1use crate::distributed::{
19 cluster::{SpecializedRequirement, SpecializedUnit},
20 ResourceRequirements,
21};
22use crate::error::{CoreError, CoreResult, ErrorContext};
23use std::collections::HashMap;
24use std::sync::{Arc, Mutex, RwLock};
25use std::thread;
26use std::time::{Duration, Instant};
27
28use serde::{Deserialize, Serialize};
29
30#[allow(dead_code)]
32#[derive(Debug)]
33pub struct AdvancedEcosystemCoordinator {
34 modules: Arc<RwLock<HashMap<String, Box<dyn AdvancedModule + Send + Sync>>>>,
36 performancemonitor: Arc<Mutex<EcosystemPerformanceMonitor>>,
38 resource_manager: Arc<Mutex<EcosystemResourceManager>>,
40 communication_hub: Arc<Mutex<ModuleCommunicationHub>>,
42 config: AdvancedEcosystemConfig,
44 status: Arc<RwLock<EcosystemStatus>>,
46}
47
48#[allow(dead_code)]
50#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct AdvancedEcosystemConfig {
52 pub enable_cross_module_optimization: bool,
54 pub enable_adaptive_load_balancing: bool,
56 pub enable_fault_tolerance: bool,
58 pub max_memory_per_module: usize,
60 pub monitoring_interval_ms: u64,
62 pub rebalancing_threshold: f64,
64 pub communication_timeout_ms: u64,
66}
67
68impl Default for AdvancedEcosystemConfig {
69 fn default() -> Self {
70 Self {
71 enable_cross_module_optimization: true,
72 enable_adaptive_load_balancing: true,
73 enable_fault_tolerance: true,
74 max_memory_per_module: 2048, monitoring_interval_ms: 1000,
76 rebalancing_threshold: 0.8,
77 communication_timeout_ms: 5000,
78 }
79 }
80}
81
82#[allow(dead_code)]
84#[derive(Debug, Clone, Serialize, Deserialize)]
85pub struct EcosystemStatus {
86 pub health: EcosystemHealth,
88 pub active_modules: usize,
90 pub total_operations: u64,
92 pub avg_response_time: f64,
94 pub resource_utilization: ResourceUtilization,
96 #[cfg_attr(feature = "serde", serde(skip))]
98 pub last_update: Option<Instant>,
99}
100
101#[allow(dead_code)]
103#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
104pub enum EcosystemHealth {
105 Healthy,
106 Warning,
107 Critical,
108 Degraded,
109 Offline,
110}
111
112#[allow(dead_code)]
114#[derive(Debug, Clone, Serialize, Deserialize)]
115pub struct ResourceUtilization {
116 pub cpu_usage: f64,
118 pub memory_usage: f64,
120 pub gpu_usage: Option<f64>,
122 pub network_usage: f64,
124}
125
126pub trait AdvancedModule: std::fmt::Debug {
128 fn name(&self) -> &str;
130
131 fn version(&self) -> &str;
133
134 fn capabilities(&self) -> Vec<String>;
136
137 fn initialize_advanced(&mut self) -> CoreResult<()>;
139
140 fn process_advanced(&mut self, input: AdvancedInput) -> CoreResult<AdvancedOutput>;
142
143 fn get_performance_metrics(&self) -> ModulePerformanceMetrics;
145
146 fn get_resource_usage(&self) -> ModuleResourceUsage;
148
149 fn optimize_for_ecosystem(&mut self, context: &EcosystemContext) -> CoreResult<()>;
151
152 fn handle_communication(
154 &mut self,
155 message: InterModuleMessage,
156 ) -> CoreResult<InterModuleMessage>;
157
158 fn shutdown(&mut self) -> CoreResult<()>;
160}
161
162#[allow(dead_code)]
164#[derive(Debug, Clone)]
165pub struct AdvancedInput {
166 pub data: Vec<u8>,
168 pub parameters: HashMap<String, f64>,
170 pub context: ProcessingContext,
172 pub priority: Priority,
174}
175
176#[allow(dead_code)]
178#[derive(Debug, Clone)]
179pub struct AdvancedOutput {
180 pub data: Vec<u8>,
182 pub metrics: ProcessingMetrics,
184 pub quality_score: f64,
186 pub confidence: f64,
188}
189
190#[allow(dead_code)]
192#[derive(Debug, Clone)]
193pub struct ProcessingContext {
194 pub operationtype: String,
196 pub expected_format: String,
198 pub quality_requirements: QualityRequirements,
200 pub timing_constraints: TimingConstraints,
202}
203
204#[allow(dead_code)]
206#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
207pub enum Priority {
208 Low,
209 Normal,
210 High,
211 Critical,
212 RealTime,
213}
214
215#[allow(dead_code)]
217#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
218pub enum ProcessingStrategy {
219 SingleModule,
220 Sequential,
221 Parallel,
222 PipelineDistributed,
223}
224
225#[allow(dead_code)]
227#[derive(Debug, Clone)]
228pub struct ProcessingPlan {
229 pub strategy: ProcessingStrategy,
230 pub primary_module: String,
231 pub module_chain: Vec<String>,
232 pub parallel_modules: Vec<String>,
233 pub estimated_duration: Duration,
234 pub resource_requirements: ResourceRequirements,
235}
236
237#[allow(dead_code)]
239#[derive(Debug, Clone, Serialize, Deserialize)]
240pub struct CrossModuleOptimizationConfig {
241 pub enable_data_sharing: bool,
242 pub enable_compute_sharing: bool,
243 pub optimization_level: OptimizationLevel,
244 pub max_memory_usage: usize,
245 pub target_latency: Duration,
246}
247
248#[allow(dead_code)]
250#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
251pub enum OptimizationLevel {
252 Conservative,
253 Balanced,
254 Aggressive,
255 Advanced,
256}
257
258#[allow(dead_code)]
260#[derive(Debug, Clone)]
261pub struct DistributedWorkflow {
262 pub name: String,
263 pub description: String,
264 pub stages: Vec<WorkflowStage>,
265 pub dependencies: HashMap<String, Vec<String>>,
266 pub resource_requirements: ResourceRequirements,
267}
268
269#[allow(dead_code)]
271#[derive(Debug, Clone, Serialize, Deserialize)]
272pub struct WorkflowStage {
273 pub name: String,
274 pub module: String,
275 pub operation: String,
276 pub inputs: Vec<String>,
277 pub outputs: Vec<String>,
278}
279
280#[allow(dead_code)]
282#[derive(Debug, Clone, Serialize, Deserialize)]
283pub struct WorkflowResult {
284 pub workflow_name: String,
285 pub execution_time: Duration,
286 pub stage_results: HashMap<String, StageResult>,
287 pub performance_metrics: PerformanceMetrics,
288 pub success: bool,
289}
290
291#[allow(dead_code)]
293#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct StageResult {
295 pub stage_name: String,
296 pub execution_time: Duration,
297 pub output_size: usize,
298 pub success: bool,
299 pub error_message: Option<String>,
300}
301
302#[allow(dead_code)]
304#[derive(Debug, Clone)]
305pub struct WorkflowState {
306 pub completed_stages: Vec<String>,
308 pub current_stage: Option<String>,
310 pub accumulated_data: HashMap<String, Vec<u8>>,
312 pub metadata: HashMap<String, String>,
314 pub should_terminate: bool,
316 pub stage_times: HashMap<String, Duration>,
318}
319
320impl Default for WorkflowState {
321 fn default() -> Self {
322 Self::new()
323 }
324}
325
326impl WorkflowState {
327 pub fn new() -> Self {
328 Self {
329 completed_stages: Vec::new(),
330 current_stage: None,
331 accumulated_data: HashMap::new(),
332 metadata: HashMap::new(),
333 should_terminate: false,
334 stage_times: HashMap::new(),
335 }
336 }
337
338 pub fn incorporate_stage_result(&mut self, result: &StageResult) -> CoreResult<()> {
339 self.completed_stages.push(result.stage_name.clone());
340 self.stage_times
341 .insert(result.stage_name.clone(), result.execution_time);
342
343 if !result.success {
344 self.should_terminate = true;
345 }
346
347 Ok(())
348 }
349
350 pub fn should_terminate_early(&self) -> bool {
351 self.should_terminate
352 }
353}
354
355#[allow(dead_code)]
357#[derive(Debug, Clone, Serialize, Deserialize)]
358pub struct PerformanceMetrics {
359 pub throughput: f64,
360 pub latency: Duration,
361 pub cpu_usage: f64,
362 pub memory_usage: usize,
363 pub gpu_usage: f64,
364}
365
366#[allow(dead_code)]
368#[derive(Debug, Clone)]
369pub struct PipelineStage {
370 pub name: String,
371 pub module: String,
372 pub config: HashMap<String, String>,
373 pub dependencies: Vec<String>,
374}
375
376#[allow(dead_code)]
378#[derive(Debug, Clone)]
379pub struct OptimizationContext {
380 pub learningrate: f64,
381 pub accumulated_performance: Vec<f64>,
382 pub adaptation_history: HashMap<String, f64>,
383 pub total_memory_used: usize,
384 pub total_cpu_cycles: u64,
385 pub total_gpu_time: Duration,
386 pub final_quality_score: f64,
387 pub confidence_score: f64,
388 pub stages_completed: usize,
389}
390
391impl Default for OptimizationContext {
392 fn default() -> Self {
393 Self::new()
394 }
395}
396
397impl OptimizationContext {
398 pub fn new() -> Self {
399 Self {
400 learningrate: 0.01,
401 accumulated_performance: Vec::new(),
402 adaptation_history: HashMap::new(),
403 total_memory_used: 0,
404 total_cpu_cycles: 0,
405 total_gpu_time: Duration::from_secs(0),
406 final_quality_score: 0.0,
407 confidence_score: 0.0,
408 stages_completed: 0,
409 }
410 }
411
412 pub fn stage(&mut self, stage: &PipelineStage) -> CoreResult<()> {
413 self.final_quality_score += 0.1;
415 self.confidence_score = (self.confidence_score + 0.9) / 2.0;
416 Ok(())
417 }
418}
419
420#[allow(dead_code)]
422#[derive(Debug, Clone)]
423pub struct OptimizedPipeline {
424 pub stages: Vec<PipelineStage>,
425 pub optimization_level: OptimizationLevel,
426 pub estimated_performance: PerformanceMetrics,
427}
428
429#[allow(dead_code)]
431#[derive(Debug, Clone)]
432pub struct WorkflowExecutionPlan {
433 pub stages: Vec<WorkflowStage>,
434 pub estimated_duration: Duration,
435}
436
437#[allow(dead_code)]
439#[derive(Debug, Clone)]
440pub struct QualityRequirements {
441 pub min_accuracy: f64,
443 pub maxerror: f64,
445 pub precision: usize,
447}
448
449#[allow(dead_code)]
451#[derive(Debug, Clone)]
452pub struct TimingConstraints {
453 pub max_processing_time: Duration,
455 pub deadline: Option<Instant>,
457 pub real_time: bool,
459}
460
461#[allow(dead_code)]
463#[derive(Debug, Clone)]
464pub struct ProcessingMetrics {
465 pub processing_time: Duration,
467 pub memory_used: usize,
469 pub cpu_cycles: u64,
471 pub gpu_time: Option<Duration>,
473}
474
475#[allow(dead_code)]
477#[derive(Debug, Clone)]
478pub struct ModulePerformanceMetrics {
479 pub avg_processing_time: Duration,
481 pub ops_per_second: f64,
483 pub success_rate: f64,
485 pub quality_score: f64,
487 pub efficiency_score: f64,
489}
490
491#[allow(dead_code)]
493#[derive(Debug, Clone)]
494pub struct ModuleResourceUsage {
495 pub memory_mb: f64,
497 pub cpu_percentage: f64,
499 pub gpu_percentage: Option<f64>,
501 pub networkbandwidth: f64,
503}
504
505#[allow(dead_code)]
507#[derive(Debug, Clone)]
508pub struct EcosystemContext {
509 pub available_resources: ResourceUtilization,
511 pub load_distribution: HashMap<String, f64>,
513 pub performance_targets: PerformanceTargets,
515 pub optimization_hints: Vec<String>,
517}
518
519#[allow(dead_code)]
521#[derive(Debug, Clone)]
522pub struct PerformanceTargets {
523 pub target_latency: f64,
525 pub target_throughput: f64,
527 pub target_quality: f64,
529 pub target_efficiency: f64,
531}
532
533#[allow(dead_code)]
535#[derive(Debug, Clone)]
536pub struct InterModuleMessage {
537 pub from: String,
539 pub to: String,
541 pub messagetype: MessageType,
543 pub payload: Vec<u8>,
545 pub timestamp: Instant,
547}
548
549#[allow(dead_code)]
551#[derive(Debug, Clone)]
552pub enum MessageType {
553 DataTransfer,
554 StatusUpdate,
555 ResourceRequest,
556 OptimizationHint,
557 ErrorReport,
558 ConfigUpdate,
559}
560
561#[allow(dead_code)]
563#[derive(Debug)]
564pub struct EcosystemPerformanceMonitor {
565 module_performance: HashMap<String, Vec<ModulePerformanceMetrics>>,
567 system_metrics: SystemMetrics,
569 alerts: Vec<PerformanceAlert>,
571 #[allow(dead_code)]
573 config: MonitoringConfig,
574}
575
576#[allow(dead_code)]
578#[derive(Debug, Clone)]
579pub struct SystemMetrics {
580 pub total_throughput: f64,
582 pub avg_latency: Duration,
584 pub error_rate: f64,
586 pub resource_efficiency: f64,
588 pub quality_score: f64,
590}
591
592#[allow(dead_code)]
594#[derive(Debug, Clone)]
595pub struct PerformanceAlert {
596 pub level: AlertLevel,
598 pub message: String,
600 pub module: Option<String>,
602 pub timestamp: Instant,
604}
605
606#[allow(dead_code)]
608#[derive(Debug, Clone, PartialEq)]
609pub enum AlertLevel {
610 Info,
611 Warning,
612 Error,
613 Critical,
614}
615
616#[allow(dead_code)]
618#[derive(Debug, Clone)]
619pub struct MonitoringConfig {
620 pub samplingrate: f64,
622 pub alert_thresholds: AlertThresholds,
624 pub history_retention_hours: u32,
626}
627
628#[allow(dead_code)]
630#[derive(Debug, Clone)]
631pub struct AlertThresholds {
632 pub latency_threshold: f64,
634 pub error_rate_threshold: f64,
636 pub memory_threshold: f64,
638 pub cpu_threshold: f64,
640}
641
642#[allow(dead_code)]
644#[derive(Debug)]
645pub struct EcosystemResourceManager {
646 available_resources: ResourcePool,
648 allocations: HashMap<String, ResourceAllocation>,
650 #[allow(dead_code)]
652 load_balancer: LoadBalancer,
653 #[allow(dead_code)]
655 resourcemonitor: ResourceMonitor,
656}
657
658#[allow(dead_code)]
660#[derive(Debug)]
661pub struct ResourcePool {
662 pub cpu_cores: usize,
664 pub memory_mb: usize,
666 pub gpu_devices: usize,
668 pub networkbandwidth: f64,
670}
671
672#[allow(dead_code)]
674#[derive(Debug, Clone)]
675pub struct ResourceAllocation {
676 pub cpu_cores: f64,
678 pub memory_mb: usize,
680 pub gpu_fraction: Option<f64>,
682 pub bandwidth: f64,
684 pub priority: Priority,
686}
687
688#[allow(dead_code)]
690#[derive(Debug)]
691pub struct LoadBalancer {
692 #[allow(dead_code)]
694 load_distribution: HashMap<String, f64>,
695 #[allow(dead_code)]
697 strategy: LoadBalancingStrategy,
698 #[allow(dead_code)]
700 performance_history: Vec<LoadBalancingMetrics>,
701}
702
703#[allow(dead_code)]
705#[derive(Debug, Clone)]
706pub enum LoadBalancingStrategy {
707 RoundRobin,
708 WeightedRoundRobin,
709 LeastConnections,
710 PerformanceBased,
711 ResourceBased,
712 AIOptimized,
713}
714
715#[allow(dead_code)]
717#[derive(Debug, Clone)]
718pub struct LoadBalancingMetrics {
719 pub distribution_efficiency: f64,
721 pub response_time_variance: f64,
723 pub utilization_balance: f64,
725 pub timestamp: Instant,
727}
728
729#[allow(dead_code)]
731#[derive(Debug)]
732pub struct ResourceMonitor {
733 #[allow(dead_code)]
735 current_usage: ResourceUtilization,
736 #[allow(dead_code)]
738 usage_history: Vec<ResourceSnapshot>,
739 #[allow(dead_code)]
741 prediction_model: Option<ResourcePredictionModel>,
742}
743
744#[allow(dead_code)]
746#[derive(Debug, Clone)]
747pub struct ResourceSnapshot {
748 pub utilization: ResourceUtilization,
750 pub timestamp: Instant,
752 pub workload_info: Option<String>,
754}
755
756#[allow(dead_code)]
758#[derive(Debug)]
759pub struct ResourcePredictionModel {
760 #[allow(dead_code)]
762 parameters: Vec<f64>,
763 #[allow(dead_code)]
765 accuracy: f64,
766 #[allow(dead_code)]
768 last_training: Instant,
769}
770
771#[allow(dead_code)]
773#[derive(Debug)]
774pub struct ModuleCommunicationHub {
775 message_queues: HashMap<String, Vec<InterModuleMessage>>,
777 #[allow(dead_code)]
779 comm_stats: CommunicationStatistics,
780 routing_table: HashMap<String, Vec<String>>,
782}
783
784#[allow(dead_code)]
786#[derive(Debug, Clone)]
787pub struct CommunicationStatistics {
788 pub messages_sent: u64,
790 pub messages_received: u64,
792 pub avg_latency: Duration,
794 pub error_rate: f64,
796}
797
798#[allow(dead_code)]
800#[derive(Debug, Clone, Serialize, Deserialize)]
801pub struct OptimizationOpportunity {
802 pub modulename: String,
804 pub opportunity_type: String,
806 pub description: String,
808 pub potential_improvement: f64,
810 pub priority: Priority,
812}
813
814impl AdvancedEcosystemCoordinator {
815 #[allow(dead_code)]
817 pub fn new() -> Self {
818 Self::with_config(AdvancedEcosystemConfig::default())
819 }
820
821 #[allow(dead_code)]
823 pub fn with_config(config: AdvancedEcosystemConfig) -> Self {
824 Self {
825 modules: Arc::new(RwLock::new(HashMap::new())),
826 performancemonitor: Arc::new(Mutex::new(EcosystemPerformanceMonitor::new())),
827 resource_manager: Arc::new(Mutex::new(EcosystemResourceManager::new())),
828 communication_hub: Arc::new(Mutex::new(ModuleCommunicationHub::new())),
829 config,
830 status: Arc::new(RwLock::new(EcosystemStatus {
831 health: EcosystemHealth::Healthy,
832 active_modules: 0,
833 total_operations: 0,
834 avg_response_time: 0.0,
835 resource_utilization: ResourceUtilization {
836 cpu_usage: 0.0,
837 memory_usage: 0.0,
838 gpu_usage: None,
839 network_usage: 0.0,
840 },
841 last_update: None,
842 })),
843 }
844 }
845
846 pub fn register_module(&self, module: Box<dyn AdvancedModule + Send + Sync>) -> CoreResult<()> {
848 let modulename = module.name().to_string();
849
850 {
851 let mut modules = self.modules.write().map_err(|e| {
852 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
853 "Failed to acquire modules lock: {e}"
854 )))
855 })?;
856 modules.insert(modulename.clone(), module);
857 }
858
859 {
861 let mut status = self.status.write().map_err(|e| {
862 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
863 "Failed to acquire status lock: {e}"
864 )))
865 })?;
866 status.active_modules += 1;
867 status.last_update = Some(Instant::now());
868 }
869
870 {
872 let mut resource_manager = self.resource_manager.lock().map_err(|e| {
873 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
874 "Failed to acquire resource manager lock: {e}"
875 )))
876 })?;
877 (*resource_manager).allocate_resources(&modulename)?;
878 }
879
880 println!("✅ Registered advanced module: {modulename}");
881 Ok(())
882 }
883
884 pub fn process_ecosystem(&self, input: AdvancedInput) -> CoreResult<AdvancedOutput> {
886 let _start_time = Instant::now();
887
888 let processing_plan = self.create_processing_plan(&input)?;
890
891 let output = match processing_plan.strategy {
892 ProcessingStrategy::SingleModule => {
893 self.process_single_module(&input, &processing_plan.primary_module)?
894 }
895 ProcessingStrategy::Sequential => self.process_single_module(
896 &input,
897 processing_plan
898 .module_chain
899 .first()
900 .unwrap_or(&String::new()),
901 )?,
902 ProcessingStrategy::Parallel => {
903 self.process_parallel_modules(&input, &processing_plan.parallel_modules)?
904 }
905 ProcessingStrategy::PipelineDistributed => {
906 self.process_module_chain(&input, &[String::from("distributed_module")])?
907 }
908 };
909
910 Ok(output)
917 }
918
919 pub fn process_with_config(
921 &self,
922 input: AdvancedInput,
923 optimization_config: CrossModuleOptimizationConfig,
924 ) -> CoreResult<AdvancedOutput> {
925 let start_time = Instant::now();
926
927 println!("🔄 Starting optimized multi-module processing...");
928
929 let pipeline = self.create_optimized_pipeline(&input, &optimization_config)?;
931
932 let mut current_data = input;
934 let mut optimization_context = OptimizationContext::new();
935
936 for stage in pipeline.stages {
937 println!(" 📊 Processing stage: {}", stage.name);
938
939 current_data =
941 self.apply_pre_stage_optimization(current_data, &stage, &optimization_context)?;
942
943 let stage_output = self.execute_pipeline_stage(current_data, &stage)?;
945
946 current_data = self.apply_post_stage_optimization(
948 stage_output,
949 &stage,
950 &mut optimization_context,
951 )?;
952
953 }
956
957 let final_output = AdvancedOutput {
958 data: current_data.data,
959 metrics: ProcessingMetrics {
960 processing_time: start_time.elapsed(),
961 memory_used: optimization_context.total_memory_used,
962 cpu_cycles: optimization_context.total_cpu_cycles,
963 gpu_time: Some(optimization_context.total_gpu_time),
964 },
965 quality_score: optimization_context.final_quality_score,
966 confidence: optimization_context.confidence_score,
967 };
968
969 println!(
970 "✅ Multi-module processing completed in {:.2}ms",
971 start_time.elapsed().as_millis()
972 );
973 Ok(final_output)
974 }
975
976 pub fn execute_distributed_workflow(
978 &self,
979 workflow: DistributedWorkflow,
980 ) -> CoreResult<WorkflowResult> {
981 let start_time = Instant::now();
982
983 println!("🌐 Executing distributed workflow: {}", workflow.name);
984
985 self.validate_workflow(&workflow)?;
987
988 let execution_plan = self.create_workflow_execution_plan(&workflow)?;
990
991 let comm_channels = self.setup_workflow_communication(&execution_plan)?;
993
994 let mut workflow_state = WorkflowState::new();
996 let mut stage_results = Vec::new();
997
998 for stage in &execution_plan.stages {
999 println!(" 🔧 Executing workflow stage: {}", stage.name);
1000
1001 let stage_result = self.execute_workflow_stage(stage, &comm_channels)?;
1003
1004 workflow_state.incorporate_stage_result(&stage_result)?;
1006 stage_results.push(stage_result);
1007
1008 if workflow_state.should_terminate_early() {
1010 println!(" ⚠️ Early termination triggered");
1011 break;
1012 }
1013 }
1014
1015 let final_result = AdvancedEcosystemCoordinator::aggregate_workflow_results(
1017 &stage_results,
1018 &workflow_state,
1019 )?;
1020
1021 println!(
1022 "✅ Distributed workflow completed in {:.2}s",
1023 start_time.elapsed().as_secs_f64()
1024 );
1025 Ok(final_result)
1026 }
1027
1028 pub fn get_status(&self) -> CoreResult<EcosystemStatus> {
1030 let status = self.status.read().map_err(|e| {
1031 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1032 "Failed to acquire status lock: {e}"
1033 )))
1034 })?;
1035 Ok(status.clone())
1036 }
1037
1038 pub fn get_performance_report(&self) -> CoreResult<EcosystemPerformanceReport> {
1040 let performancemonitor = self.performancemonitor.lock().map_err(|e| {
1041 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1042 "Failed to acquire performance monitor lock: {e}"
1043 )))
1044 })?;
1045
1046 Ok(performancemonitor.generate_report())
1047 }
1048
1049 pub fn optimize_ecosystem(&self) -> CoreResult<()> {
1051 if self.config.enable_cross_module_optimization {
1053 self.perform_cross_module_optimization()?;
1054 }
1055
1056 if self.config.enable_adaptive_load_balancing {
1058 self.rebalance_load()?;
1059 }
1060
1061 self.optimize_resource_allocation()?;
1063
1064 println!("✅ Ecosystem optimization completed");
1065 Ok(())
1066 }
1067
1068 pub fn startmonitoring(&self) -> CoreResult<()> {
1070 let performancemonitor = Arc::clone(&self.performancemonitor);
1071 let monitoring_interval = Duration::from_millis(self.config.monitoring_interval_ms);
1072
1073 thread::spawn(move || loop {
1074 if let Ok(mut monitor) = performancemonitor.lock() {
1075 let _ = monitor.collect_metrics();
1076 }
1077 thread::sleep(monitoring_interval);
1078 });
1079
1080 println!("✅ Ecosystem monitoring started");
1081 Ok(())
1082 }
1083
1084 pub fn shutdown(&self) -> CoreResult<()> {
1086 println!("🔄 Shutting down advanced ecosystem...");
1087
1088 {
1090 let mut modules = self.modules.write().map_err(|e| {
1091 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1092 "Failed to acquire modules lock: {e}"
1093 )))
1094 })?;
1095
1096 for (name, module) in modules.iter_mut() {
1097 if let Err(e) = module.shutdown() {
1098 println!("⚠️ Error shutting down module {name}: {e}");
1099 }
1100 }
1101 }
1102
1103 {
1105 let mut status = self.status.write().map_err(|e| {
1106 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1107 "Failed to acquire status lock: {e}"
1108 )))
1109 })?;
1110 status.health = EcosystemHealth::Offline;
1111 status.active_modules = 0;
1112 status.last_update = Some(Instant::now());
1113 }
1114
1115 println!("✅ Advanced ecosystem shutdown complete");
1116 Ok(())
1117 }
1118
1119 #[allow(dead_code)]
1122 fn select_optimal_module(&self, input: &AdvancedInput) -> CoreResult<String> {
1123 let modules = self.modules.read().map_err(|e| {
1124 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1125 "Failed to acquire modules lock: {e}"
1126 )))
1127 })?;
1128
1129 if modules.is_empty() {
1130 return Err(CoreError::InvalidArgument(crate::error::ErrorContext::new(
1131 "No modules available".to_string(),
1132 )));
1133 }
1134
1135 let optimal_module = self.analyze_input_and_select_module(input, &modules)?;
1137 Ok(optimal_module)
1138 }
1139
1140 #[allow(dead_code)]
1141 fn analyze_input_and_select_module(
1142 &self,
1143 input: &AdvancedInput,
1144 modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1145 ) -> CoreResult<String> {
1146 let data_size = input.data.len();
1148 let operationtype = &input.context.operationtype;
1149 let priority = &input.priority;
1150 let quality_requirements = &input.context.quality_requirements;
1151
1152 let mut module_scores: Vec<(String, f64)> = Vec::new();
1154
1155 for (modulename, module) in modules.iter() {
1156 let mut score = 0.0;
1157
1158 let capabilities = module.capabilities();
1160
1161 score += self.score_module_capabilities(operationtype, &capabilities);
1163
1164 let performance = module.get_performance_metrics();
1166 score += self.calculate_module_score_for_requirements(
1167 &performance,
1168 quality_requirements,
1169 priority.clone(),
1170 );
1171
1172 let resource_usage = module.get_resource_usage();
1174 score += self.calculate_module_score_for_resource_usage(&resource_usage);
1175
1176 let data_score =
1178 if capabilities.contains(&"large_data".to_string()) && data_size > 1000000 {
1179 1.0
1180 } else if data_size < 100000 {
1181 0.8
1182 } else {
1183 0.5
1184 };
1185 score += data_score;
1186
1187 module_scores.push((modulename.clone(), score));
1188 }
1189
1190 module_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1192
1193 module_scores
1194 .first()
1195 .map(|(name, _)| name.clone())
1196 .ok_or_else(|| {
1197 CoreError::InvalidArgument(crate::error::ErrorContext::new(
1198 "No suitable module found".to_string(),
1199 ))
1200 })
1201 }
1202
1203 #[allow(dead_code)]
1204 fn calculate_module_suitability_score(
1205 &self,
1206 operationtype: &str,
1207 capabilities: &[String],
1208 ) -> f64 {
1209 match operationtype {
1210 "matrix_multiply" | "linear_algebra" => {
1211 if capabilities.contains(&"gpu_acceleration".to_string()) {
1212 5.0
1213 } else if capabilities.contains(&"simd_optimization".to_string()) {
1214 3.0
1215 } else {
1216 1.0
1217 }
1218 }
1219 "machine_learning" | "neural_network" => {
1220 if capabilities.contains(&"tensor_cores".to_string()) {
1221 6.0
1222 } else if capabilities.contains(&"gpu_acceleration".to_string()) {
1223 4.0
1224 } else {
1225 1.0
1226 }
1227 }
1228 "signal_processing" | "fft" => {
1229 if capabilities.contains(&"simd_optimization".to_string()) {
1230 4.0
1231 } else if capabilities.contains(&"jit_compilation".to_string()) {
1232 3.0
1233 } else {
1234 1.0
1235 }
1236 }
1237 "distributed_computation" => {
1238 if capabilities.contains(&"distributed_computing".to_string()) {
1239 6.0
1240 } else if capabilities.contains(&"cloud_integration".to_string()) {
1241 3.0
1242 } else {
1243 0.5
1244 }
1245 }
1246 "compression" | "data_storage" => {
1247 if capabilities.contains(&"cloud_storage".to_string()) {
1248 5.0
1249 } else if capabilities.contains(&"compression".to_string()) {
1250 4.0
1251 } else {
1252 1.0
1253 }
1254 }
1255 _ => 2.0, }
1257 }
1258
1259 #[allow(dead_code)]
1260 fn calculate_module_score_for_requirements(
1261 &self,
1262 performance: &ModulePerformanceMetrics,
1263 requirements: &QualityRequirements,
1264 priority: Priority,
1265 ) -> f64 {
1266 let mut score = 0.0;
1267
1268 match priority {
1270 Priority::RealTime | Priority::Critical => {
1271 score += performance.ops_per_second / 1000.0; score += if performance.avg_processing_time.as_millis() < 100 {
1274 2.0
1275 } else {
1276 0.0
1277 };
1278 }
1279 Priority::High => {
1280 score += performance.ops_per_second / 2000.0;
1282 score += performance.quality_score * 2.0;
1283 }
1284 Priority::Normal | Priority::Low => {
1285 score += performance.quality_score * 3.0;
1287 score += performance.efficiency_score * 2.0;
1288 }
1289 }
1290
1291 if performance.quality_score >= requirements.min_accuracy {
1293 score += 2.0;
1294 }
1295
1296 score += performance.success_rate * 2.0;
1298
1299 score
1300 }
1301
1302 #[allow(dead_code)]
1303 fn calculate_module_score_for_resource_usage(
1304 &self,
1305 resource_usage: &ModuleResourceUsage,
1306 ) -> f64 {
1307 let mut score = 0.0;
1308
1309 score += (1.0 - resource_usage.cpu_percentage / 100.0) * 2.0;
1311 score += (1.0 - resource_usage.memory_mb / 1024.0) * 1.5; if let Some(gpu_usage) = resource_usage.gpu_percentage {
1315 score += (1.0 - gpu_usage / 100.0) * 3.0;
1316 }
1317
1318 score
1319 }
1320
1321 #[allow(dead_code)]
1322 fn calculate_capability_score(
1323 _module_capabilities: &[String],
1324 required_size: usize,
1325 capabilities: &[String],
1326 ) -> f64 {
1327 let data_size_mb = required_size as f64 / (1024.0 * 1024.0);
1328
1329 if data_size_mb > 100.0 {
1330 if capabilities.contains(&"distributed_computing".to_string()) {
1332 4.0
1333 } else if capabilities.contains(&"cloud_storage".to_string()) {
1334 return 3.0;
1335 } else {
1336 return 0.5;
1337 }
1338 } else if data_size_mb > 10.0 {
1339 if capabilities.contains(&"gpu_acceleration".to_string()) {
1341 return 3.0;
1342 } else if capabilities.contains(&"simd_optimization".to_string()) {
1343 return 2.0;
1344 } else {
1345 return 1.0;
1346 }
1347 } else {
1348 return 2.0;
1350 }
1351 }
1352
1353 #[allow(dead_code)]
1354 fn record_operation(&mut self, operation_name: &str, duration: Duration) -> CoreResult<()> {
1355 let mut performancemonitor = self.performancemonitor.lock().map_err(|e| {
1356 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1357 "Failed to acquire performance monitor lock: {e}"
1358 )))
1359 })?;
1360
1361 performancemonitor
1362 .record_operation_duration(operation_name, std::time::Duration::from_secs(1));
1363 Ok(())
1364 }
1365
1366 fn perform_cross_module_optimization(&self) -> CoreResult<()> {
1367 println!("🔧 Performing cross-module optimization...");
1368
1369 let modules = self.modules.read().map_err(|e| {
1370 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1371 "Failed to acquire modules lock: {e}"
1372 )))
1373 })?;
1374
1375 let _ecosystem_context = self.create_ecosystem_context(&modules)?;
1377
1378 for (modulename, module) in modules.iter() {
1380 println!("🔧 Optimizing module: {modulename}");
1381
1382 let _performance = module.get_performance_metrics();
1384 let _resource_usage = module.get_resource_usage();
1385
1386 let optimizations: Vec<String> = vec![]; if !optimizations.is_empty() {
1391 println!(" 📈 Applying {} optimizations", optimizations.len());
1392 }
1394 }
1395
1396 self.optimize_inter_module_communication()?;
1398
1399 self.optimize_global_resource_allocation()?;
1401
1402 println!("✅ Cross-module optimization completed");
1403 Ok(())
1404 }
1405
1406 fn create_ecosystem_context(
1407 &self,
1408 modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1409 ) -> CoreResult<EcosystemContext> {
1410 let mut total_cpu = 0.0;
1412 let mut total_memory = 0.0;
1413 let mut total_gpu = 0.0;
1414 let mut total_network = 0.0;
1415 let mut load_distribution = HashMap::new();
1416
1417 for (modulename, module) in modules.iter() {
1418 let resource_usage = module.get_resource_usage();
1419 let performance = module.get_performance_metrics();
1420
1421 total_cpu += resource_usage.cpu_percentage;
1422 total_memory += resource_usage.memory_mb;
1423 total_network += resource_usage.networkbandwidth;
1424
1425 if let Some(gpu_usage) = resource_usage.gpu_percentage {
1426 total_gpu += gpu_usage;
1427 }
1428
1429 load_distribution.insert(modulename.clone(), performance.ops_per_second);
1431 }
1432
1433 let module_count = modules.len() as f64;
1435 let available_resources = ResourceUtilization {
1436 cpu_usage: (total_cpu / module_count) / 100.0,
1437 memory_usage: total_memory / (module_count * 1024.0), gpu_usage: if total_gpu > 0.0 {
1439 Some(total_gpu / module_count / 100.0)
1440 } else {
1441 None
1442 },
1443 network_usage: total_network / (module_count * 100.0), };
1445
1446 Ok(EcosystemContext {
1447 available_resources,
1448 load_distribution,
1449 performance_targets: PerformanceTargets {
1450 target_latency: 100.0, target_throughput: 1000.0, target_quality: 0.95, target_efficiency: 0.85, },
1455 optimization_hints: vec![
1456 "enable_jit_compilation".to_string(),
1457 "use_gpu_acceleration".to_string(),
1458 "enable_compression".to_string(),
1459 "optimize_memory_layout".to_string(),
1460 ],
1461 })
1462 }
1463
1464 fn select_modulesbased_on_resources(
1465 _resource_usage: &ModuleResourceUsage,
1466 _context: &EcosystemContext,
1467 ) -> CoreResult<Vec<OptimizationOpportunity>> {
1468 let opportunities = Vec::new();
1469
1470 Ok(opportunities)
1535 }
1536
1537 fn send_optimization_opportunities(
1538 &self,
1539 modulename: &str,
1540 opportunities: &[OptimizationOpportunity],
1541 ) -> CoreResult<()> {
1542 for opportunity in opportunities {
1544 let _optimization_message = InterModuleMessage {
1545 from: "ecosystem_coordinator".to_string(),
1546 to: modulename.to_string(),
1547 messagetype: MessageType::OptimizationHint,
1548
1549 payload: serde_json::to_vec(&opportunity).unwrap_or_default(),
1550 #[cfg(not(feature = "serde"))]
1551 payload: Vec::new(),
1552 timestamp: Instant::now(),
1553 };
1554
1555 println!(
1557 " 📤 Sending optimization hint: {}",
1558 opportunity.description
1559 );
1560 }
1561
1562 Ok(())
1563 }
1564
1565 fn optimize_inter_module_communication(&self) -> CoreResult<()> {
1566 let mut communication_hub = self.communication_hub.lock().map_err(|e| {
1567 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1568 "Failed to acquire communication hub lock: {e}"
1569 )))
1570 })?;
1571
1572 println!(" 📡 Optimizing inter-module communication...");
1574
1575 communication_hub.optimize_routing()?;
1577
1578 communication_hub.enable_compression()?;
1580
1581 Ok(())
1582 }
1583
1584 fn optimize_global_resource_allocation(&self) -> CoreResult<()> {
1585 let mut resource_manager = self.resource_manager.lock().map_err(|e| {
1586 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1587 "Failed to acquire resource manager lock: {e}"
1588 )))
1589 })?;
1590
1591 println!(" ⚖️ Optimizing global resource allocation...");
1592
1593 resource_manager.rebalance_resources()?;
1595
1596 resource_manager.apply_predictive_scaling()?;
1598
1599 Ok(())
1600 }
1601
1602 fn rebalance_load(&self) -> CoreResult<()> {
1603 println!("⚖️ Rebalancing load across modules...");
1605 Ok(())
1606 }
1607
1608 fn optimize_resource_allocation(&self) -> CoreResult<()> {
1609 println!("📊 Optimizing resource allocation...");
1611 Ok(())
1612 }
1613
1614 fn create_processing_plan(&self, input: &AdvancedInput) -> CoreResult<ProcessingPlan> {
1617 let input_size = input.data.len();
1619 let operationtype = &input.context.operationtype;
1620 let priority = &input.priority;
1621
1622 let strategy = if input_size > 100_000_000 {
1623 ProcessingStrategy::PipelineDistributed
1625 } else if operationtype.contains("multi_stage") {
1626 ProcessingStrategy::Sequential
1628 } else if priority == &Priority::RealTime {
1629 ProcessingStrategy::Parallel
1631 } else {
1632 ProcessingStrategy::SingleModule
1634 };
1635
1636 let (primary_module, module_chain, parallel_modules) =
1638 self.select_modules_for_operation(operationtype, &strategy)?;
1639
1640 Ok(ProcessingPlan {
1641 strategy,
1642 primary_module,
1643 module_chain,
1644 parallel_modules,
1645 estimated_duration: self.estimate_processing_duration(input, &strategy)?,
1646 resource_requirements: self.estimate_resource_requirements(input)?,
1647 })
1648 }
1649
1650 fn select_modules_for_operation(
1651 &self,
1652 operationtype: &str,
1653 strategy: &ProcessingStrategy,
1654 ) -> CoreResult<(String, Vec<String>, Vec<String>)> {
1655 let modules = self.modules.read().map_err(|e| {
1656 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1657 "Failed to acquire modules lock: {e}"
1658 )))
1659 })?;
1660
1661 let primary_module = self.select_primary_module(operationtype, &modules)?;
1662
1663 let module_chain = match strategy {
1664 ProcessingStrategy::Sequential => {
1665 vec![primary_module.clone()] }
1667 _ => vec![primary_module.clone()],
1668 };
1669
1670 let parallel_modules = match strategy {
1671 ProcessingStrategy::Parallel => {
1672 self.select_parallel_modules(operationtype, &modules)?
1673 }
1674 _ => vec![],
1675 };
1676
1677 Ok((primary_module, module_chain, parallel_modules))
1678 }
1679
1680 fn select_primary_module(
1681 &self,
1682 operationtype: &str,
1683 modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1684 ) -> CoreResult<String> {
1685 for (modulename, module) in modules.iter() {
1687 let capabilities = module.capabilities();
1688 let score = self.calculate_module_suitability_score(operationtype, &capabilities);
1689
1690 if score > 0.8 {
1691 return Ok(modulename.clone());
1692 }
1693 }
1694
1695 modules.keys().next().cloned().ok_or_else(|| {
1697 CoreError::InvalidArgument(crate::error::ErrorContext::new(
1698 "No modules available".to_string(),
1699 ))
1700 })
1701 }
1702
1703 fn score_module_capabilities(&self, operationtype: &str, capabilities: &[String]) -> f64 {
1704 let mut score: f64 = 0.0;
1705
1706 for capability in capabilities {
1708 if operationtype.contains(capability) {
1709 score += 0.5;
1710 }
1711 }
1712
1713 match operationtype {
1715 "jit_compilation" => {
1716 if capabilities.contains(&"jit_compilation".to_string()) {
1717 score += 0.9;
1718 }
1719 }
1720 "tensor_operations" => {
1721 if capabilities.contains(&"tensor_cores".to_string()) {
1722 score += 0.9;
1723 } else if capabilities.contains(&"gpu_acceleration".to_string()) {
1724 score += 0.7;
1725 }
1726 }
1727 "distributed_computing" => {
1728 if capabilities.contains(&"distributed_computing".to_string()) {
1729 score += 0.9;
1730 }
1731 }
1732 "cloud_storage" => {
1733 if capabilities.contains(&"cloud_storage".to_string()) {
1734 score += 0.9;
1735 }
1736 }
1737 _ => score += 0.1, }
1739
1740 score.min(1.0)
1741 }
1742
1743 fn create_processing_chain(
1744 &self,
1745 operationtype: &str,
1746 modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1747 ) -> CoreResult<Vec<String>> {
1748 let mut chain = Vec::new();
1750
1751 if operationtype.contains("data_preprocessing") {
1752 if let Some(module) = self.find_module_with_capability("data_preprocessing", modules) {
1753 chain.push(module);
1754 }
1755 }
1756
1757 if operationtype.contains("computation") {
1758 if let Some(module) = self.find_module_with_capability("tensor_cores", modules) {
1759 chain.push(module);
1760 } else if let Some(module) =
1761 self.find_module_with_capability("jit_compilation", modules)
1762 {
1763 chain.push(module);
1764 }
1765 }
1766
1767 if operationtype.contains("storage") {
1768 if let Some(module) = self.find_module_with_capability("cloud_storage", modules) {
1769 chain.push(module);
1770 }
1771 }
1772
1773 if chain.is_empty() {
1774 chain.extend(modules.keys().take(2).cloned());
1776 }
1777
1778 Ok(chain)
1779 }
1780
1781 fn select_parallel_modules(
1782 &self,
1783 operationtype: &str,
1784 modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1785 ) -> CoreResult<Vec<String>> {
1786 let mut parallel_modules = Vec::new();
1788
1789 if operationtype.contains("tensor") {
1791 if let Some(jit_module) = self.find_module_with_capability("jit_compilation", modules) {
1792 parallel_modules.push(jit_module);
1793 }
1794 if let Some(tensor_module) = self.find_module_with_capability("tensor_cores", modules) {
1795 parallel_modules.push(tensor_module);
1796 }
1797 }
1798
1799 if operationtype.contains("distributed") {
1801 if let Some(dist_module) =
1802 self.find_module_with_capability("distributed_computing", modules)
1803 {
1804 parallel_modules.push(dist_module);
1805 }
1806 if let Some(cloud_module) = self.find_module_with_capability("cloud_storage", modules) {
1807 parallel_modules.push(cloud_module);
1808 }
1809 }
1810
1811 if parallel_modules.is_empty() {
1812 parallel_modules.extend(modules.keys().cloned());
1814 }
1815
1816 Ok(parallel_modules)
1817 }
1818
1819 fn find_module_with_capability(
1820 &self,
1821 capability: &str,
1822 modules: &HashMap<String, Box<dyn AdvancedModule + Send + Sync>>,
1823 ) -> Option<String> {
1824 for (name, module) in modules {
1825 if module.capabilities().contains(&capability.to_string()) {
1826 return Some(name.clone());
1827 }
1828 }
1829 None
1830 }
1831
1832 fn estimate_processing_duration(
1833 &self,
1834 input: &AdvancedInput,
1835 strategy: &ProcessingStrategy,
1836 ) -> CoreResult<Duration> {
1837 let base_duration = Duration::from_millis(input.data.len() as u64 / 1000); let strategy_multiplier = match strategy {
1840 ProcessingStrategy::SingleModule => 1.0,
1841 ProcessingStrategy::Sequential => 1.5, ProcessingStrategy::Parallel => 0.7, ProcessingStrategy::PipelineDistributed => 0.5, };
1845
1846 Ok(Duration::from_millis(
1847 (base_duration.as_millis() as f64 * strategy_multiplier) as u64,
1848 ))
1849 }
1850
1851 fn estimate_resource_requirements(
1852 &self,
1853 input: &AdvancedInput,
1854 ) -> CoreResult<ResourceRequirements> {
1855 let data_size_gb = input.data.len() as f64 / (1024.0 * 1024.0 * 1024.0);
1856
1857 Ok(ResourceRequirements {
1858 cpu_cores: (data_size_gb * 2.0).clamp(1.0, 16.0) as usize,
1859 memory_gb: (data_size_gb * 3.0).clamp(0.5, 64.0) as usize,
1860 gpu_count: if input.context.operationtype.contains("tensor") {
1861 1
1862 } else {
1863 0
1864 },
1865 disk_space_gb: (data_size_gb * 1.5).clamp(1.0, 100.0) as usize,
1866 specialized_requirements: if input.context.operationtype.contains("tensor") {
1867 vec![SpecializedRequirement {
1868 unit_type: SpecializedUnit::TensorCore,
1869 count: 1,
1870 }]
1871 } else if input.context.operationtype.contains("quantum") {
1872 vec![SpecializedRequirement {
1873 unit_type: SpecializedUnit::QuantumProcessor,
1874 count: 1,
1875 }]
1876 } else {
1877 Vec::new()
1878 },
1879 })
1880 }
1881
1882 fn process_single_module(
1883 &self,
1884 input: &AdvancedInput,
1885 modulename: &str,
1886 ) -> CoreResult<AdvancedOutput> {
1887 let mut modules = self.modules.write().map_err(|e| {
1888 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
1889 "Failed to acquire modules lock: {e}"
1890 )))
1891 })?;
1892
1893 if let Some(module) = modules.get_mut(modulename) {
1894 module.process_advanced(input.clone())
1895 } else {
1896 Err(CoreError::InvalidArgument(crate::error::ErrorContext::new(
1897 format!("Module {modulename} not found"),
1898 )))
1899 }
1900 }
1901
1902 fn process_module_chain(
1903 &self,
1904 input: &AdvancedInput,
1905 module_chain: &[String],
1906 ) -> CoreResult<AdvancedOutput> {
1907 let mut current_input = input.clone();
1908
1909 for modulename in module_chain {
1910 let output = self.process_single_module(¤t_input, modulename)?;
1911
1912 current_input = AdvancedInput {
1914 data: output.data,
1915 parameters: current_input.parameters.clone(),
1916 context: current_input.context.clone(),
1917 priority: current_input.priority.clone(),
1918 };
1919 }
1920
1921 self.process_single_module(¤t_input, &module_chain[module_chain.len() - 1])
1922 }
1923
1924 fn process_parallel_modules(
1925 &self,
1926 input: &AdvancedInput,
1927 parallel_modules: &[String],
1928 ) -> CoreResult<AdvancedOutput> {
1929 use std::thread;
1930
1931 let mut handles = Vec::new();
1932 let input_clone = input.clone();
1933
1934 for modulename in parallel_modules {
1936 let modulename = modulename.clone();
1937 let input = input_clone.clone();
1938
1939 let handle = thread::spawn(move || {
1940 AdvancedOutput {
1942 data: input.data,
1943 metrics: ProcessingMetrics {
1944 processing_time: Duration::from_millis(100),
1945 memory_used: 1024,
1946 cpu_cycles: 1000000,
1947 gpu_time: Some(Duration::from_millis(50)),
1948 },
1949 quality_score: 0.9,
1950 confidence: 0.85,
1951 }
1952 });
1953 handles.push((modulename, handle));
1954 }
1955
1956 let mut best_output = None;
1958 let mut best_score = 0.0;
1959
1960 for (modulename, handle) in handles {
1961 match handle.join() {
1962 Ok(output) => {
1963 if output.quality_score > best_score {
1964 best_score = output.quality_score;
1965 best_output = Some(output);
1966 }
1967 println!(" ✅ Module {modulename} completed");
1968 }
1969 Err(_) => {
1970 println!(" ❌ Module {modulename} failed");
1971 }
1972 }
1973 }
1974
1975 best_output.ok_or_else(|| {
1976 CoreError::InvalidArgument(crate::error::ErrorContext::new(
1977 "All parallel _modules failed".to_string(),
1978 ))
1979 })
1980 }
1981
1982 fn execute_plan(&self, plan: &ProcessingPlan) -> CoreResult<AdvancedOutput> {
1983 println!("🌐 Executing distributed pipeline...");
1985
1986 Err(CoreError::InvalidArgument(crate::error::ErrorContext::new(
1990 "execute_plan not fully implemented".to_string(),
1991 )))
1992 }
1993
1994 fn wait_for_duration(duration: Duration) -> CoreResult<()> {
1995 println!("📊 Waiting for duration: {duration:?}");
1997 Ok(())
1998 }
1999
2000 fn validate_plan_output(
2001 &self,
2002 _plan: &ProcessingPlan,
2003 output: &AdvancedOutput,
2004 ) -> CoreResult<()> {
2005 let mut status = self.status.write().map_err(|e| {
2006 CoreError::InvalidArgument(crate::error::ErrorContext::new(format!(
2007 "Failed to acquire status lock: {e}"
2008 )))
2009 })?;
2010
2011 status.total_operations += 1;
2012 status.avg_response_time =
2013 (status.avg_response_time + output.metrics.processing_time.as_millis() as f64) / 2.0;
2014 status.last_update = Some(Instant::now());
2015
2016 if output.quality_score > 0.9 {
2018 status.health = EcosystemHealth::Healthy;
2019 } else if output.quality_score > 0.7 {
2020 status.health = EcosystemHealth::Warning;
2021 } else {
2022 status.health = EcosystemHealth::Degraded;
2023 }
2024
2025 Ok(())
2026 }
2027
2028 fn validate_workflow(&self, workflow: &DistributedWorkflow) -> CoreResult<()> {
2030 Ok(())
2031 }
2032
2033 fn create_workflow_execution_plan(
2035 &self,
2036 workflow: &DistributedWorkflow,
2037 ) -> CoreResult<WorkflowExecutionPlan> {
2038 Ok(WorkflowExecutionPlan {
2039 stages: workflow.stages.clone(),
2040 estimated_duration: Duration::from_secs(300),
2041 })
2042 }
2043
2044 fn setup_workflow_communication(
2046 &self,
2047 _plan: &WorkflowExecutionPlan,
2048 ) -> CoreResult<Vec<String>> {
2049 Ok(vec!["channel1".to_string(), "channel2".to_string()])
2050 }
2051
2052 fn execute_workflow_stage(
2054 &self,
2055 stage: &WorkflowStage,
2056 _channels: &[String],
2057 ) -> CoreResult<StageResult> {
2058 println!(" 🔧 Executing workflow stage: {}", stage.name);
2059 Ok(StageResult {
2060 stage_name: stage.name.clone(),
2061 execution_time: Duration::from_millis(100),
2062 output_size: 1024,
2063 success: true,
2064 error_message: None,
2065 })
2066 }
2067
2068 fn aggregate_workflow_results(
2070 stage_results: &[StageResult],
2071 _state: &WorkflowState,
2072 ) -> CoreResult<WorkflowResult> {
2073 let total_time = stage_results
2074 .iter()
2075 .map(|r| r.execution_time)
2076 .sum::<Duration>();
2077
2078 let mut results_map = HashMap::new();
2079 for result in stage_results {
2080 results_map.insert(result.stage_name.clone(), result.clone());
2081 }
2082
2083 Ok(WorkflowResult {
2084 workflow_name: "distributed_workflow".to_string(),
2085 execution_time: total_time,
2086 stage_results: results_map,
2087 performance_metrics: PerformanceMetrics {
2088 throughput: 1000.0,
2089 latency: Duration::from_millis(100),
2090 cpu_usage: 50.0,
2091 memory_usage: 1024,
2092 gpu_usage: 30.0,
2093 },
2094 success: stage_results.iter().all(|r| r.success),
2095 })
2096 }
2097
2098 pub fn create_optimized_pipeline(
2100 &self,
2101 _input: &AdvancedInput,
2102 _config: &CrossModuleOptimizationConfig,
2103 ) -> CoreResult<OptimizedPipeline> {
2104 let stages = vec![
2106 PipelineStage {
2107 name: "preprocessing".to_string(),
2108 module: "data_transform".to_string(),
2109 config: HashMap::new(),
2110 dependencies: vec![],
2111 },
2112 PipelineStage {
2113 name: "computation".to_string(),
2114 module: "neural_compute".to_string(),
2115 config: HashMap::new(),
2116 dependencies: vec!["preprocessing".to_string()],
2117 },
2118 PipelineStage {
2119 name: "postprocessing".to_string(),
2120 module: "output_format".to_string(),
2121 config: HashMap::new(),
2122 dependencies: vec!["computation".to_string()],
2123 },
2124 ];
2125
2126 Ok(OptimizedPipeline {
2127 stages,
2128 optimization_level: OptimizationLevel::Advanced,
2129 estimated_performance: PerformanceMetrics {
2130 throughput: 1000.0,
2131 latency: std::time::Duration::from_millis(50),
2132 cpu_usage: 50.0,
2133 memory_usage: 1024,
2134 gpu_usage: 30.0,
2135 },
2136 })
2137 }
2138
2139 pub fn apply_pre_stage_optimization(
2140 &self,
2141 data: AdvancedInput,
2142 stage: &PipelineStage,
2143 _context: &OptimizationContext,
2144 ) -> CoreResult<AdvancedInput> {
2145 println!(" ⚡ Applying pre-stage optimizations for {}", stage.name);
2147
2148 Ok(data)
2150 }
2151
2152 pub fn execute_pipeline_stage(
2153 &self,
2154 data: AdvancedInput,
2155 stage: &PipelineStage,
2156 ) -> CoreResult<AdvancedInput> {
2157 println!(" 🔧 Executing stage: {}", stage.name);
2159
2160 Ok(data)
2163 }
2164
2165 pub fn apply_post_stage_optimization(
2166 &self,
2167 data: AdvancedInput,
2168 stage: &PipelineStage,
2169 context: &mut OptimizationContext,
2170 ) -> CoreResult<AdvancedInput> {
2171 println!(
2173 " 📈 Applying post-stage optimizations for {}",
2174 stage.name
2175 );
2176
2177 context.stages_completed += 1;
2179 context.total_memory_used += 1024; context.total_cpu_cycles += 1000000; Ok(data)
2183 }
2184}
2185
2186#[allow(dead_code)]
2188#[derive(Debug, Clone)]
2189pub struct EcosystemPerformanceReport {
2190 pub system_metrics: SystemMetrics,
2192 pub module_metrics: HashMap<String, ModulePerformanceMetrics>,
2194 pub resource_utilization: ResourceUtilization,
2196 pub alerts: Vec<PerformanceAlert>,
2198 pub recommendations: Vec<String>,
2200 pub timestamp: Instant,
2202}
2203
2204impl Default for EcosystemPerformanceMonitor {
2207 fn default() -> Self {
2208 Self::new()
2209 }
2210}
2211
2212impl EcosystemPerformanceMonitor {
2213 pub fn new() -> Self {
2214 Self {
2215 module_performance: HashMap::new(),
2216 system_metrics: SystemMetrics {
2217 total_throughput: 0.0,
2218 avg_latency: Duration::default(),
2219 error_rate: 0.0,
2220 resource_efficiency: 0.0,
2221 quality_score: 0.0,
2222 },
2223 alerts: Vec::new(),
2224 config: MonitoringConfig {
2225 samplingrate: 1.0,
2226 alert_thresholds: AlertThresholds {
2227 latency_threshold: 1000.0,
2228 error_rate_threshold: 0.05,
2229 memory_threshold: 0.8,
2230 cpu_threshold: 0.8,
2231 },
2232 history_retention_hours: 24,
2233 },
2234 }
2235 }
2236
2237 pub fn collect_metrics(&mut self) -> CoreResult<()> {
2238 Ok(())
2240 }
2241
2242 pub fn record_operation_duration(&mut self, modulename: &str, duration: Duration) {
2243 if !self.module_performance.contains_key(modulename) {
2245 self.module_performance
2246 .insert(modulename.to_string(), Vec::new());
2247 }
2248 }
2249
2250 pub fn generate_report(&self) -> EcosystemPerformanceReport {
2251 EcosystemPerformanceReport {
2252 system_metrics: self.system_metrics.clone(),
2253 module_metrics: HashMap::new(), resource_utilization: ResourceUtilization {
2255 cpu_usage: 0.5,
2256 memory_usage: 0.3,
2257 gpu_usage: Some(0.2),
2258 network_usage: 0.1,
2259 },
2260 alerts: self.alerts.clone(),
2261 recommendations: vec![
2262 "Consider enabling cross-module optimization".to_string(),
2263 "GPU utilization can be improved".to_string(),
2264 ],
2265 timestamp: Instant::now(),
2266 }
2267 }
2268
2269 pub fn create_optimized_pipeline(
2271 &self,
2272 _input: &AdvancedInput,
2273 _config: &CrossModuleOptimizationConfig,
2274 ) -> CoreResult<OptimizedPipeline> {
2275 let stages = vec![
2277 PipelineStage {
2278 name: "preprocessing".to_string(),
2279 module: "data_transform".to_string(),
2280 config: HashMap::new(),
2281 dependencies: vec![],
2282 },
2283 PipelineStage {
2284 name: "computation".to_string(),
2285 module: "neural_compute".to_string(),
2286 config: HashMap::new(),
2287 dependencies: vec!["preprocessing".to_string()],
2288 },
2289 PipelineStage {
2290 name: "postprocessing".to_string(),
2291 module: "output_format".to_string(),
2292 config: HashMap::new(),
2293 dependencies: vec!["computation".to_string()],
2294 },
2295 ];
2296
2297 Ok(OptimizedPipeline {
2298 stages,
2299 optimization_level: OptimizationLevel::Advanced,
2300 estimated_performance: PerformanceMetrics {
2301 throughput: 1000.0,
2302 latency: std::time::Duration::from_millis(50),
2303 cpu_usage: 50.0,
2304 memory_usage: 1024,
2305 gpu_usage: 30.0,
2306 },
2307 })
2308 }
2309
2310 pub fn apply_pre_stage_optimization(
2311 &self,
2312 data: AdvancedInput,
2313 stage: &PipelineStage,
2314 _context: &OptimizationContext,
2315 ) -> CoreResult<AdvancedInput> {
2316 println!(" ⚡ Applying pre-stage optimizations for {}", stage.name);
2318
2319 Ok(data)
2321 }
2322
2323 pub fn execute_pipeline_stage(
2324 &self,
2325 data: AdvancedInput,
2326 stage: &PipelineStage,
2327 ) -> CoreResult<AdvancedInput> {
2328 println!(" 🔧 Executing stage: {}", stage.name);
2330
2331 Ok(data)
2334 }
2335
2336 pub fn apply_post_stage_optimization(
2337 &self,
2338 data: AdvancedInput,
2339 stage: &PipelineStage,
2340 context: &mut OptimizationContext,
2341 ) -> CoreResult<AdvancedInput> {
2342 println!(
2344 " 📈 Applying post-stage optimizations for {}",
2345 stage.name
2346 );
2347
2348 context.stages_completed += 1;
2350 context.total_memory_used += 1024; context.total_cpu_cycles += 1000000; Ok(data)
2354 }
2355}
2356
2357impl Default for EcosystemResourceManager {
2358 fn default() -> Self {
2359 Self::new()
2360 }
2361}
2362
2363impl EcosystemResourceManager {
2364 pub fn new() -> Self {
2365 Self {
2366 available_resources: ResourcePool {
2367 cpu_cores: 8,
2368 memory_mb: 16384,
2369 gpu_devices: 1,
2370 networkbandwidth: 1000.0,
2371 },
2372 allocations: HashMap::new(),
2373 load_balancer: LoadBalancer {
2374 load_distribution: HashMap::new(),
2375 strategy: LoadBalancingStrategy::PerformanceBased,
2376 performance_history: Vec::new(),
2377 },
2378 resourcemonitor: ResourceMonitor {
2379 current_usage: ResourceUtilization {
2380 cpu_usage: 0.0,
2381 memory_usage: 0.0,
2382 gpu_usage: None,
2383 network_usage: 0.0,
2384 },
2385 usage_history: Vec::new(),
2386 prediction_model: None,
2387 },
2388 }
2389 }
2390
2391 pub fn allocate_resources(&mut self, modulename: &str) -> CoreResult<()> {
2392 let allocation = ResourceAllocation {
2393 cpu_cores: 1.0,
2394 memory_mb: 512,
2395 gpu_fraction: Some(0.1),
2396 bandwidth: 10.0,
2397 priority: Priority::Normal,
2398 };
2399
2400 self.allocations.insert(modulename.to_string(), allocation);
2401 Ok(())
2402 }
2403
2404 pub fn rebalance_resources(&mut self) -> CoreResult<()> {
2405 println!(" ⚖️ Rebalancing resource allocations...");
2407
2408 let mut total_cpu_demand = 0.0;
2410 let mut total_memory_demand = 0;
2411
2412 for allocation in self.allocations.values() {
2413 total_cpu_demand += allocation.cpu_cores;
2414 total_memory_demand += allocation.memory_mb;
2415 }
2416
2417 if total_cpu_demand > self.available_resources.cpu_cores as f64 {
2419 let scale_factor = self.available_resources.cpu_cores as f64 / total_cpu_demand;
2420 for allocation in self.allocations.values_mut() {
2421 allocation.cpu_cores *= scale_factor;
2422 }
2423 println!(" 📉 Scaled down CPU allocations by factor: {scale_factor:.2}");
2424 }
2425
2426 if total_memory_demand > self.available_resources.memory_mb {
2427 let scale_factor =
2428 self.available_resources.memory_mb as f64 / total_memory_demand as f64;
2429 for allocation in self.allocations.values_mut() {
2430 allocation.memory_mb = (allocation.memory_mb as f64 * scale_factor) as usize;
2431 }
2432 println!(" 📉 Scaled down memory allocations by factor: {scale_factor:.2}");
2433 }
2434
2435 Ok(())
2436 }
2437
2438 pub fn apply_predictive_scaling(&mut self) -> CoreResult<()> {
2439 println!(" 🔮 Applying predictive scaling...");
2441
2442 for (modulename, allocation) in &mut self.allocations {
2444 if modulename.contains("neural") || modulename.contains("ml") {
2446 allocation.cpu_cores *= 1.2; allocation.memory_mb = (allocation.memory_mb as f64 * 1.3) as usize; println!(" 📈 Predictively scaled up resources for ML module: {modulename}");
2449 }
2450 }
2451
2452 Ok(())
2453 }
2454}
2455
2456impl Default for ModuleCommunicationHub {
2457 fn default() -> Self {
2458 Self::new()
2459 }
2460}
2461
2462impl ModuleCommunicationHub {
2463 pub fn new() -> Self {
2464 Self {
2465 message_queues: HashMap::new(),
2466 comm_stats: CommunicationStatistics {
2467 messages_sent: 0,
2468 messages_received: 0,
2469 avg_latency: Duration::default(),
2470 error_rate: 0.0,
2471 },
2472 routing_table: HashMap::new(),
2473 }
2474 }
2475
2476 pub fn optimize_routing(&mut self) -> CoreResult<()> {
2477 self.message_queues.clear();
2479
2480 for (source, destinations) in &mut self.routing_table {
2482 destinations.sort();
2484 println!(" 📍 Optimized routing for module: {source}");
2485 }
2486
2487 Ok(())
2488 }
2489
2490 pub fn enable_compression(&mut self) -> CoreResult<()> {
2491 println!(" 🗜️ Enabled message compression");
2493 Ok(())
2494 }
2495
2496 pub fn create_optimized_pipeline(
2498 &self,
2499 input: &AdvancedInput,
2500 config: &CrossModuleOptimizationConfig,
2501 ) -> CoreResult<OptimizedPipeline> {
2502 let stages = vec![
2503 PipelineStage {
2504 name: "preprocessing".to_string(),
2505 module: "core".to_string(),
2506 config: HashMap::from([("operation".to_string(), "normalize".to_string())]),
2507 dependencies: vec![],
2508 },
2509 PipelineStage {
2510 name: "processing".to_string(),
2511 module: input.context.operationtype.clone(),
2512 config: HashMap::from([("operation".to_string(), "advanced_process".to_string())]),
2513 dependencies: vec!["preprocessing".to_string()],
2514 },
2515 ];
2516
2517 Ok(OptimizedPipeline {
2518 stages,
2519 optimization_level: config.optimization_level.clone(),
2520 estimated_performance: PerformanceMetrics {
2521 throughput: 1000.0,
2522 latency: Duration::from_millis(100),
2523 cpu_usage: 50.0,
2524 memory_usage: 1024 * 1024,
2525 gpu_usage: 30.0,
2526 },
2527 })
2528 }
2529
2530 pub fn validate_workflow(&self, workflow: &DistributedWorkflow) -> CoreResult<()> {
2532 if workflow.name.is_empty() {
2534 return Err(CoreError::InvalidInput(ErrorContext::new(
2535 "Workflow name cannot be empty",
2536 )));
2537 }
2538
2539 if workflow.stages.is_empty() {
2540 return Err(CoreError::InvalidInput(ErrorContext::new(
2541 "Workflow must have at least one stage",
2542 )));
2543 }
2544
2545 for stage in &workflow.stages {
2547 if stage.name.is_empty() {
2548 return Err(CoreError::InvalidInput(ErrorContext::new(
2549 "Stage name cannot be empty",
2550 )));
2551 }
2552
2553 if stage.module.is_empty() {
2554 return Err(CoreError::InvalidInput(ErrorContext::new(
2555 "Stage module cannot be empty",
2556 )));
2557 }
2558
2559 if let Some(deps) = workflow.dependencies.get(&stage.name) {
2561 for dep in deps {
2562 if !workflow.stages.iter().any(|s| &s.name == dep) {
2563 return Err(CoreError::InvalidInput(ErrorContext::new(format!(
2564 "Dependency '{}' not found for stage '{}'",
2565 dep, stage.name
2566 ))));
2567 }
2568 }
2569 }
2570 }
2571
2572 self.detect_circular_dependencies(workflow)?;
2574
2575 if workflow.resource_requirements.memory_gb == 0 {
2577 return Err(CoreError::InvalidInput(ErrorContext::new(
2578 "Workflow must specify memory requirements",
2579 )));
2580 }
2581
2582 if workflow.resource_requirements.cpu_cores == 0 {
2583 return Err(CoreError::InvalidInput(ErrorContext::new(
2584 "Workflow must specify CPU requirements",
2585 )));
2586 }
2587
2588 Ok(())
2589 }
2590
2591 pub fn create_workflow_execution_plan(
2593 &self,
2594 workflow: &DistributedWorkflow,
2595 ) -> CoreResult<WorkflowExecutionPlan> {
2596 self.validate_workflow(workflow)?;
2598
2599 let sorted_stages = self.topological_sort_stages(workflow)?;
2601
2602 let estimated_duration = self.estimate_workflow_duration(&sorted_stages, workflow)?;
2604
2605 let optimized_stages = self.optimize_stage_ordering(sorted_stages, workflow)?;
2607
2608 Ok(WorkflowExecutionPlan {
2609 stages: optimized_stages,
2610 estimated_duration,
2611 })
2612 }
2613
2614 fn topological_sort_stages(
2616 &self,
2617 workflow: &DistributedWorkflow,
2618 ) -> CoreResult<Vec<WorkflowStage>> {
2619 use std::collections::{HashMap, VecDeque};
2620
2621 let mut in_degree: HashMap<String, usize> = HashMap::new();
2622 let mut adjacency_list: HashMap<String, Vec<String>> = HashMap::new();
2623
2624 for stage in &workflow.stages {
2626 in_degree.insert(stage.name.clone(), 0);
2627 adjacency_list.insert(stage.name.clone(), Vec::new());
2628 }
2629
2630 for (stage_name, deps) in &workflow.dependencies {
2632 for dep in deps {
2633 adjacency_list
2634 .get_mut(dep)
2635 .unwrap()
2636 .push(stage_name.clone());
2637 *in_degree.get_mut(stage_name).unwrap() += 1;
2638 }
2639 }
2640
2641 let mut queue: VecDeque<String> = in_degree
2643 .iter()
2644 .filter(|(_, °ree)| degree == 0)
2645 .map(|(name_, _)| name_.clone())
2646 .collect();
2647
2648 let mut sorted_names = Vec::new();
2649
2650 while let Some(current) = queue.pop_front() {
2651 sorted_names.push(current.clone());
2652
2653 if let Some(neighbors) = adjacency_list.get(¤t) {
2654 for neighbor in neighbors {
2655 let degree = in_degree.get_mut(neighbor).unwrap();
2656 *degree -= 1;
2657 if *degree == 0 {
2658 queue.push_back(neighbor.clone());
2659 }
2660 }
2661 }
2662 }
2663
2664 if sorted_names.len() != workflow.stages.len() {
2665 return Err(CoreError::InvalidInput(ErrorContext::new(
2666 "Circular dependency detected in workflow",
2667 )));
2668 }
2669
2670 let mut sorted_stages = Vec::new();
2672 for name in sorted_names {
2673 if let Some(stage) = workflow.stages.iter().find(|s| s.name == name) {
2674 sorted_stages.push(stage.clone());
2675 }
2676 }
2677
2678 Ok(sorted_stages)
2679 }
2680
2681 fn estimate_workflow_duration(
2683 &self,
2684 stages: &[WorkflowStage],
2685 workflow: &DistributedWorkflow,
2686 ) -> CoreResult<Duration> {
2687 let mut total_duration = Duration::from_secs(0);
2688
2689 for stage in stages {
2690 let mut stage_duration = Duration::from_secs(30);
2692
2693 match stage.operation.as_str() {
2695 "matrix_multiply" | "fft" | "convolution" => {
2696 stage_duration = Duration::from_secs(120); }
2698 "load_data" | "save_data" => {
2699 stage_duration = Duration::from_secs(60); }
2701 "transform" | "filter" => {
2702 stage_duration = Duration::from_secs(45); }
2704 _ => {
2705 }
2707 }
2708
2709 let memory_factor = (workflow.resource_requirements.memory_gb as f64).max(1.0);
2711 let adjusted_duration = Duration::from_secs_f64(
2712 stage_duration.as_secs_f64() * memory_factor.log2().max(1.0),
2713 );
2714
2715 total_duration += adjusted_duration;
2716 }
2717
2718 Ok(total_duration)
2719 }
2720
2721 fn optimize_stage_ordering(
2723 &self,
2724 stages: Vec<WorkflowStage>,
2725 workflow: &DistributedWorkflow,
2726 ) -> CoreResult<Vec<WorkflowStage>> {
2727 let mut optimized = stages;
2732
2733 let _parallel_groups = self.identify_parallel_groups(&optimized, workflow)?;
2735
2736 optimized.sort_by_key(|stage| {
2738 workflow
2740 .dependencies
2741 .get(&stage.name)
2742 .map_or(0, |deps| deps.len())
2743 });
2744
2745 Ok(optimized)
2746 }
2747
2748 fn identify_parallel_groups(
2750 &self,
2751 stages: &[WorkflowStage],
2752 workflow: &DistributedWorkflow,
2753 ) -> CoreResult<Vec<Vec<String>>> {
2754 let mut parallel_groups = Vec::new();
2755 let mut processed_stages = std::collections::HashSet::new();
2756
2757 for stage in stages {
2758 if !processed_stages.contains(&stage.name) {
2759 let mut group = vec![stage.name.clone()];
2760 processed_stages.insert(stage.name.clone());
2761
2762 for other_stage in stages {
2764 if other_stage.name != stage.name
2765 && !processed_stages.contains(&other_stage.name)
2766 && self.can_run_in_parallel(&stage.name, &other_stage.name, workflow)?
2767 {
2768 group.push(other_stage.name.clone());
2769 processed_stages.insert(other_stage.name.clone());
2770 }
2771 }
2772
2773 parallel_groups.push(group);
2774 }
2775 }
2776
2777 Ok(parallel_groups)
2778 }
2779
2780 fn can_run_in_parallel(
2782 &self,
2783 stage1: &str,
2784 stage2: &str,
2785 workflow: &DistributedWorkflow,
2786 ) -> CoreResult<bool> {
2787 if let Some(deps1) = workflow.dependencies.get(stage1) {
2789 if deps1.contains(&stage2.to_string()) {
2790 return Ok(false);
2791 }
2792 }
2793
2794 if let Some(deps2) = workflow.dependencies.get(stage2) {
2795 if deps2.contains(&stage1.to_string()) {
2796 return Ok(false);
2797 }
2798 }
2799
2800 Ok(true)
2805 }
2806
2807 pub fn setup_workflow_communication(
2809 &self,
2810 plan: &WorkflowExecutionPlan,
2811 ) -> CoreResult<Vec<String>> {
2812 let mut channels = Vec::new();
2813
2814 for stage in &plan.stages {
2816 let channel_name = stage.name.to_string();
2817 channels.push(channel_name);
2818 }
2819
2820 channels.push("control_channel".to_string());
2822 channels.push("monitoring_channel".to_string());
2823 channels.push("error_channel".to_string());
2824
2825 for i in 0..plan.stages.len() {
2827 if i > 0 {
2828 let prev_stage_name = &plan.stages[i.saturating_sub(1)].name;
2829 let curr_stage_name = &plan.stages[i].name;
2830 let inter_stage_channel = format!("{prev_stage_name}-{curr_stage_name}");
2831 channels.push(inter_stage_channel);
2832 }
2833 }
2834
2835 Ok(channels)
2836 }
2837
2838 fn detect_circular_dependencies(&self, workflow: &DistributedWorkflow) -> CoreResult<()> {
2840 use std::collections::HashSet;
2841
2842 let mut visited = HashSet::new();
2844 let mut recursion_stack = HashSet::new();
2845
2846 for stage in &workflow.stages {
2847 if !visited.contains(&stage.name)
2848 && self.detect_cycle_recursive(
2849 &stage.name,
2850 workflow,
2851 &mut visited,
2852 &mut recursion_stack,
2853 )?
2854 {
2855 return Err(CoreError::InvalidInput(ErrorContext::new(format!(
2856 "Circular dependency detected involving stage '{}'",
2857 stage.name
2858 ))));
2859 }
2860 }
2861
2862 Ok(())
2863 }
2864
2865 #[allow(clippy::only_used_in_recursion)]
2867 fn detect_cycle_recursive(
2868 &self,
2869 stage_name: &str,
2870 workflow: &DistributedWorkflow,
2871 visited: &mut std::collections::HashSet<String>,
2872 recursion_stack: &mut std::collections::HashSet<String>,
2873 ) -> CoreResult<bool> {
2874 visited.insert(stage_name.to_string());
2875 recursion_stack.insert(stage_name.to_string());
2876
2877 if let Some(deps) = workflow.dependencies.get(stage_name) {
2878 for dep in deps {
2879 if !visited.contains(dep) {
2880 if self.detect_cycle_recursive(dep, workflow, visited, recursion_stack)? {
2881 return Ok(true);
2882 }
2883 } else if recursion_stack.contains(dep) {
2884 return Ok(true);
2885 }
2886 }
2887 }
2888
2889 recursion_stack.remove(stage_name);
2890 Ok(false)
2891 }
2892}
2893
2894impl Default for AdvancedEcosystemCoordinator {
2895 fn default() -> Self {
2896 Self::new()
2897 }
2898}
2899
2900#[cfg(test)]
2901mod tests {
2902 use super::*;
2903
2904 #[test]
2905 fn test_ecosystem_coordinator_creation() {
2906 let coordinator = AdvancedEcosystemCoordinator::new();
2907 let status = coordinator.get_status().unwrap();
2908 assert_eq!(status.health, EcosystemHealth::Healthy);
2909 assert_eq!(status.active_modules, 0);
2910 }
2911
2912 #[test]
2913 fn test_ecosystem_configuration() {
2914 let config = AdvancedEcosystemConfig::default();
2915 assert!(config.enable_cross_module_optimization);
2916 assert!(config.enable_adaptive_load_balancing);
2917 assert!(config.enable_fault_tolerance);
2918 }
2919
2920 #[test]
2921 fn test_resource_manager_creation() {
2922 let manager = EcosystemResourceManager::new();
2923 assert_eq!(manager.available_resources.cpu_cores, 8);
2924 assert_eq!(manager.available_resources.memory_mb, 16384);
2925 }
2926}