fault_tolerance: true,
74            max_memory_per_module: 2048, // 2GB
75            monitoring_interval_ms: 1000,
76            rebalancing_threshold: 0.8,
77            communication_timeout_ms: 5000,
78        }
79    }
80}
81
82/// Status of the advanced ecosystem
83#[allow(dead_code)]
84#[derive(Debug, Clone, Serialize, Deserialize)]
85pub struct EcosystemStatus {
86    /// Overall health status
87    pub health: EcosystemHealth,
88    /// Number of active modules
89    pub active_modules: usize,
90    /// Total operations processed
91    pub total_operations: u64,
92    /// Average response time (ms)
93    pub avg_response_time: f64,
94    /// Resource utilization
95    pub resource_utilization: ResourceUtilization,
96    /// Last update timestamp
97    #[cfg_attr(feature = "serde", serde(skip))]
98    pub last_update: Option<Instant>,
99}
100
101/// Health status of the ecosystem
102#[allow(dead_code)]
103#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
104pub enum EcosystemHealth {
105    Healthy,
106    Warning,
107    Critical,
108    Degraded,
109    Offline,
110}
111
112/// Resource utilization metrics
113#[allow(dead_code)]
114#[derive(Debug, Clone, Serialize, Deserialize)]
115pub struct ResourceUtilization {
116    /// CPU utilization (0.0-1.0)
117    pub cpu_usage: f64,
118    /// Memory utilization (0.0-1.0)
119    pub memory_usage: f64,
120    /// GPU utilization (0.0-1.0)
121    pub gpu_usage: Option<f64>,
122    /// Network utilization (0.0-1.0)
123    pub network_usage: f64,
124}
125
126/// Trait for advanced modules to implement ecosystem integration
127pub trait AdvancedModule: std::fmt::Debug {
128    /// Get module name
129    fn name(&self) -> &str;
130
131    /// Get module version
132    fn version(&self) -> &str;
133
134    /// Get module capabilities
135    fn capabilities(&self) -> Vec<String>;
136
137    /// Initialize module for advanced mode
138    fn initialize_advanced(&mut self) -> CoreResult<()>;
139
140    /// Process data in advanced mode
141    fn process_advanced(&mut self, input: AdvancedInput) -> CoreResult<AdvancedOutput>;
142
143    /// Get performance metrics
144    fn get_performance_metrics(&self) -> ModulePerformanceMetrics;
145
146    /// Get resource usage
147    fn get_resource_usage(&self) -> ModuleResourceUsage;
148
149    /// Optimize for ecosystem coordination
150    fn optimize_for_ecosystem(&mut self, context: &EcosystemContext) -> CoreResult<()>;
151
152    /// Handle inter-module communication
153    fn handle_communication(
154        &mut self,
155        message: InterModuleMessage,
156    ) -> CoreResult<InterModuleMessage>;
157
158    /// Shutdown module gracefully
159    fn shutdown(&mut self) -> CoreResult<()>;
160}
161
162/// Input for advanced processing
163#[allow(dead_code)]
164#[derive(Debug, Clone)]
165pub struct AdvancedInput {
166    /// Data payload
167    pub data: Vec<u8>,
168    /// Processing parameters
169    pub parameters: HashMap<String, f64>,
170    /// Context information
171    pub context: ProcessingContext,
172    /// Priority level
173    pub priority: Priority,
174}
175
176/// Output from advanced processing
177#[allow(dead_code)]
178#[derive(Debug, Clone)]
179pub struct AdvancedOutput {
180    /// Processed data
181    pub data: Vec<u8>,
182    /// Processing metrics
183    pub metrics: ProcessingMetrics,
184    /// Quality score
185    pub quality_score: f64,
186    /// Confidence level
187    pub confidence: f64,
188}
189
190/// Processing context for advanced operations
191#[allow(dead_code)]
192#[derive(Debug, Clone)]
193pub struct ProcessingContext {
194    /// Operation type
195    pub operationtype: String,
196    /// Expected output format
197    pub expected_format: String,
198    /// Quality requirements
199    pub quality_requirements: QualityRequirements,
200    /// Timing constraints
201    pub timing_constraints: TimingConstraints,
202}
203
204/// Priority levels for processing
205#[allow(dead_code)]
206#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
207pub enum Priority {
208    Low,
209    Normal,
210    High,
211    Critical,
212    RealTime,
213}
214
215/// Processing strategy for advanced operations
216#[allow(dead_code)]
217#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
218pub enum ProcessingStrategy {
219    SingleModule,
220    Sequential,
221    Parallel,
222    PipelineDistributed,
223}
224
225/// Processing plan for advanced operations
226#[allow(dead_code)]
227#[derive(Debug, Clone)]
228pub struct ProcessingPlan {
229    pub strategy: ProcessingStrategy,
230    pub primary_module: String,
231    pub module_chain: Vec<String>,
232    pub parallel_modules: Vec<String>,
233    pub estimated_duration: Duration,
234    pub resource_requirements: ResourceRequirements,
235}
236
237/// Cross-module optimization configuration
238#[allow(dead_code)]
239#[derive(Debug, Clone, Serialize, Deserialize)]
240pub struct CrossModuleOptimizationConfig {
241    pub enable_data_sharing: bool,
242    pub enable_compute_sharing: bool,
243    pub optimization_level: OptimizationLevel,
244    pub max_memory_usage: usize,
245    pub target_latency: Duration,
246}
247
248/// Optimization level for cross-module operations
249#[allow(dead_code)]
250#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
251pub enum OptimizationLevel {
252    Conservative,
253    Balanced,
254    Aggressive,
255    Advanced,
256}
257
258/// Distributed workflow specification
259#[allow(dead_code)]
260#[derive(Debug, Clone)]
261pub struct DistributedWorkflow {
262    pub name: String,
263    pub description: String,
264    pub stages: Vec<WorkflowStage>,
265    pub dependencies: HashMap<String, Vec<String>>,
266    pub resource_requirements: ResourceRequirements,
267}
268
269/// Workflow stage specification
270#[allow(dead_code)]
271#[derive(Debug, Clone, Serialize, Deserialize)]
272pub struct WorkflowStage {
273    pub name: String,
274    pub module: String,
275    pub operation: String,
276    pub inputs: Vec<String>,
277    pub outputs: Vec<String>,
278}
279
280/// Result of workflow execution
281#[allow(dead_code)]
282#[derive(Debug, Clone, Serialize, Deserialize)]
283pub struct WorkflowResult {
284    pub workflow_name: String,
285    pub execution_time: Duration,
286    pub stage_results: HashMap<String, StageResult>,
287    pub performance_metrics: PerformanceMetrics,
288    pub success: bool,
289}
290
291/// Result of a single workflow stage
292#[allow(dead_code)]
293#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct StageResult {
295    pub stage_name: String,
296    pub execution_time: Duration,
297    pub output_size: usize,
298    pub success: bool,
299    pub error_message: Option<String>,
300}
301
302/// State of workflow execution
303#[allow(dead_code)]
304#[derive(Debug, Clone)]
305pub struct WorkflowState {
306    /// Completed stages
307    pub completed_stages: Vec<String>,
308    /// Current stage
309    pub current_stage: Option<String>,
310    /// Accumulated data
311    pub accumulated_data: HashMap<String, Vec<u8>>,
312    /// Execution metadata
313    pub metadata: HashMap<String, String>,
314    /// Should terminate early flag
315    pub should_terminate: bool,
316    /// Stage execution times
317    pub stage_times: HashMap<String, Duration>,
318}
319
320impl Default for WorkflowState {
321    fn default() -> Self {
322        Self::new()
323    }
324}
325
326impl WorkflowState {
327    pub fn new() -> Self {
328        Self {
329            completed_stages: Vec::new(),
330            current_stage: None,
331            accumulated_data: HashMap::new(),
332            metadata: HashMap::new(),
333            should_terminate: false,
334            stage_times: HashMap::new(),
335        }
336    }
337
338    pub fn incorporate_stage_result(&mut self, result: &StageResult) -> CoreResult<()> {
339        self.completed_stages.push(result.stage_name.clone());
340        self.stage_times
341            .insert(result.stage_name.clone(), result.execution_time);
342
343        if !result.success {
344            self.should_terminate = true;
345        }
346
347        Ok(())
348    }
349
350    pub fn should_terminate_early(&self) -> bool {
351        self.should_terminate
352    }
353}
354
355/// Performance metrics for operations
356#[allow(dead_code)]
357#[derive(Debug, Clone, Serialize, Deserialize)]
358pub struct PerformanceMetrics {
359    pub throughput: f64,
360    pub latency: Duration,
361    pub cpu_usage: f64,
362    pub memory_usage: usize,
363    pub gpu_usage: f64,
364}
365
366/// Pipeline stage configuration
367#[allow(dead_code)]
368#[derive(Debug, Clone)]
369pub struct PipelineStage {
370    pub name: String,
371    pub module: String,
372    pub config: HashMap<String, String>,
373    pub dependencies: Vec<String>,
374}
375
376/// Context for optimization operations
377#[allow(dead_code)]
378#[derive(Debug, Clone)]
379pub struct OptimizationContext {
380    pub learningrate: f64,
381    pub accumulated_performance: Vec<f64>,
382    pub adaptation_history: HashMap<String, f64>,
383    pub total_memory_used: usize,
384    pub total_cpu_cycles: u64,
385    pub total_gpu_time: Duration,
386    pub final_quality_score: f64,
387    pub confidence_score: f64,
388    pub stages_completed: usize,
389}
390
391impl Default for OptimizationContext {
392    fn default() -> Self {
393        Self::new()
394    }
395}
396
397impl OptimizationContext {
398    pub fn new() -> Self {
399        Self {
400            learningrate: 0.01,
401            accumulated_performance: Vec::new(),
402            adaptation_history: HashMap::new(),
403            total_memory_used: 0,
404            total_cpu_cycles: 0,
405            total_gpu_time: Duration::from_secs(0),
406            final_quality_score: 0.0,
407            confidence_score: 0.0,
408            stages_completed: 0,
409        }
410    }
411
412    pub fn stage(&mut self, stage: &PipelineStage) -> CoreResult<()> {
413        // Update optimization context based on _stage results
414        self.final_quality_score += 0.1;
415        self.confidence_score = (self.confidence_score + 0.9) / 2.0;
416        Ok(())
417    }
418}
419
420/// Optimized processing pipeline
421#[allow(dead_code)]
422#[derive(Debug, Clone)]
423pub struct OptimizedPipeline {
424    pub stages: Vec<PipelineStage>,
425    pub optimization_level: OptimizationLevel,
426    pub estimated_performance: PerformanceMetrics,
427}
428
429/// Workflow execution plan
430#[allow(dead_code)]
431#[derive(Debug, Clone)]
432pub struct WorkflowExecutionPlan {
433    pub stages: Vec<WorkflowStage>,
434    pub estimated_duration: Duration,
435}
436
437/// Quality requirements for processing
438#[allow(dead_code)]
439#[derive(Debug, Clone)]
440pub struct QualityRequirements {
441    /// Minimum accuracy required
442    pub min_accuracy: f64,
443    /// Maximum acceptable error
444    pub maxerror: f64,
445    /// Precision requirements
446    pub precision: usize,
447}
448
449/// Timing constraints for processing
450#[allow(dead_code)]
451#[derive(Debug, Clone)]
452pub struct TimingConstraints {
453    /// Maximum processing time
454    pub max_processing_time: Duration,
455    /// Deadline for completion
456    pub deadline: Option<Instant>,
457    /// Real-time requirements
458    pub real_time: bool,
459}
460
461/// Processing metrics
462#[allow(dead_code)]
463#[derive(Debug, Clone)]
464pub struct ProcessingMetrics {
465    /// Processing time
466    pub processing_time: Duration,
467    /// Memory used
468    pub memory_used: usize,
469    /// CPU cycles
470    pub cpu_cycles: u64,
471    /// GPU time (if applicable)
472    pub gpu_time: Option<Duration>,
473}
474
475/// Performance metrics for a module
476#[allow(dead_code)]
477#[derive(Debug, Clone)]
478pub struct ModulePerformanceMetrics {
479    /// Average processing time
480    pub avg_processing_time: Duration,
481    /// Operations per second
482    pub ops_per_second: f64,
483    /// Success rate
484    pub success_rate: f64,
485    /// Quality score
486    pub quality_score: f64,
487    /// Efficiency score
488    pub efficiency_score: f64,
489}
490
491/// Resource usage for a module
492#[allow(dead_code)]
493#[derive(Debug, Clone)]
494pub struct ModuleResourceUsage {
495    /// Memory usage (MB)
496    pub memory_mb: f64,
497    /// CPU usage (percentage)
498    pub cpu_percentage: f64,
499    /// GPU usage (percentage)
500    pub gpu_percentage: Option<f64>,
501    /// Network bandwidth (MB/s)
502    pub networkbandwidth: f64,
503}
504
505/// Context for ecosystem operations
506#[allow(dead_code)]
507#[derive(Debug, Clone)]
508pub struct EcosystemContext {
509    /// Available resources
510    pub available_resources: ResourceUtilization,
511    /// Current load distribution
512    pub load_distribution: HashMap<String, f64>,
513    /// Performance targets
514    pub performance_targets: PerformanceTargets,
515    /// Optimization hints
516    pub optimization_hints: Vec<String>,
517}
518
519/// Performance targets for the ecosystem
520#[allow(dead_code)]
521#[derive(Debug, Clone)]
522pub struct PerformanceTargets {
523    /// Target latency (ms)
524    pub target_latency: f64,
525    /// Target throughput (ops/sec)
526    pub target_throughput: f64,
527    /// Target quality score
528    pub target_quality: f64,
529    /// Target resource efficiency
530    pub target_efficiency: f64,
531}
532
533/// Inter-module communication message
534#[allow(dead_code)]
535#[derive(Debug, Clone)]
536pub struct InterModuleMessage {
537    /// Source module
538    pub from: String,
539    /// Destination module
540    pub to: String,
541    /// Message type
542    pub messagetype: MessageType,
543    /// Message payload
544    pub payload: Vec<u8>,
545    /// Timestamp
546    pub timestamp: Instant,
547}
548
549/// Types of inter-module messages
550#[allow(dead_code)]
551#[derive(Debug, Clone)]
552pub enum MessageType {
553    DataTransfer,
554    StatusUpdate,
555    ResourceRequest,
556    OptimizationHint,
557    ErrorReport,
558    ConfigUpdate,
559}
560
561/// Performance monitor for the ecosystem
562#[allow(dead_code)]
563#[derive(Debug)]
564pub struct EcosystemPerformanceMonitor {
565    /// Module performance history
566    module_performance: HashMap<String, Vec<ModulePerformanceMetrics>>,
567    /// System-wide metrics
568    system_metrics: SystemMetrics,
569    /// Performance alerts
570    alerts: Vec<PerformanceAlert>,
571    /// Monitoring configuration
572    #[allow(dead_code)]
573    config: MonitoringConfig,
574}
575
576/// System-wide performance metrics
577#[allow(dead_code)]
578#[derive(Debug, Clone)]
579pub struct SystemMetrics {
580    /// Total throughput
581    pub total_throughput: f64,
582    /// Average latency
583    pub avg_latency: Duration,
584    /// Error rate
585    pub error_rate: f64,
586    /// Resource efficiency
587    pub resource_efficiency: f64,
588    /// Quality score
589    pub quality_score: f64,
590}
591
592/// Performance alert
593#[allow(dead_code)]
594#[derive(Debug, Clone)]
595pub struct PerformanceAlert {
596    /// Alert level
597    pub level: AlertLevel,
598    /// Alert message
599    pub message: String,
600    /// Affected module
601    pub module: Option<String>,
602    /// Timestamp
603    pub timestamp: Instant,
604}
605
606/// Alert levels
607#[allow(dead_code)]
608#[derive(Debug, Clone, PartialEq)]
609pub enum AlertLevel {
610    Info,
611    Warning,
612    Error,
613    Critical,
614}
615
616/// Monitoring configuration
617#[allow(dead_code)]
618#[derive(Debug, Clone)]
619pub struct MonitoringConfig {
620    /// Sampling rate (Hz)
621    pub samplingrate: f64,
622    /// Alert thresholds
623    pub alert_thresholds: AlertThresholds,
624    /// History retention (hours)
625    pub history_retention_hours: u32,
626}
627
628/// Alert thresholds
629#[allow(dead_code)]
630#[derive(Debug, Clone)]
631pub struct AlertThresholds {
632    /// Latency threshold (ms)
633    pub latency_threshold: f64,
634    /// Error rate threshold (percentage)
635    pub error_rate_threshold: f64,
636    /// Memory usage threshold (percentage)
637    pub memory_threshold: f64,
638    /// CPU usage threshold (percentage)
639    pub cpu_threshold: f64,
640}
641
642/// Resource manager for the ecosystem
643#[allow(dead_code)]
644#[derive(Debug)]
645pub struct EcosystemResourceManager {
646    /// Available resources
647    available_resources: ResourcePool,
648    /// Resource allocations
649    allocations: HashMap<String, ResourceAllocation>,
650    /// Load balancer
651    #[allow(dead_code)]
652    load_balancer: LoadBalancer,
653    /// Resource monitoring
654    #[allow(dead_code)]
655    resourcemonitor: ResourceMonitor,
656}
657
658/// Pool of available resources
659#[allow(dead_code)]
660#[derive(Debug)]
661pub struct ResourcePool {
662    /// CPU cores available
663    pub cpu_cores: usize,
664    /// Memory available (MB)
665    pub memory_mb: usize,
666    /// GPU devices available
667    pub gpu_devices: usize,
668    /// Network bandwidth (MB/s)
669    pub networkbandwidth: f64,
670}
671
672/// Resource allocation for a module
673#[allow(dead_code)]
674#[derive(Debug, Clone)]
675pub struct ResourceAllocation {
676    /// Allocated CPU cores
677    pub cpu_cores: f64,
678    /// Allocated memory (MB)
679    pub memory_mb: usize,
680    /// Allocated GPU fraction
681    pub gpu_fraction: Option<f64>,
682    /// Allocated bandwidth (MB/s)
683    pub bandwidth: f64,
684    /// Priority level
685    pub priority: Priority,
686}
687
688/// Load balancer for distributing work
689#[allow(dead_code)]
690#[derive(Debug)]
691pub struct LoadBalancer {
692    /// Current load distribution
693    #[allow(dead_code)]
694    load_distribution: HashMap<String, f64>,
695    /// Balancing strategy
696    #[allow(dead_code)]
697    strategy: LoadBalancingStrategy,
698    /// Performance history
699    #[allow(dead_code)]
700    performance_history: Vec<LoadBalancingMetrics>,
701}
702
703/// Load balancing strategies
704#[allow(dead_code)]
705#[derive(Debug, Clone)]
706pub enum LoadBalancingStrategy {
707    RoundRobin,
708    WeightedRoundRobin,
709    LeastConnections,
710    PerformanceBased,
711    ResourceBased,
712    AIOptimized,
713}
714
715/// Load balancing metrics
716#[allow(dead_code)]
717#[derive(Debug, Clone)]
718pub struct LoadBalancingMetrics {
719    /// Distribution efficiency
720    pub distribution_efficiency: f64,
721    /// Response time variance
722    pub response_time_variance: f64,
723    /// Resource utilization balance
724    pub utilization_balance: f64,
725    /// Timestamp
726    pub timestamp: Instant,
727}
728
729/// Resource monitor
730#[allow(dead_code)]
731#[derive(Debug)]
732pub struct ResourceMonitor {
733    /// Current resource usage
734    #[allow(dead_code)]
735    current_usage: ResourceUtilization,
736    /// Usage history
737    #[allow(dead_code)]
738    usage_history: Vec<ResourceSnapshot>,
739    /// Prediction model
740    #[allow(dead_code)]
741    prediction_model: Option<ResourcePredictionModel>,
742}
743
744/// Snapshot of resource usage at a point in time
745#[allow(dead_code)]
746#[derive(Debug, Clone)]
747pub struct ResourceSnapshot {
748    /// Resource utilization
749    pub utilization: ResourceUtilization,
750    /// Timestamp
751    pub timestamp: Instant,
752    /// Associated workload
753    pub workload_info: Option<String>,
754}
755
756/// Model for predicting resource usage
757#[allow(dead_code)]
758#[derive(Debug)]
759pub struct ResourcePredictionModel {
760    /// Model parameters
761    #[allow(dead_code)]
762    parameters: Vec<f64>,
763    /// Prediction accuracy
764    #[allow(dead_code)]
765    accuracy: f64,
766    /// Last training time
767    #[allow(dead_code)]
768    last_training: Instant,
769}
770
771/// Communication hub for inter-module messaging
772#[allow(dead_code)]
773#[derive(Debug)]
774pub struct ModuleCommunicationHub {
775    /// Message queues for each module
776    message_queues: HashMap<String, Vec<InterModuleMessage>>,
777    /// Communication statistics
778    #[allow(dead_code)]
779    comm_stats: CommunicationStatistics,
780    /// Routing table
781    routing_table: HashMap<String, Vec<String>>,
782}
783
784/// Communication statistics
785#[allow(dead_code)]
786#[derive(Debug, Clone)]
787pub struct CommunicationStatistics {
788    /// Total messages sent
789    pub messages_sent: u64,
790    /// Total messages received
791    pub messages_received: u64,
792    /// Average message latency
793    pub avg_latency: Duration,
794    /// Message error rate
795    pub error_rate: f64,
796}
797
798/// Optimization opportunity identified by the ecosystem
799#[allow(dead_code)]
800#[derive(Debug, Clone, Serialize, Deserialize)]
801pub struct OptimizationOpportunity {
802    /// Module name
803    pub modulename: String,
804    /// Type of optimization
805    pub opportunity_type: String,
806    /// Description of the opportunity
807    pub description: String,
808    /// Potential performance improvement factor
809    pub potential_improvement: f64,
810    /// Priority level
811    pub priority: Priority,
812}
813
814impl AdvancedEcosystemCoordinator {
815    /// Create a new ecosystem coordinator
816    #[allow(dead_code)]
817    pub fn new() -> Self {
818        Self::with_config(AdvancedEcosystemConfig::default())
819    }
820
821    /// Create with custom configuration
822    #[allow(dead_code)]
823    pub fn with_config(config: AdvancedEcosystemConfig) -> Self {
824        Self {
825            modules: Arc::new(RwLock::new(HashMap::new())),
826            performancemonitor: Arc::new(Mutex::new(EcosystemPerformanceMonitor::new())),
827            resource_manager: Arc::new(Mutex::new(EcosystemResourceManager::new())),
828            communication_hub: Arc::new(Mutex::new(ModuleCommunicationHub::new())),
829            config,
830            status: Arc::new(RwLock::new(EcosystemStatus {
831                health: EcosystemHealth::Healthy,
832                active_modules: 0,
833                total_operations: 0,
834                avg_response_time: 0.0,
835                resource_utilization: ResourceUtilization {
836                    cpu_usage: 0.0,
837                    memory_usage: 0.0,
838                    gpu_usage: None,
839                    network_usage: 0.0,
840                },
841                last_update: None,
842            })),
843        }
844    }
845
846    /// Register a new advanced module
847    pub fn register_module(&self, module: Box<dyn AdvancedModule + Send + Sync>) -> CoreResult<()> {
848        let modulename = module.name().to_string();
849
850        {
851            let mut modules = self.modules.write().map_err(|e| {
852                CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
853                    "Failed to acquire modules lock: {e}"
854                )))
855            })?;
856            modules.insert(modulename.clone(), module);
857        }
858
859        // Update status
860        {
861            let mut status = self.status.write().map_err(|e| {
862                CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
863                    "Failed to acquire status lock: {e}"
864                )))
865            })?;
866            status.active_modules += 1;
867            status.last_update = Some(Instant::now());
868        }
869
870        // Initialize resource allocation
871        {
872            let mut resource_manager = self.resource_manager.lock().map_err(|e| {
873                CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
874                    "Failed to acquire resource manager lock: {e}"
875                )))
876            })?;
877            (*resource_manager).allocate_resources(&modulename)?;
878        }
879
880        println!("✅ Registered advanced module: {modulename}");
881        Ok(())
882    }
883
884    /// Process data through the ecosystem with intelligent multi-module coordination
885    pub fn process_ecosystem(&self, input: AdvancedInput) -> CoreResult<AdvancedOutput> {
886        let _start_time = Instant::now();
887
888        // Analyze input to determine if it requires multi-module processing
889        let processing_plan = self.create_processing_plan(&input)?;
890
891        let output = match processing_plan.strategy {
892            ProcessingStrategy::SingleModule => {
893                self.process_single_module(&input, &processing_plan.primary_module)?
894            }
895            ProcessingStrategy::Sequential => self.process_single_module(
896                &input,
897                processing_plan
898                    .module_chain
899                    .first()
900                    .unwrap_or(&String::new()),
901            )?,
902            ProcessingStrategy::Parallel => {
903                self.process_parallel_modules(&input, &processing_plan.parallel_modules)?
904            }
905            ProcessingStrategy::PipelineDistributed => {
906                self.process_module_chain(&input, &[String::from("distributed_module")])?
907            }
908        };
909
910        // TODO: Implement comprehensive metrics update
911        // self.update_comprehensive_metrics(&processing_plan, start_time.elapsed())?;
912
913        // TODO: Implement ecosystem health update
914        // self.update_ecosystem_health(&processing_plan, &output)?;
915
916        Ok(output)
917    }
918
919    /// Process data through multiple modules with cross-module optimization
920    pub fn process_with_config(
921        &self,
922        input: AdvancedInput,
923        optimization_config: CrossModuleOptimizationConfig,
924    ) -> CoreResult<AdvancedOutput> {
925        let start_time = Instant::now();
926
927        println!("🔄 Starting optimized multi-module processing...");
928
929        // Create optimized processing pipeline
930        let pipeline = self.create_optimized_pipeline(&input, &optimization_config)?;
931
932        // Execute pipeline with real-time optimization
933        let mut current_data = input;
934        let mut optimization_context = OptimizationContext::new();
935
936        for stage in pipeline.stages {
937            println!("  📊 Processing stage: {}", stage.name);
938
939            // Pre-process optimization
940            current_data =
941                self.apply_pre_stage_optimization(current_data, &stage, &optimization_context)?;
942
943            // Execute stage
944            let stage_output = self.execute_pipeline_stage(current_data, &stage)?;
945
946            // Post-process optimization and learning
947            current_data = self.apply_post_stage_optimization(
948                stage_output,
949                &stage,
950                &mut optimization_context,
951            )?;
952
953            // TODO: Implement optimization context update
954            // optimization_context.update_from_stage_results(&stage)?;
955        }
956
957        let final_output = AdvancedOutput {
958            data: current_data.data,
959            metrics: ProcessingMetrics {
960                processing_time: start_time.elapsed(),
961                memory_used: optimization_context.total_memory_used,
962                cpu_cycles: optimization_context.total_cpu_cycles,
963                gpu_time: Some(optimization_context.total_gpu_time),
964            },
965            quality_score: optimization_context.final_quality_score,
966            confidence: optimization_context.confidence_score,
967        };
968
969        println!(
970            "✅ Multi-module processing completed in {:.2}ms",
971            start_time.elapsed().as_millis()
972        );
973        Ok(final_output)
974    }
975
976    /// Create and execute a distributed processing workflow across the ecosystem
977    pub fn execute_distributed_workflow(
978        &self,
979        workflow: DistributedWorkflow,
980    ) -> CoreResult<WorkflowResult> {
981        let start_time = Instant::now();
982
983        println!("🌐 Executing distributed workflow: {}", workflow.name);
984
985        // Validate workflow
986        self.validate_workflow(&workflow)?;
987
988        // Create execution plan
989        let execution_plan = self.create_workflow_execution_plan(&workflow)?;
990
991        // Set up inter-module communication channels
992        let comm_channels = self.setup_workflow_communication(&execution_plan)?;
993
994        // Execute workflow stages
995        let mut workflow_state = WorkflowState::new();
996        let mut stage_results = Vec::new();
997
998        for stage in &execution_plan.stages {
999            println!("  🔧 Executing workflow stage: {}", stage.name);
1000
1001            // Execute stage across multiple modules/nodes
1002            let stage_result = self.execute_workflow_stage(stage, &comm_channels)?;
1003
1004            // Update workflow state
1005            workflow_state.incorporate_stage_result(&stage_result)?;
1006            stage_results.push(stage_result);
1007
1008            // Check for early termination conditions
1009            if workflow_state.should_terminate_early() {
1010                println!("  ⚠️  Early termination triggered");
1011                break;
1012            }
1013        }
1014
1015        // Aggregate results
1016        let final_result = AdvancedEcosystemCoordinator::aggregate_workflow_results(
1017            &stage_results,
1018            &workflow_state,
1019        )?;
1020
1021        println!(
1022            "✅ Distributed workflow completed in {:.2}s",
1023            start_time.elapsed().as_secs_f64()
1024        );
1025        Ok(final_result)
1026    }
1027
1028    /// Get ecosystem status
1029    pub fn get_status(&self) -> CoreResult<EcosystemStatus> {
1030        let status = self.status.read().map_err(|e| {
1031            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1032                "Failed to acquire status lock: {e}"
1033            )))
1034        })?;
1035        Ok(status.clone())
1036    }
1037
1038    /// Get performance report
1039    pub fn get_performance_report(&self) -> CoreResult<EcosystemPerformanceReport> {
1040        let performancemonitor = self.performancemonitor.lock().map_err(|e| {
1041            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1042                "Failed to acquire performance monitor lock: {e}"
1043            )))
1044        })?;
1045
1046        Ok(performancemonitor.generate_report())
1047    }
1048
1049    /// Optimize ecosystem performance
1050    pub fn optimize_ecosystem(&self) -> CoreResult<()> {
1051        // Cross-module optimization
1052        if self.config.enable_cross_module_optimization {
1053            self.perform_cross_module_optimization()?;
1054        }
1055
1056        // Load balancing
1057        if self.config.enable_adaptive_load_balancing {
1058            self.rebalance_load()?;
1059        }
1060
1061        // Resource optimization
1062        self.optimize_resource_allocation()?;
1063
1064        println!("✅ Ecosystem optimization completed");
1065        Ok(())
1066    }
1067
1068    /// Start ecosystem monitoring
1069    pub fn startmonitoring(&self) -> CoreResult<()> {
1070        let performancemonitor = Arc::clone(&self.performancemonitor);
1071        let monitoring_interval = Duration::from_millis(self.config.monitoring_interval_ms);
1072
1073        thread::spawn(move || loop {
1074            if let Ok(mut monitor) = performancemonitor.lock() {
1075                let _ = monitor.collect_metrics();
1076            }
1077            thread::sleep(monitoring_interval);
1078        });
1079
1080        println!("✅ Ecosystem monitoring started");
1081        Ok(())
1082    }
1083
1084    /// Shutdown ecosystem gracefully
1085    pub fn shutdown(&self) -> CoreResult<()> {
1086        println!("🔄 Shutting down advanced ecosystem...");
1087
1088        // Shutdown all modules
1089        {
1090            let mut modules = self.modules.write().map_err(|e| {
1091                CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1092                    "Failed to acquire modules lock: {e}"
1093                )))
1094            })?;
1095
1096            for (name, module) in modules.iter_mut() {
1097                if let Err(e) = module.shutdown() {
1098                    println!("⚠️  Error shutting down module {name}: {e}");
1099                }
1100            }
1101        }
1102
1103        // Update status
1104        {
1105            let mut status = self.status.write().map_err(|e| {
1106                CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1107                    "Failed to acquire status lock: {e}"
1108                )))
1109            })?;
1110            status.health = EcosystemHealth::Offline;
1111            status.active_modules = 0;
1112            status.last_update = Some(Instant::now());
1113        }
1114
1115        println!("✅ Advanced ecosystem shutdown complete");
1116        Ok(())
1117    }
1118
1119    // Private helper methods
1120
1121    #[allow(dead_code)]
1122    fn select_optimal_module(&self, input: &AdvancedInput) -> CoreResult<String> {
1123        let modules = self.modules.read().map_err(|e| {
1124            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1125                "Failed to acquire modules lock: {e}"
1126            )))
1127        })?;
1128
1129        if modules.is_empty() {
1130            return Err(CoreError::InvalidArgument(crate::error::ErrorContext::new(
1131                "No modules available".to_string(),
1132            )));
1133        }
1134
1135        // AI-driven module selection based on input characteristics
1136        let optimal_module = self.analyze_input_and_select_module(input, &modules)?;
1137        Ok(optimal_module)
1138    }
1139
1140    #[allow(dead_code)]
1141    fn analyze_input_and_select_module(
1142        &self,
1143        input: &AdvancedInput,
1144        modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1145    ) -> CoreResult<String> {
1146        // Analyze input characteristics
1147        let data_size = input.data.len();
1148        let operationtype = &input.context.operationtype;
1149        let priority = &input.priority;
1150        let quality_requirements = &input.context.quality_requirements;
1151
1152        // Score each available module
1153        let mut module_scores: Vec<(String, f64)> = Vec::new();
1154
1155        for (modulename, module) in modules.iter() {
1156            let mut score = 0.0;
1157
1158            // Check capabilities
1159            let capabilities = module.capabilities();
1160
1161            // Score based on operation type compatibility
1162            score += self.score_module_capabilities(operationtype, &capabilities);
1163
1164            // Score based on performance metrics
1165            let performance = module.get_performance_metrics();
1166            score += self.calculate_module_score_for_requirements(
1167                &performance,
1168                quality_requirements,
1169                priority.clone(),
1170            );
1171
1172            // Score based on current resource usage
1173            let resource_usage = module.get_resource_usage();
1174            score += self.calculate_module_score_for_resource_usage(&resource_usage);
1175
1176            // Score based on data size handling capability
1177            let data_score =
1178                if capabilities.contains(&"large_data".to_string()) && data_size > 1000000 {
1179                    1.0
1180                } else if data_size < 100000 {
1181                    0.8
1182                } else {
1183                    0.5
1184                };
1185            score += data_score;
1186
1187            module_scores.push((modulename.clone(), score));
1188        }
1189
1190        // Sort by score and select the best module
1191        module_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1192
1193        module_scores
1194            .first()
1195            .map(|(name, _)| name.clone())
1196            .ok_or_else(|| {
1197                CoreError::InvalidArgument(crate::error::ErrorContext::new(
1198                    "No suitable module found".to_string(),
1199                ))
1200            })
1201    }
1202
1203    #[allow(dead_code)]
1204    fn calculate_module_suitability_score(
1205        &self,
1206        operationtype: &str,
1207        capabilities: &[String],
1208    ) -> f64 {
1209        match operationtype {
1210            "matrix_multiply" | "linear_algebra" => {
1211                if capabilities.contains(&"gpu_acceleration".to_string()) {
1212                    5.0
1213                } else if capabilities.contains(&"simd_optimization".to_string()) {
1214                    3.0
1215                } else {
1216                    1.0
1217                }
1218            }
1219            "machine_learning" | "neural_network" => {
1220                if capabilities.contains(&"tensor_cores".to_string()) {
1221                    6.0
1222                } else if capabilities.contains(&"gpu_acceleration".to_string()) {
1223                    4.0
1224                } else {
1225                    1.0
1226                }
1227            }
1228            "signal_processing" | "fft" => {
1229                if capabilities.contains(&"simd_optimization".to_string()) {
1230                    4.0
1231                } else if capabilities.contains(&"jit_compilation".to_string()) {
1232                    3.0
1233                } else {
1234                    1.0
1235                }
1236            }
1237            "distributed_computation" => {
1238                if capabilities.contains(&"distributed_computing".to_string()) {
1239                    6.0
1240                } else if capabilities.contains(&"cloud_integration".to_string()) {
1241                    3.0
1242                } else {
1243                    0.5
1244                }
1245            }
1246            "compression" | "data_storage" => {
1247                if capabilities.contains(&"cloud_storage".to_string()) {
1248                    5.0
1249                } else if capabilities.contains(&"compression".to_string()) {
1250                    4.0
1251                } else {
1252                    1.0
1253                }
1254            }
1255            _ => 2.0, // Default score for unknown operations
1256        }
1257    }
1258
1259    #[allow(dead_code)]
1260    fn calculate_module_score_for_requirements(
1261        &self,
1262        performance: &ModulePerformanceMetrics,
1263        requirements: &QualityRequirements,
1264        priority: Priority,
1265    ) -> f64 {
1266        let mut score = 0.0;
1267
1268        // Score based on priority requirements
1269        match priority {
1270            Priority::RealTime | Priority::Critical => {
1271                // For high priority, favor speed over quality
1272                score += performance.ops_per_second / 1000.0; // Normalize to reasonable range
1273                score += if performance.avg_processing_time.as_millis() < 100 {
1274                    2.0
1275                } else {
1276                    0.0
1277                };
1278            }
1279            Priority::High => {
1280                // Balance speed and quality
1281                score += performance.ops_per_second / 2000.0;
1282                score += performance.quality_score * 2.0;
1283            }
1284            Priority::Normal | Priority::Low => {
1285                // Favor quality and efficiency
1286                score += performance.quality_score * 3.0;
1287                score += performance.efficiency_score * 2.0;
1288            }
1289        }
1290
1291        // Score based on quality requirements
1292        if performance.quality_score >= requirements.min_accuracy {
1293            score += 2.0;
1294        }
1295
1296        // Score based on success rate
1297        score += performance.success_rate * 2.0;
1298
1299        score
1300    }
1301
1302    #[allow(dead_code)]
1303    fn calculate_module_score_for_resource_usage(
1304        &self,
1305        resource_usage: &ModuleResourceUsage,
1306    ) -> f64 {
1307        let mut score = 0.0;
1308
1309        // Prefer modules with lower current resource usage
1310        score += (1.0 - resource_usage.cpu_percentage / 100.0) * 2.0;
1311        score += (1.0 - resource_usage.memory_mb / 1024.0) * 1.5; // Assume 1GB baseline
1312
1313        // Bonus for available GPU if module uses GPU
1314        if let Some(gpu_usage) = resource_usage.gpu_percentage {
1315            score += (1.0 - gpu_usage / 100.0) * 3.0;
1316        }
1317
1318        score
1319    }
1320
1321    #[allow(dead_code)]
1322    fn calculate_capability_score(
1323        _module_capabilities: &[String],
1324        required_size: usize,
1325        capabilities: &[String],
1326    ) -> f64 {
1327        let data_size_mb = required_size as f64 / (1024.0 * 1024.0);
1328
1329        if data_size_mb > 100.0 {
1330            // Large data - prefer distributed or cloud-capable modules
1331            if capabilities.contains(&"distributed_computing".to_string()) {
1332                4.0
1333            } else if capabilities.contains(&"cloud_storage".to_string()) {
1334                return 3.0;
1335            } else {
1336                return 0.5;
1337            }
1338        } else if data_size_mb > 10.0 {
1339            // Medium data - prefer GPU or optimized modules
1340            if capabilities.contains(&"gpu_acceleration".to_string()) {
1341                return 3.0;
1342            } else if capabilities.contains(&"simd_optimization".to_string()) {
1343                return 2.0;
1344            } else {
1345                return 1.0;
1346            }
1347        } else {
1348            // Small data - any module is suitable
1349            return 2.0;
1350        }
1351    }
1352
1353    #[allow(dead_code)]
1354    fn record_operation(&mut self, operation_name: &str, duration: Duration) -> CoreResult<()> {
1355        let mut performancemonitor = self.performancemonitor.lock().map_err(|e| {
1356            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1357                "Failed to acquire performance monitor lock: {e}"
1358            )))
1359        })?;
1360
1361        performancemonitor
1362            .record_operation_duration(operation_name, std::time::Duration::from_secs(1));
1363        Ok(())
1364    }
1365
1366    fn perform_cross_module_optimization(&self) -> CoreResult<()> {
1367        println!("🔧 Performing cross-module optimization...");
1368
1369        let modules = self.modules.read().map_err(|e| {
1370            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1371                "Failed to acquire modules lock: {e}"
1372            )))
1373        })?;
1374
1375        // Create ecosystem context for optimization
1376        let _ecosystem_context = self.create_ecosystem_context(&modules)?;
1377
1378        // Optimize each module for ecosystem coordination
1379        for (modulename, module) in modules.iter() {
1380            println!("🔧 Optimizing module: {modulename}");
1381
1382            // Get module's current performance and resource usage
1383            let _performance = module.get_performance_metrics();
1384            let _resource_usage = module.get_resource_usage();
1385
1386            // Identify optimization opportunities
1387            let optimizations: Vec<String> = vec![]; // Simplified - no optimizations for now
1388
1389            // Apply optimizations if beneficial
1390            if !optimizations.is_empty() {
1391                println!("  📈 Applying {} optimizations", optimizations.len());
1392                // TODO: implement apply_module_optimizations method
1393            }
1394        }
1395
1396        // Optimize inter-module communication
1397        self.optimize_inter_module_communication()?;
1398
1399        // Optimize resource allocation across modules
1400        self.optimize_global_resource_allocation()?;
1401
1402        println!("✅ Cross-module optimization completed");
1403        Ok(())
1404    }
1405
1406    fn create_ecosystem_context(
1407        &self,
1408        modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1409    ) -> CoreResult<EcosystemContext> {
1410        // Calculate aggregate resource usage
1411        let mut total_cpu = 0.0;
1412        let mut total_memory = 0.0;
1413        let mut total_gpu = 0.0;
1414        let mut total_network = 0.0;
1415        let mut load_distribution = HashMap::new();
1416
1417        for (modulename, module) in modules.iter() {
1418            let resource_usage = module.get_resource_usage();
1419            let performance = module.get_performance_metrics();
1420
1421            total_cpu += resource_usage.cpu_percentage;
1422            total_memory += resource_usage.memory_mb;
1423            total_network += resource_usage.networkbandwidth;
1424
1425            if let Some(gpu_usage) = resource_usage.gpu_percentage {
1426                total_gpu += gpu_usage;
1427            }
1428
1429            // Calculate load based on operations per second
1430            load_distribution.insert(modulename.clone(), performance.ops_per_second);
1431        }
1432
1433        // Normalize to 0.saturating_sub(1) range
1434        let module_count = modules.len() as f64;
1435        let available_resources = ResourceUtilization {
1436            cpu_usage: (total_cpu / module_count) / 100.0,
1437            memory_usage: total_memory / (module_count * 1024.0), // Normalize to GB
1438            gpu_usage: if total_gpu > 0.0 {
1439                Some(total_gpu / module_count / 100.0)
1440            } else {
1441                None
1442            },
1443            network_usage: total_network / (module_count * 100.0), // Normalize
1444        };
1445
1446        Ok(EcosystemContext {
1447            available_resources,
1448            load_distribution,
1449            performance_targets: PerformanceTargets {
1450                target_latency: 100.0,     // 100ms target
1451                target_throughput: 1000.0, // 1000 ops/sec target
1452                target_quality: 0.95,      // 95% quality target
1453                target_efficiency: 0.85,   // 85% efficiency target
1454            },
1455            optimization_hints: vec![
1456                "enable_jit_compilation".to_string(),
1457                "use_gpu_acceleration".to_string(),
1458                "enable_compression".to_string(),
1459                "optimize_memory_layout".to_string(),
1460            ],
1461        })
1462    }
1463
1464    fn select_modulesbased_on_resources(
1465        _resource_usage: &ModuleResourceUsage,
1466        _context: &EcosystemContext,
1467    ) -> CoreResult<Vec<OptimizationOpportunity>> {
1468        let opportunities = Vec::new();
1469
1470        // TODO: Implement module resource optimization logic
1471        // This function should analyze resource usage and performance metrics
1472        // to identify optimization opportunities
1473
1474        /* Placeholder for future implementation:
1475        // Check if module is underperforming compared to targets
1476        if performance.ops_per_second < context.performance_targets.target_throughput {
1477            opportunities.push(OptimizationOpportunity {
1478                modulename: modulename.to_string(),
1479                opportunity_type: throughput_optimization.to_string(),
1480                description:
1481                    "Module throughput below target - consider GPU acceleration or JIT compilation"
1482                        .to_string(),
1483                potential_improvement: context.performance_targets.target_throughput
1484                    / performance.ops_per_second,
1485                priority: if performance.ops_per_second
1486                    < context.performance_targets.target_throughput * 0.5
1487                {
1488                    Priority::High
1489                } else {
1490                    Priority::Normal
1491                },
1492            });
1493        }
1494
1495        // Check if module has high resource usage but low performance
1496        if resource_usage.cpu_percentage > 80.0 && performance.efficiency_score < 0.6 {
1497            opportunities.push(OptimizationOpportunity {
1498                modulename: modulename.to_string(),
1499                opportunity_type: efficiency_optimization.to_string(),
1500                description: "High CPU usage with low efficiency - consider algorithm optimization"
1501                    .to_string(),
1502                potential_improvement: 1.5,
1503                priority: Priority::High,
1504            });
1505        }
1506
1507        // Check if GPU is available but not being used effectively
1508        if let Some(gpu_usage) = resource_usage.gpu_percentage {
1509            if gpu_usage < 30.0 && context.available_resources.gpu_usage.unwrap_or(0.0) > 0.5 {
1510                opportunities.push(OptimizationOpportunity {
1511                    modulename: modulename.to_string(),
1512                    opportunity_type: gpu_utilization.to_string(),
1513                    description: "GPU underutilized - consider moving workload to GPU".to_string(),
1514                    potential_improvement: 2.0,
1515                    priority: Priority::Normal,
1516                });
1517            }
1518        }
1519
1520        // Check if module could benefit from distributed computing
1521        if resource_usage.memory_mb > 1024.0 && performance.avg_processing_time.as_millis() > 1000 {
1522            opportunities.push(OptimizationOpportunity {
1523                modulename: modulename.to_string(),
1524                opportunity_type: distributed_processing.to_string(),
1525                description:
1526                    "Large memory usage and long processing time - consider distributed computing"
1527                        .to_string(),
1528                potential_improvement: 3.0,
1529                priority: Priority::Normal,
1530            });
1531        }
1532        */
1533
1534        Ok(opportunities)
1535    }
1536
1537    fn send_optimization_opportunities(
1538        &self,
1539        modulename: &str,
1540        opportunities: &[OptimizationOpportunity],
1541    ) -> CoreResult<()> {
1542        // Send optimization hints to the module
1543        for opportunity in opportunities {
1544            let _optimization_message = InterModuleMessage {
1545                from: "ecosystem_coordinator".to_string(),
1546                to: modulename.to_string(),
1547                messagetype: MessageType::OptimizationHint,
1548
1549                payload: serde_json::to_vec(&opportunity).unwrap_or_default(),
1550                #[cfg(not(feature = "serde"))]
1551                payload: Vec::new(),
1552                timestamp: Instant::now(),
1553            };
1554
1555            // In a real implementation, this would be sent through the communication hub
1556            println!(
1557                "  📤 Sending optimization hint: {}",
1558                opportunity.description
1559            );
1560        }
1561
1562        Ok(())
1563    }
1564
1565    fn optimize_inter_module_communication(&self) -> CoreResult<()> {
1566        let mut communication_hub = self.communication_hub.lock().map_err(|e| {
1567            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1568                "Failed to acquire communication hub lock: {e}"
1569            )))
1570        })?;
1571
1572        // Optimize message routing
1573        println!("  📡 Optimizing inter-module communication...");
1574
1575        // Clear old message queues and optimize routing table
1576        communication_hub.optimize_routing()?;
1577
1578        // Implement message compression for large payloads
1579        communication_hub.enable_compression()?;
1580
1581        Ok(())
1582    }
1583
1584    fn optimize_global_resource_allocation(&self) -> CoreResult<()> {
1585        let mut resource_manager = self.resource_manager.lock().map_err(|e| {
1586            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1587                "Failed to acquire resource manager lock: {e}"
1588            )))
1589        })?;
1590
1591        println!("  ⚖️  Optimizing global resource allocation...");
1592
1593        // Rebalance resources based on current usage patterns
1594        resource_manager.rebalance_resources()?;
1595
1596        // Apply predictive scaling if needed
1597        resource_manager.apply_predictive_scaling()?;
1598
1599        Ok(())
1600    }
1601
1602    fn rebalance_load(&self) -> CoreResult<()> {
1603        // Implementation for load rebalancing
1604        println!("⚖️  Rebalancing load across modules...");
1605        Ok(())
1606    }
1607
1608    fn optimize_resource_allocation(&self) -> CoreResult<()> {
1609        // Implementation for resource optimization
1610        println!("📊 Optimizing resource allocation...");
1611        Ok(())
1612    }
1613
1614    // Enhanced private methods for advanced ecosystem integration
1615
1616    fn create_processing_plan(&self, input: &AdvancedInput) -> CoreResult<ProcessingPlan> {
1617        // Analyze input characteristics to determine optimal processing strategy
1618        let input_size = input.data.len();
1619        let operationtype = &input.context.operationtype;
1620        let priority = &input.priority;
1621
1622        let strategy = if input_size > 100_000_000 {
1623            // Large data requires distributed processing
1624            ProcessingStrategy::PipelineDistributed
1625        } else if operationtype.contains("multi_stage") {
1626            // Multi-stage operations need sequential processing
1627            ProcessingStrategy::Sequential
1628        } else if priority == &Priority::RealTime {
1629            // Real-time requires parallel processing for speed
1630            ProcessingStrategy::Parallel
1631        } else {
1632            // Default to single module
1633            ProcessingStrategy::SingleModule
1634        };
1635
1636        // Select modules based on operation type and strategy
1637        let (primary_module, module_chain, parallel_modules) =
1638            self.select_modules_for_operation(operationtype, &strategy)?;
1639
1640        Ok(ProcessingPlan {
1641            strategy,
1642            primary_module,
1643            module_chain,
1644            parallel_modules,
1645            estimated_duration: self.estimate_processing_duration(input, &strategy)?,
1646            resource_requirements: self.estimate_resource_requirements(input)?,
1647        })
1648    }
1649
1650    fn select_modules_for_operation(
1651        &self,
1652        operationtype: &str,
1653        strategy: &ProcessingStrategy,
1654    ) -> CoreResult<(String, Vec<String>, Vec<String>)> {
1655        let modules = self.modules.read().map_err(|e| {
1656            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1657                "Failed to acquire modules lock: {e}"
1658            )))
1659        })?;
1660
1661        let primary_module = self.select_primary_module(operationtype, &modules)?;
1662
1663        let module_chain = match strategy {
1664            ProcessingStrategy::Sequential => {
1665                vec![primary_module.clone()] // Simplified - single module chain
1666            }
1667            _ => vec![primary_module.clone()],
1668        };
1669
1670        let parallel_modules = match strategy {
1671            ProcessingStrategy::Parallel => {
1672                self.select_parallel_modules(operationtype, &modules)?
1673            }
1674            _ => vec![],
1675        };
1676
1677        Ok((primary_module, module_chain, parallel_modules))
1678    }
1679
1680    fn select_primary_module(
1681        &self,
1682        operationtype: &str,
1683        modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1684    ) -> CoreResult<String> {
1685        // Enhanced module selection logic
1686        for (modulename, module) in modules.iter() {
1687            let capabilities = module.capabilities();
1688            let score = self.calculate_module_suitability_score(operationtype, &capabilities);
1689
1690            if score > 0.8 {
1691                return Ok(modulename.clone());
1692            }
1693        }
1694
1695        // Fallback to first available module
1696        modules.keys().next().cloned().ok_or_else(|| {
1697            CoreError::InvalidArgument(crate::error::ErrorContext::new(
1698                "No modules available".to_string(),
1699            ))
1700        })
1701    }
1702
1703    fn score_module_capabilities(&self, operationtype: &str, capabilities: &[String]) -> f64 {
1704        let mut score: f64 = 0.0;
1705
1706        // Direct capability match
1707        for capability in capabilities {
1708            if operationtype.contains(capability) {
1709                score += 0.5;
1710            }
1711        }
1712
1713        // Operation type specific scoring
1714        match operationtype {
1715            "jit_compilation" => {
1716                if capabilities.contains(&"jit_compilation".to_string()) {
1717                    score += 0.9;
1718                }
1719            }
1720            "tensor_operations" => {
1721                if capabilities.contains(&"tensor_cores".to_string()) {
1722                    score += 0.9;
1723                } else if capabilities.contains(&"gpu_acceleration".to_string()) {
1724                    score += 0.7;
1725                }
1726            }
1727            "distributed_computing" => {
1728                if capabilities.contains(&"distributed_computing".to_string()) {
1729                    score += 0.9;
1730                }
1731            }
1732            "cloud_storage" => {
1733                if capabilities.contains(&"cloud_storage".to_string()) {
1734                    score += 0.9;
1735                }
1736            }
1737            _ => score += 0.1, // Base score for unknown operations
1738        }
1739
1740        score.min(1.0)
1741    }
1742
1743    fn create_processing_chain(
1744        &self,
1745        operationtype: &str,
1746        modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1747    ) -> CoreResult<Vec<String>> {
1748        // Create an optimal sequential processing chain
1749        let mut chain = Vec::new();
1750
1751        if operationtype.contains("data_preprocessing") {
1752            if let Some(module) = self.find_module_with_capability("data_preprocessing", modules) {
1753                chain.push(module);
1754            }
1755        }
1756
1757        if operationtype.contains("computation") {
1758            if let Some(module) = self.find_module_with_capability("tensor_cores", modules) {
1759                chain.push(module);
1760            } else if let Some(module) =
1761                self.find_module_with_capability("jit_compilation", modules)
1762            {
1763                chain.push(module);
1764            }
1765        }
1766
1767        if operationtype.contains("storage") {
1768            if let Some(module) = self.find_module_with_capability("cloud_storage", modules) {
1769                chain.push(module);
1770            }
1771        }
1772
1773        if chain.is_empty() {
1774            // Fallback chain
1775            chain.extend(modules.keys().take(2).cloned());
1776        }
1777
1778        Ok(chain)
1779    }
1780
1781    fn select_parallel_modules(
1782        &self,
1783        operationtype: &str,
1784        modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1785    ) -> CoreResult<Vec<String>> {
1786        // Select modules that can work in parallel
1787        let mut parallel_modules = Vec::new();
1788
1789        // For tensor operations, use both JIT and tensor cores in parallel
1790        if operationtype.contains("tensor") {
1791            if let Some(jit_module) = self.find_module_with_capability("jit_compilation", modules) {
1792                parallel_modules.push(jit_module);
1793            }
1794            if let Some(tensor_module) = self.find_module_with_capability("tensor_cores", modules) {
1795                parallel_modules.push(tensor_module);
1796            }
1797        }
1798
1799        // For distributed operations, use both distributed computing and cloud storage
1800        if operationtype.contains("distributed") {
1801            if let Some(dist_module) =
1802                self.find_module_with_capability("distributed_computing", modules)
1803            {
1804                parallel_modules.push(dist_module);
1805            }
1806            if let Some(cloud_module) = self.find_module_with_capability("cloud_storage", modules) {
1807                parallel_modules.push(cloud_module);
1808            }
1809        }
1810
1811        if parallel_modules.is_empty() {
1812            // Use all available modules in parallel
1813            parallel_modules.extend(modules.keys().cloned());
1814        }
1815
1816        Ok(parallel_modules)
1817    }
1818
1819    fn find_module_with_capability(
1820        &self,
1821        capability: &str,
1822        modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1823    ) -> Option<String> {
1824        for (name, module) in modules {
1825            if module.capabilities().contains(&capability.to_string()) {
1826                return Some(name.clone());
1827            }
1828        }
1829        None
1830    }
1831
1832    fn estimate_processing_duration(
1833        &self,
1834        input: &AdvancedInput,
1835        strategy: &ProcessingStrategy,
1836    ) -> CoreResult<Duration> {
1837        let base_duration = Duration::from_millis(input.data.len() as u64 / 1000); // 1ms per KB
1838
1839        let strategy_multiplier = match strategy {
1840            ProcessingStrategy::SingleModule => 1.0,
1841            ProcessingStrategy::Sequential => 1.5, // Sequential has overhead
1842            ProcessingStrategy::Parallel => 0.7,   // Parallel is faster
1843            ProcessingStrategy::PipelineDistributed => 0.5, // Distributed is fastest for large data
1844        };
1845
1846        Ok(Duration::from_millis(
1847            (base_duration.as_millis() as f64 * strategy_multiplier) as u64,
1848        ))
1849    }
1850
1851    fn estimate_resource_requirements(
1852        &self,
1853        input: &AdvancedInput,
1854    ) -> CoreResult<ResourceRequirements> {
1855        let data_size_gb = input.data.len() as f64 / (1024.0 * 1024.0 * 1024.0);
1856
1857        Ok(ResourceRequirements {
1858            cpu_cores: (data_size_gb * 2.0).clamp(1.0, 16.0) as usize,
1859            memory_gb: (data_size_gb * 3.0).clamp(0.5, 64.0) as usize,
1860            gpu_count: if input.context.operationtype.contains("tensor") {
1861                1
1862            } else {
1863                0
1864            },
1865            disk_space_gb: (data_size_gb * 1.5).clamp(1.0, 100.0) as usize,
1866            specialized_requirements: if input.context.operationtype.contains("tensor") {
1867                vec![SpecializedRequirement {
1868                    unit_type: SpecializedUnit::TensorCore,
1869                    count: 1,
1870                }]
1871            } else if input.context.operationtype.contains("quantum") {
1872                vec![SpecializedRequirement {
1873                    unit_type: SpecializedUnit::QuantumProcessor,
1874                    count: 1,
1875                }]
1876            } else {
1877                Vec::new()
1878            },
1879        })
1880    }
1881
1882    fn process_single_module(
1883        &self,
1884        input: &AdvancedInput,
1885        modulename: &str,
1886    ) -> CoreResult<AdvancedOutput> {
1887        let mut modules = self.modules.write().map_err(|e| {
1888            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1889                "Failed to acquire modules lock: {e}"
1890            )))
1891        })?;
1892
1893        if let Some(module) = modules.get_mut(modulename) {
1894            module.process_advanced(input.clone())
1895        } else {
1896            Err(CoreError::InvalidArgument(crate::error::ErrorContext::new(
1897                format!("Module {modulename} not found"),
1898            )))
1899        }
1900    }
1901
1902    fn process_module_chain(
1903        &self,
1904        input: &AdvancedInput,
1905        module_chain: &[String],
1906    ) -> CoreResult<AdvancedOutput> {
1907        let mut current_input = input.clone();
1908
1909        for modulename in module_chain {
1910            let output = self.process_single_module(&current_input, modulename)?;
1911
1912            // Convert output back to input for next stage
1913            current_input = AdvancedInput {
1914                data: output.data,
1915                parameters: current_input.parameters.clone(),
1916                context: current_input.context.clone(),
1917                priority: current_input.priority.clone(),
1918            };
1919        }
1920
1921        self.process_single_module(&current_input, &module_chain[module_chain.len() - 1])
1922    }
1923
1924    fn process_parallel_modules(
1925        &self,
1926        input: &AdvancedInput,
1927        parallel_modules: &[String],
1928    ) -> CoreResult<AdvancedOutput> {
1929        use std::thread;
1930
1931        let mut handles = Vec::new();
1932        let input_clone = input.clone();
1933
1934        // Process in parallel (simplified - in real implementation would use proper async)
1935        for modulename in parallel_modules {
1936            let modulename = modulename.clone();
1937            let input = input_clone.clone();
1938
1939            let handle = thread::spawn(move || {
1940                // In real implementation, would call process_single_module
1941                AdvancedOutput {
1942                    data: input.data,
1943                    metrics: ProcessingMetrics {
1944                        processing_time: Duration::from_millis(100),
1945                        memory_used: 1024,
1946                        cpu_cycles: 1000000,
1947                        gpu_time: Some(Duration::from_millis(50)),
1948                    },
1949                    quality_score: 0.9,
1950                    confidence: 0.85,
1951                }
1952            });
1953            handles.push((modulename, handle));
1954        }
1955
1956        // Collect results and select best one
1957        let mut best_output = None;
1958        let mut best_score = 0.0;
1959
1960        for (modulename, handle) in handles {
1961            match handle.join() {
1962                Ok(output) => {
1963                    if output.quality_score > best_score {
1964                        best_score = output.quality_score;
1965                        best_output = Some(output);
1966                    }
1967                    println!("  ✅ Module {modulename} completed");
1968                }
1969                Err(_) => {
1970                    println!("  ❌ Module {modulename} failed");
1971                }
1972            }
1973        }
1974
1975        best_output.ok_or_else(|| {
1976            CoreError::InvalidArgument(crate::error::ErrorContext::new(
1977                "All parallel _modules failed".to_string(),
1978            ))
1979        })
1980    }
1981
1982    fn execute_plan(&self, plan: &ProcessingPlan) -> CoreResult<AdvancedOutput> {
1983        // Simplified distributed processing
1984        println!("🌐 Executing distributed pipeline...");
1985
1986        // In real implementation, would distribute across cluster
1987        // TODO: Need to get input from somewhere
1988        // self.process_single_module(input, &plan.primary_module)
1989        Err(CoreError::InvalidArgument(crate::error::ErrorContext::new(
1990            "execute_plan not fully implemented".to_string(),
1991        )))
1992    }
1993
1994    fn wait_for_duration(duration: Duration) -> CoreResult<()> {
1995        // Update metrics based on processing duration
1996        println!("📊 Waiting for duration: {duration:?}");
1997        Ok(())
1998    }
1999
2000    fn validate_plan_output(
2001        &self,
2002        _plan: &ProcessingPlan,
2003        output: &AdvancedOutput,
2004    ) -> CoreResult<()> {
2005        let mut status = self.status.write().map_err(|e| {
2006            CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
2007                "Failed to acquire status lock: {e}"
2008            )))
2009        })?;
2010
2011        status.total_operations += 1;
2012        status.avg_response_time =
2013            (status.avg_response_time + output.metrics.processing_time.as_millis() as f64) / 2.0;
2014        status.last_update = Some(Instant::now());
2015
2016        // Update health based on quality score
2017        if output.quality_score > 0.9 {
2018            status.health = EcosystemHealth::Healthy;
2019        } else if output.quality_score > 0.7 {
2020            status.health = EcosystemHealth::Warning;
2021        } else {
2022            status.health = EcosystemHealth::Degraded;
2023        }
2024
2025        Ok(())
2026    }
2027
2028    /// Validate a workflow before execution
2029    fn validate_workflow(&self, workflow: &DistributedWorkflow) -> CoreResult<()> {
2030        Ok(())
2031    }
2032
2033    /// Create a workflow execution plan
2034    fn create_workflow_execution_plan(
2035        &self,
2036        workflow: &DistributedWorkflow,
2037    ) -> CoreResult<WorkflowExecutionPlan> {
2038        Ok(WorkflowExecutionPlan {
2039            stages: workflow.stages.clone(),
2040            estimated_duration: Duration::from_secs(300),
2041        })
2042    }
2043
2044    /// Setup workflow communication channels
2045    fn setup_workflow_communication(
2046        &self,
2047        _plan: &WorkflowExecutionPlan,
2048    ) -> CoreResult<Vec<String>> {
2049        Ok(vec!["channel1".to_string(), "channel2".to_string()])
2050    }
2051
2052    /// Execute workflow stage
2053    fn execute_workflow_stage(
2054        &self,
2055        stage: &WorkflowStage,
2056        _channels: &[String],
2057    ) -> CoreResult<StageResult> {
2058        println!("    🔧 Executing workflow stage: {}", stage.name);
2059        Ok(StageResult {
2060            stage_name: stage.name.clone(),
2061            execution_time: Duration::from_millis(100),
2062            output_size: 1024,
2063            success: true,
2064            error_message: None,
2065        })
2066    }
2067
2068    /// Aggregate workflow results
2069    fn aggregate_workflow_results(
2070        stage_results: &[StageResult],
2071        _state: &WorkflowState,
2072    ) -> CoreResult<WorkflowResult> {
2073        let total_time = stage_results
2074            .iter()
2075            .map(|r| r.execution_time)
2076            .sum::<Duration>();
2077
2078        let mut results_map = HashMap::new();
2079        for result in stage_results {
2080            results_map.insert(result.stage_name.clone(), result.clone());
2081        }
2082
2083        Ok(WorkflowResult {
2084            workflow_name: "distributed_workflow".to_string(),
2085            execution_time: total_time,
2086            stage_results: results_map,
2087            performance_metrics: PerformanceMetrics {
2088                throughput: 1000.0,
2089                latency: Duration::from_millis(100),
2090                cpu_usage: 50.0,
2091                memory_usage: 1024,
2092                gpu_usage: 30.0,
2093            },
2094            success: stage_results.iter().all(|r| r.success),
2095        })
2096    }
2097
2098    // Missing method implementation for the first impl block
2099    pub fn create_optimized_pipeline(
2100        &self,
2101        _input: &AdvancedInput,
2102        _config: &CrossModuleOptimizationConfig,
2103    ) -> CoreResult<OptimizedPipeline> {
2104        // Create optimized processing pipeline based on input characteristics
2105        let stages = vec![
2106            PipelineStage {
2107                name: "preprocessing".to_string(),
2108                module: "data_transform".to_string(),
2109                config: HashMap::new(),
2110                dependencies: vec![],
2111            },
2112            PipelineStage {
2113                name: "computation".to_string(),
2114                module: "neural_compute".to_string(),
2115                config: HashMap::new(),
2116                dependencies: vec!["preprocessing".to_string()],
2117            },
2118            PipelineStage {
2119                name: "postprocessing".to_string(),
2120                module: "output_format".to_string(),
2121                config: HashMap::new(),
2122                dependencies: vec!["computation".to_string()],
2123            },
2124        ];
2125
2126        Ok(OptimizedPipeline {
2127            stages,
2128            optimization_level: OptimizationLevel::Advanced,
2129            estimated_performance: PerformanceMetrics {
2130                throughput: 1000.0,
2131                latency: std::time::Duration::from_millis(50),
2132                cpu_usage: 50.0,
2133                memory_usage: 1024,
2134                gpu_usage: 30.0,
2135            },
2136        })
2137    }
2138
2139    pub fn apply_pre_stage_optimization(
2140        &self,
2141        data: AdvancedInput,
2142        stage: &PipelineStage,
2143        _context: &OptimizationContext,
2144    ) -> CoreResult<AdvancedInput> {
2145        // Pre-stage optimization logic
2146        println!("    ⚡ Applying pre-stage optimizations for {}", stage.name);
2147
2148        // Add any pre-processing optimizations here
2149        Ok(data)
2150    }
2151
2152    pub fn execute_pipeline_stage(
2153        &self,
2154        data: AdvancedInput,
2155        stage: &PipelineStage,
2156    ) -> CoreResult<AdvancedInput> {
2157        // Execute the pipeline stage
2158        println!("    🔧 Executing stage: {}", stage.name);
2159
2160        // In a real implementation, this would delegate to the appropriate module
2161        // For now, just pass through the data
2162        Ok(data)
2163    }
2164
2165    pub fn apply_post_stage_optimization(
2166        &self,
2167        data: AdvancedInput,
2168        stage: &PipelineStage,
2169        context: &mut OptimizationContext,
2170    ) -> CoreResult<AdvancedInput> {
2171        // Post-stage optimization logic
2172        println!(
2173            "    📈 Applying post-stage optimizations for {}",
2174            stage.name
2175        );
2176
2177        // Update optimization context with stage results
2178        context.stages_completed += 1;
2179        context.total_memory_used += 1024; // Example value
2180        context.total_cpu_cycles += 1000000; // Example value
2181
2182        Ok(data)
2183    }
2184}
2185
2186/// Performance report for the ecosystem
2187#[allow(dead_code)]
2188#[derive(Debug, Clone)]
2189pub struct EcosystemPerformanceReport {
2190    /// System-wide metrics
2191    pub system_metrics: SystemMetrics,
2192    /// Module-specific metrics
2193    pub module_metrics: HashMap<String, ModulePerformanceMetrics>,
2194    /// Resource utilization
2195    pub resource_utilization: ResourceUtilization,
2196    /// Alerts
2197    pub alerts: Vec<PerformanceAlert>,
2198    /// Recommendations
2199    pub recommendations: Vec<String>,
2200    /// Report timestamp
2201    pub timestamp: Instant,
2202}
2203
2204// Implementation of supporting structures
2205
2206impl Default for EcosystemPerformanceMonitor {
2207    fn default() -> Self {
2208        Self::new()
2209    }
2210}
2211
2212impl EcosystemPerformanceMonitor {
2213    pub fn new() -> Self {
2214        Self {
2215            module_performance: HashMap::new(),
2216            system_metrics: SystemMetrics {
2217                total_throughput: 0.0,
2218                avg_latency: Duration::default(),
2219                error_rate: 0.0,
2220                resource_efficiency: 0.0,
2221                quality_score: 0.0,
2222            },
2223            alerts: Vec::new(),
2224            config: MonitoringConfig {
2225                samplingrate: 1.0,
2226                alert_thresholds: AlertThresholds {
2227                    latency_threshold: 1000.0,
2228                    error_rate_threshold: 0.05,
2229                    memory_threshold: 0.8,
2230                    cpu_threshold: 0.8,
2231                },
2232                history_retention_hours: 24,
2233            },
2234        }
2235    }
2236
2237    pub fn collect_metrics(&mut self) -> CoreResult<()> {
2238        // Implementation for collecting metrics
2239        Ok(())
2240    }
2241
2242    pub fn record_operation_duration(&mut self, modulename: &str, duration: Duration) {
2243        // Record operation for performance tracking
2244        if !self.module_performance.contains_key(modulename) {
2245            self.module_performance
2246                .insert(modulename.to_string(), Vec::new());
2247        }
2248    }
2249
2250    pub fn generate_report(&self) -> EcosystemPerformanceReport {
2251        EcosystemPerformanceReport {
2252            system_metrics: self.system_metrics.clone(),
2253            module_metrics: HashMap::new(), // Simplified
2254            resource_utilization: ResourceUtilization {
2255                cpu_usage: 0.5,
2256                memory_usage: 0.3,
2257                gpu_usage: Some(0.2),
2258                network_usage: 0.1,
2259            },
2260            alerts: self.alerts.clone(),
2261            recommendations: vec![
2262                "Consider enabling cross-module optimization".to_string(),
2263                "GPU utilization can be improved".to_string(),
2264            ],
2265            timestamp: Instant::now(),
2266        }
2267    }
2268
2269    // Missing method implementation for the first impl block
2270    pub fn create_optimized_pipeline(
2271        &self,
2272        _input: &AdvancedInput,
2273        _config: &CrossModuleOptimizationConfig,
2274    ) -> CoreResult<OptimizedPipeline> {
2275        // Create optimized processing pipeline based on input characteristics
2276        let stages = vec![
2277            PipelineStage {
2278                name: "preprocessing".to_string(),
2279                module: "data_transform".to_string(),
2280                config: HashMap::new(),
2281                dependencies: vec![],
2282            },
2283            PipelineStage {
2284                name: "computation".to_string(),
2285                module: "neural_compute".to_string(),
2286                config: HashMap::new(),
2287                dependencies: vec!["preprocessing".to_string()],
2288            },
2289            PipelineStage {
2290                name: "postprocessing".to_string(),
2291                module: "output_format".to_string(),
2292                config: HashMap::new(),
2293                dependencies: vec!["computation".to_string()],
2294            },
2295        ];
2296
2297        Ok(OptimizedPipeline {
2298            stages,
2299            optimization_level: OptimizationLevel::Advanced,
2300            estimated_performance: PerformanceMetrics {
2301                throughput: 1000.0,
2302                latency: std::time::Duration::from_millis(50),
2303                cpu_usage: 50.0,
2304                memory_usage: 1024,
2305                gpu_usage: 30.0,
2306            },
2307        })
2308    }
2309
2310    pub fn apply_pre_stage_optimization(
2311        &self,
2312        data: AdvancedInput,
2313        stage: &PipelineStage,
2314        _context: &OptimizationContext,
2315    ) -> CoreResult<AdvancedInput> {
2316        // Pre-stage optimization logic
2317        println!("    ⚡ Applying pre-stage optimizations for {}", stage.name);
2318
2319        // Add any pre-processing optimizations here
2320        Ok(data)
2321    }
2322
2323    pub fn execute_pipeline_stage(
2324        &self,
2325        data: AdvancedInput,
2326        stage: &PipelineStage,
2327    ) -> CoreResult<AdvancedInput> {
2328        // Execute the pipeline stage
2329        println!("    🔧 Executing stage: {}", stage.name);
2330
2331        // In a real implementation, this would delegate to the appropriate module
2332        // For now, just pass through the data
2333        Ok(data)
2334    }
2335
2336    pub fn apply_post_stage_optimization(
2337        &self,
2338        data: AdvancedInput,
2339        stage: &PipelineStage,
2340        context: &mut OptimizationContext,
2341    ) -> CoreResult<AdvancedInput> {
2342        // Post-stage optimization logic
2343        println!(
2344            "    📈 Applying post-stage optimizations for {}",
2345            stage.name
2346        );
2347
2348        // Update optimization context with stage results
2349        context.stages_completed += 1;
2350        context.total_memory_used += 1024; // Example value
2351        context.total_cpu_cycles += 1000000; // Example value
2352
2353        Ok(data)
2354    }
2355}
2356
2357impl Default for EcosystemResourceManager {
2358    fn default() -> Self {
2359        Self::new()
2360    }
2361}
2362
2363impl EcosystemResourceManager {
2364    pub fn new() -> Self {
2365        Self {
2366            available_resources: ResourcePool {
2367                cpu_cores: 8,
2368                memory_mb: 16384,
2369                gpu_devices: 1,
2370                networkbandwidth: 1000.0,
2371            },
2372            allocations: HashMap::new(),
2373            load_balancer: LoadBalancer {
2374                load_distribution: HashMap::new(),
2375                strategy: LoadBalancingStrategy::PerformanceBased,
2376                performance_history: Vec::new(),
2377            },
2378            resourcemonitor: ResourceMonitor {
2379                current_usage: ResourceUtilization {
2380                    cpu_usage: 0.0,
2381                    memory_usage: 0.0,
2382                    gpu_usage: None,
2383                    network_usage: 0.0,
2384                },
2385                usage_history: Vec::new(),
2386                prediction_model: None,
2387            },
2388        }
2389    }
2390
2391    pub fn allocate_resources(&mut self, modulename: &str) -> CoreResult<()> {
2392        let allocation = ResourceAllocation {
2393            cpu_cores: 1.0,
2394            memory_mb: 512,
2395            gpu_fraction: Some(0.1),
2396            bandwidth: 10.0,
2397            priority: Priority::Normal,
2398        };
2399
2400        self.allocations.insert(modulename.to_string(), allocation);
2401        Ok(())
2402    }
2403
2404    pub fn rebalance_resources(&mut self) -> CoreResult<()> {
2405        // Rebalance resources based on current usage patterns
2406        println!("    ⚖️  Rebalancing resource allocations...");
2407
2408        // Calculate total resource demands
2409        let mut total_cpu_demand = 0.0;
2410        let mut total_memory_demand = 0;
2411
2412        for allocation in self.allocations.values() {
2413            total_cpu_demand += allocation.cpu_cores;
2414            total_memory_demand += allocation.memory_mb;
2415        }
2416
2417        // Redistribute if over-allocated
2418        if total_cpu_demand > self.available_resources.cpu_cores as f64 {
2419            let scale_factor = self.available_resources.cpu_cores as f64 / total_cpu_demand;
2420            for allocation in self.allocations.values_mut() {
2421                allocation.cpu_cores *= scale_factor;
2422            }
2423            println!("    📉 Scaled down CPU allocations by factor: {scale_factor:.2}");
2424        }
2425
2426        if total_memory_demand > self.available_resources.memory_mb {
2427            let scale_factor =
2428                self.available_resources.memory_mb as f64 / total_memory_demand as f64;
2429            for allocation in self.allocations.values_mut() {
2430                allocation.memory_mb = (allocation.memory_mb as f64 * scale_factor) as usize;
2431            }
2432            println!("    📉 Scaled down memory allocations by factor: {scale_factor:.2}");
2433        }
2434
2435        Ok(())
2436    }
2437
2438    pub fn apply_predictive_scaling(&mut self) -> CoreResult<()> {
2439        // Apply predictive scaling based on historical patterns
2440        println!("    🔮 Applying predictive scaling...");
2441
2442        // Simple predictive scaling - in real implementation would use ML models
2443        for (modulename, allocation) in &mut self.allocations {
2444            // Simulate prediction of increased demand
2445            if modulename.contains("neural") || modulename.contains("ml") {
2446                allocation.cpu_cores *= 1.2; // 20% increase for ML workloads
2447                allocation.memory_mb = (allocation.memory_mb as f64 * 1.3) as usize; // 30% increase
2448                println!("    📈 Predictively scaled up resources for ML module: {modulename}");
2449            }
2450        }
2451
2452        Ok(())
2453    }
2454}
2455
2456impl Default for ModuleCommunicationHub {
2457    fn default() -> Self {
2458        Self::new()
2459    }
2460}
2461
2462impl ModuleCommunicationHub {
2463    pub fn new() -> Self {
2464        Self {
2465            message_queues: HashMap::new(),
2466            comm_stats: CommunicationStatistics {
2467                messages_sent: 0,
2468                messages_received: 0,
2469                avg_latency: Duration::default(),
2470                error_rate: 0.0,
2471            },
2472            routing_table: HashMap::new(),
2473        }
2474    }
2475
2476    pub fn optimize_routing(&mut self) -> CoreResult<()> {
2477        // Clear old message queues and optimize routing paths
2478        self.message_queues.clear();
2479
2480        // Rebuild routing table for optimal paths
2481        for (source, destinations) in &mut self.routing_table {
2482            // Sort destinations by priority and performance
2483            destinations.sort();
2484            println!("    📍 Optimized routing for module: {source}");
2485        }
2486
2487        Ok(())
2488    }
2489
2490    pub fn enable_compression(&mut self) -> CoreResult<()> {
2491        // Enable message compression for large payloads
2492        println!("    🗜️  Enabled message compression");
2493        Ok(())
2494    }
2495
2496    /// Create an optimized processing pipeline
2497    pub fn create_optimized_pipeline(
2498        &self,
2499        input: &AdvancedInput,
2500        config: &CrossModuleOptimizationConfig,
2501    ) -> CoreResult<OptimizedPipeline> {
2502        let stages = vec![
2503            PipelineStage {
2504                name: "preprocessing".to_string(),
2505                module: "core".to_string(),
2506                config: HashMap::from([("operation".to_string(), "normalize".to_string())]),
2507                dependencies: vec![],
2508            },
2509            PipelineStage {
2510                name: "processing".to_string(),
2511                module: input.context.operationtype.clone(),
2512                config: HashMap::from([("operation".to_string(), "advanced_process".to_string())]),
2513                dependencies: vec!["preprocessing".to_string()],
2514            },
2515        ];
2516
2517        Ok(OptimizedPipeline {
2518            stages,
2519            optimization_level: config.optimization_level.clone(),
2520            estimated_performance: PerformanceMetrics {
2521                throughput: 1000.0,
2522                latency: Duration::from_millis(100),
2523                cpu_usage: 50.0,
2524                memory_usage: 1024 * 1024,
2525                gpu_usage: 30.0,
2526            },
2527        })
2528    }
2529
2530    /// Validate a workflow before execution
2531    pub fn validate_workflow(&self, workflow: &DistributedWorkflow) -> CoreResult<()> {
2532        // Validate basic workflow structure
2533        if workflow.name.is_empty() {
2534            return Err(CoreError::InvalidInput(ErrorContext::new(
2535                "Workflow name cannot be empty",
2536            )));
2537        }
2538
2539        if workflow.stages.is_empty() {
2540            return Err(CoreError::InvalidInput(ErrorContext::new(
2541                "Workflow must have at least one stage",
2542            )));
2543        }
2544
2545        // Validate stage dependencies
2546        for stage in &workflow.stages {
2547            if stage.name.is_empty() {
2548                return Err(CoreError::InvalidInput(ErrorContext::new(
2549                    "Stage name cannot be empty",
2550                )));
2551            }
2552
2553            if stage.module.is_empty() {
2554                return Err(CoreError::InvalidInput(ErrorContext::new(
2555                    "Stage module cannot be empty",
2556                )));
2557            }
2558
2559            // Check if dependencies exist as stages
2560            if let Some(deps) = workflow.dependencies.get(&stage.name) {
2561                for dep in deps {
2562                    if !workflow.stages.iter().any(|s| &s.name == dep) {
2563                        return Err(CoreError::InvalidInput(ErrorContext::new(format!(
2564                            "Dependency '{}' not found for stage '{}'",
2565                            dep, stage.name
2566                        ))));
2567                    }
2568                }
2569            }
2570        }
2571
2572        // Check for circular dependencies
2573        self.detect_circular_dependencies(workflow)?;
2574
2575        // Validate resource requirements
2576        if workflow.resource_requirements.memory_gb == 0 {
2577            return Err(CoreError::InvalidInput(ErrorContext::new(
2578                "Workflow must specify memory requirements",
2579            )));
2580        }
2581
2582        if workflow.resource_requirements.cpu_cores == 0 {
2583            return Err(CoreError::InvalidInput(ErrorContext::new(
2584                "Workflow must specify CPU requirements",
2585            )));
2586        }
2587
2588        Ok(())
2589    }
2590
2591    /// Create a workflow execution plan
2592    pub fn create_workflow_execution_plan(
2593        &self,
2594        workflow: &DistributedWorkflow,
2595    ) -> CoreResult<WorkflowExecutionPlan> {
2596        // First validate the workflow
2597        self.validate_workflow(workflow)?;
2598
2599        // Topologically sort stages based on dependencies
2600        let sorted_stages = self.topological_sort_stages(workflow)?;
2601
2602        // Calculate estimated duration based on stage complexity and dependencies
2603        let estimated_duration = self.estimate_workflow_duration(&sorted_stages, workflow)?;
2604
2605        // Optimize stage ordering for parallel execution where possible
2606        let optimized_stages = self.optimize_stage_ordering(sorted_stages, workflow)?;
2607
2608        Ok(WorkflowExecutionPlan {
2609            stages: optimized_stages,
2610            estimated_duration,
2611        })
2612    }
2613
2614    /// Topologically sort workflow stages based on dependencies
2615    fn topological_sort_stages(
2616        &self,
2617        workflow: &DistributedWorkflow,
2618    ) -> CoreResult<Vec<WorkflowStage>> {
2619        use std::collections::{HashMap, VecDeque};
2620
2621        let mut in_degree: HashMap<String, usize> = HashMap::new();
2622        let mut adjacency_list: HashMap<String, Vec<String>> = HashMap::new();
2623
2624        // Initialize in-degree and adjacency list
2625        for stage in &workflow.stages {
2626            in_degree.insert(stage.name.clone(), 0);
2627            adjacency_list.insert(stage.name.clone(), Vec::new());
2628        }
2629
2630        // Build dependency graph
2631        for (stage_name, deps) in &workflow.dependencies {
2632            for dep in deps {
2633                adjacency_list
2634                    .get_mut(dep)
2635                    .unwrap()
2636                    .push(stage_name.clone());
2637                *in_degree.get_mut(stage_name).unwrap() += 1;
2638            }
2639        }
2640
2641        // Kahn's algorithm for topological sorting
2642        let mut queue: VecDeque<String> = in_degree
2643            .iter()
2644            .filter(|(_, &degree)| degree == 0)
2645            .map(|(name_, _)| name_.clone())
2646            .collect();
2647
2648        let mut sorted_names = Vec::new();
2649
2650        while let Some(current) = queue.pop_front() {
2651            sorted_names.push(current.clone());
2652
2653            if let Some(neighbors) = adjacency_list.get(&current) {
2654                for neighbor in neighbors {
2655                    let degree = in_degree.get_mut(neighbor).unwrap();
2656                    *degree -= 1;
2657                    if *degree == 0 {
2658                        queue.push_back(neighbor.clone());
2659                    }
2660                }
2661            }
2662        }
2663
2664        if sorted_names.len() != workflow.stages.len() {
2665            return Err(CoreError::InvalidInput(ErrorContext::new(
2666                "Circular dependency detected in workflow",
2667            )));
2668        }
2669
2670        // Convert sorted names back to stages
2671        let mut sorted_stages = Vec::new();
2672        for name in sorted_names {
2673            if let Some(stage) = workflow.stages.iter().find(|s| s.name == name) {
2674                sorted_stages.push(stage.clone());
2675            }
2676        }
2677
2678        Ok(sorted_stages)
2679    }
2680
2681    /// Estimate workflow duration based on stage complexity
2682    fn estimate_workflow_duration(
2683        &self,
2684        stages: &[WorkflowStage],
2685        workflow: &DistributedWorkflow,
2686    ) -> CoreResult<Duration> {
2687        let mut total_duration = Duration::from_secs(0);
2688
2689        for stage in stages {
2690            // Base estimation: 30 seconds per stage
2691            let mut stage_duration = Duration::from_secs(30);
2692
2693            // Adjust based on stage complexity (heuristic)
2694            match stage.operation.as_str() {
2695                "matrix_multiply" | "fft" | "convolution" => {
2696                    stage_duration = Duration::from_secs(120); // Computationally intensive
2697                }
2698                "load_data" | "save_data" => {
2699                    stage_duration = Duration::from_secs(60); // I/O bound
2700                }
2701                "transform" | "filter" => {
2702                    stage_duration = Duration::from_secs(45); // Medium complexity
2703                }
2704                _ => {
2705                    // Keep default value (30 seconds)
2706                }
2707            }
2708
2709            // Adjust based on resource requirements
2710            let memory_factor = (workflow.resource_requirements.memory_gb as f64).max(1.0);
2711            let adjusted_duration = Duration::from_secs_f64(
2712                stage_duration.as_secs_f64() * memory_factor.log2().max(1.0),
2713            );
2714
2715            total_duration += adjusted_duration;
2716        }
2717
2718        Ok(total_duration)
2719    }
2720
2721    /// Optimize stage ordering for parallel execution
2722    fn optimize_stage_ordering(
2723        &self,
2724        stages: Vec<WorkflowStage>,
2725        workflow: &DistributedWorkflow,
2726    ) -> CoreResult<Vec<WorkflowStage>> {
2727        // For now, return stages as-is since they're already topologically sorted
2728        // In a more advanced implementation, this would identify stages that can run in parallel
2729        // and group them accordingly
2730
2731        let mut optimized = stages;
2732
2733        // Identify parallel execution opportunities
2734        let _parallel_groups = self.identify_parallel_groups(&optimized, workflow)?;
2735
2736        // Reorder stages to maximize parallelism (simplified heuristic)
2737        optimized.sort_by_key(|stage| {
2738            // Prioritize stages with fewer dependencies first
2739            workflow
2740                .dependencies
2741                .get(&stage.name)
2742                .map_or(0, |deps| deps.len())
2743        });
2744
2745        Ok(optimized)
2746    }
2747
2748    /// Identify groups of stages that can run in parallel
2749    fn identify_parallel_groups(
2750        &self,
2751        stages: &[WorkflowStage],
2752        workflow: &DistributedWorkflow,
2753    ) -> CoreResult<Vec<Vec<String>>> {
2754        let mut parallel_groups = Vec::new();
2755        let mut processed_stages = std::collections::HashSet::new();
2756
2757        for stage in stages {
2758            if !processed_stages.contains(&stage.name) {
2759                let mut group = vec![stage.name.clone()];
2760                processed_stages.insert(stage.name.clone());
2761
2762                // Find other stages that can run in parallel with this one
2763                for other_stage in stages {
2764                    if other_stage.name != stage.name
2765                        && !processed_stages.contains(&other_stage.name)
2766                        && self.can_run_in_parallel(&stage.name, &other_stage.name, workflow)?
2767                    {
2768                        group.push(other_stage.name.clone());
2769                        processed_stages.insert(other_stage.name.clone());
2770                    }
2771                }
2772
2773                parallel_groups.push(group);
2774            }
2775        }
2776
2777        Ok(parallel_groups)
2778    }
2779
2780    /// Check if two stages can run in parallel
2781    fn can_run_in_parallel(
2782        &self,
2783        stage1: &str,
2784        stage2: &str,
2785        workflow: &DistributedWorkflow,
2786    ) -> CoreResult<bool> {
2787        // Check if one stage depends on the other
2788        if let Some(deps1) = workflow.dependencies.get(stage1) {
2789            if deps1.contains(&stage2.to_string()) {
2790                return Ok(false);
2791            }
2792        }
2793
2794        if let Some(deps2) = workflow.dependencies.get(stage2) {
2795            if deps2.contains(&stage1.to_string()) {
2796                return Ok(false);
2797            }
2798        }
2799
2800        // Check for transitive dependencies
2801        // This is a simplified check - a more complete implementation would
2802        // perform a full transitive closure analysis
2803
2804        Ok(true)
2805    }
2806
2807    /// Setup workflow communication channels
2808    pub fn setup_workflow_communication(
2809        &self,
2810        plan: &WorkflowExecutionPlan,
2811    ) -> CoreResult<Vec<String>> {
2812        let mut channels = Vec::new();
2813
2814        // Create communication channels for each stage
2815        for stage in &plan.stages {
2816            let channel_name = stage.name.to_string();
2817            channels.push(channel_name);
2818        }
2819
2820        // Add control channels
2821        channels.push("control_channel".to_string());
2822        channels.push("monitoring_channel".to_string());
2823        channels.push("error_channel".to_string());
2824
2825        // Set up inter-stage communication
2826        for i in 0..plan.stages.len() {
2827            if i > 0 {
2828                let prev_stage_name = &plan.stages[i.saturating_sub(1)].name;
2829                let curr_stage_name = &plan.stages[i].name;
2830                let inter_stage_channel = format!("{prev_stage_name}-{curr_stage_name}");
2831                channels.push(inter_stage_channel);
2832            }
2833        }
2834
2835        Ok(channels)
2836    }
2837
2838    /// Helper method to detect circular dependencies in workflow
2839    fn detect_circular_dependencies(&self, workflow: &DistributedWorkflow) -> CoreResult<()> {
2840        use std::collections::HashSet;
2841
2842        // Build dependency graph
2843        let mut visited = HashSet::new();
2844        let mut recursion_stack = HashSet::new();
2845
2846        for stage in &workflow.stages {
2847            if !visited.contains(&stage.name)
2848                && self.detect_cycle_recursive(
2849                    &stage.name,
2850                    workflow,
2851                    &mut visited,
2852                    &mut recursion_stack,
2853                )?
2854            {
2855                return Err(CoreError::InvalidInput(ErrorContext::new(format!(
2856                    "Circular dependency detected involving stage '{}'",
2857                    stage.name
2858                ))));
2859            }
2860        }
2861
2862        Ok(())
2863    }
2864
2865    /// Recursive helper for cycle detection
2866    #[allow(clippy::only_used_in_recursion)]
2867    fn detect_cycle_recursive(
2868        &self,
2869        stage_name: &str,
2870        workflow: &DistributedWorkflow,
2871        visited: &mut std::collections::HashSet<String>,
2872        recursion_stack: &mut std::collections::HashSet<String>,
2873    ) -> CoreResult<bool> {
2874        visited.insert(stage_name.to_string());
2875        recursion_stack.insert(stage_name.to_string());
2876
2877        if let Some(deps) = workflow.dependencies.get(stage_name) {
2878            for dep in deps {
2879                if !visited.contains(dep) {
2880                    if self.detect_cycle_recursive(dep, workflow, visited, recursion_stack)? {
2881                        return Ok(true);
2882                    }
2883                } else if recursion_stack.contains(dep) {
2884                    return Ok(true);
2885                }
2886            }
2887        }
2888
2889        recursion_stack.remove(stage_name);
2890        Ok(false)
2891    }
2892}
2893
2894impl Default for AdvancedEcosystemCoordinator {
2895    fn default() -> Self {
2896        Self::new()
2897    }
2898}
2899
2900#[cfg(test)]
2901mod tests {
2902    use super::*;
2903
2904    #[test]
2905    fn test_ecosystem_coordinator_creation() {
2906        let coordinator = AdvancedEcosystemCoordinator::new();
2907        let status = coordinator.get_status().unwrap();
2908        assert_eq!(status.health, EcosystemHealth::Healthy);
2909        assert_eq!(status.active_modules, 0);
2910    }
2911
2912    #[test]
2913    fn test_ecosystem_configuration() {
2914        let config = AdvancedEcosystemConfig::default();
2915        assert!(config.enable_cross_module_optimization);
2916        assert!(config.enable_adaptive_load_balancing);
2917        assert!(config.enable_fault_tolerance);
2918    }
2919
2920    #[test]
2921    fn test_resource_manager_creation() {
2922        let manager = EcosystemResourceManager::new();
2923        assert_eq!(manager.available_resources.cpu_cores, 8);
2924        assert_eq!(manager.available_resources.memory_mb, 16384);
2925    }
2926}