scirs2_cluster/serialization/
compatibility.rs

1//! Cross-platform model compatibility utilities
2//!
3//! This module provides utilities for converting between different model formats
4//! and maintaining compatibility with popular machine learning libraries.
5
6use crate::error::{ClusteringError, Result};
7use serde::{Deserialize, Serialize};
8use serde_json::Value;
9use std::collections::HashMap;
10
11use super::models::*;
12
13/// Create a scikit-learn compatible parameter grid
14pub fn create_sklearn_param_grid(
15    algorithm: &str,
16    param_ranges: HashMap<String, Vec<Value>>,
17) -> Result<HashMap<String, Vec<Value>>> {
18    match algorithm {
19        "kmeans" => {
20            let mut grid = HashMap::new();
21            if let Some(n_clusters) = param_ranges.get("n_clusters") {
22                grid.insert("n_clusters".to_string(), n_clusters.clone());
23            }
24            if let Some(init) = param_ranges.get("init") {
25                grid.insert("init".to_string(), init.clone());
26            }
27            Ok(grid)
28        }
29        "dbscan" => {
30            let mut grid = HashMap::new();
31            if let Some(eps) = param_ranges.get("eps") {
32                grid.insert("eps".to_string(), eps.clone());
33            }
34            if let Some(min_samples) = param_ranges.get("min_samples") {
35                grid.insert("min_samples".to_string(), min_samples.clone());
36            }
37            Ok(grid)
38        }
39        _ => Err(ClusteringError::InvalidInput(format!(
40            "Unsupported algorithm for sklearn parameter grid: {}",
41            algorithm
42        ))),
43    }
44}
45
46/// Convert from joblib format (simplified)
47pub fn from_joblib_format(data: Vec<u8>) -> Result<Value> {
48    // This is a simplified implementation
49    // Real joblib support would require proper pickle deserialization
50    serde_json::from_slice(&data)
51        .map_err(|e| ClusteringError::InvalidInput(format!("Failed to parse joblib format: {}", e)))
52}
53
54/// Convert from numpy format (simplified)
55pub fn from_numpy_format(data: Vec<u8>) -> Result<scirs2_core::ndarray::Array2<f64>> {
56    // This is a simplified implementation
57    // Real numpy support would require proper .npy file parsing
58    let json_data: Value = serde_json::from_slice(&data).map_err(|e| {
59        ClusteringError::InvalidInput(format!("Failed to parse numpy format: {}", e))
60    })?;
61
62    if let Value::Array(array) = json_data {
63        let mut flat_data = Vec::new();
64        let mut ncols = 0;
65
66        if let Some(Value::Array(first_row)) = array.first() {
67            ncols = first_row.len();
68        }
69        let nrows = array.len();
70
71        for row in array {
72            if let Value::Array(row_values) = row {
73                for val in row_values {
74                    if let Value::Number(num) = val {
75                        flat_data.push(num.as_f64().unwrap_or(0.0));
76                    }
77                }
78            }
79        }
80
81        scirs2_core::ndarray::Array2::from_shape_vec((nrows, ncols), flat_data).map_err(|e| {
82            ClusteringError::InvalidInput(format!("Failed to create array from numpy data: {}", e))
83        })
84    } else {
85        Err(ClusteringError::InvalidInput(
86            "Invalid numpy format".to_string(),
87        ))
88    }
89}
90
91/// Convert from sklearn format
92pub fn from_sklearn_format(data: Value) -> Result<Value> {
93    // sklearn models are typically stored as dictionaries
94    Ok(data)
95}
96
97/// Generate sklearn model summary
98pub fn generate_sklearn_model_summary(model_type: &str, model_data: &Value) -> Result<String> {
99    match model_type {
100        "KMeans" => {
101            let summary = serde_json::json!({
102                "model_type": "KMeans",
103                "n_clusters": model_data.get("n_clusters").unwrap_or(&Value::Null),
104                "inertia": model_data.get("inertia_").unwrap_or(&Value::Null),
105                "n_iter": model_data.get("n_iter_").unwrap_or(&Value::Null)
106            });
107            Ok(serde_json::to_string_pretty(&summary)?)
108        }
109        "DBSCAN" => {
110            let summary = serde_json::json!({
111                "model_type": "DBSCAN",
112                "eps": model_data.get("eps").unwrap_or(&Value::Null),
113                "min_samples": model_data.get("min_samples").unwrap_or(&Value::Null)
114            });
115            Ok(serde_json::to_string_pretty(&summary)?)
116        }
117        _ => Err(ClusteringError::InvalidInput(format!(
118            "Unsupported sklearn model type: {}",
119            model_type
120        ))),
121    }
122}
123
124/// Convert to Arrow schema format
125pub fn to_arrow_schema<T: ClusteringModel>(model: &T) -> Result<Value> {
126    let schema = serde_json::json!({
127        "type": "struct",
128        "fields": [
129            {
130                "name": "cluster_id",
131                "type": {
132                    "name": "int",
133                    "bitWidth": 32
134                },
135                "nullable": false
136            },
137            {
138                "name": "features",
139                "type": {
140                    "name": "list",
141                    "valueType": {
142                        "name": "floatingpoint",
143                        "precision": "DOUBLE"
144                    }
145                },
146                "nullable": false
147            }
148        ]
149    });
150    Ok(schema)
151}
152
153/// Convert to HuggingFace model card format
154pub fn to_huggingface_card<T: ClusteringModel>(model: &T) -> Result<String> {
155    let summary = model.summary()?;
156    let card = format!(
157        r#"
158---
159tags:
160- clustering
161- unsupervised-learning
162- scirs2-cluster
163library_name: scirs2-cluster
164model_summary: {}
165---
166
167# Clustering Model
168
169This is a clustering model trained using scirs2-cluster.
170
171## Model Details
172
173{}
174
175## Usage
176
177```rust
178use scirs2_cluster::serialization::SerializableModel;
179
180// Load the model
181let model = Model::load_from_file("model.json")?;
182
183// Use for prediction
184let predictions = model.predict(data.view())?;
185```
186"#,
187        serde_json::to_string_pretty(&summary)?,
188        serde_json::to_string_pretty(&summary)?
189    );
190
191    Ok(card)
192}
193
194/// Convert to joblib format (simplified)
195pub fn to_joblib_format<T: ClusteringModel>(model: &T) -> Result<Vec<u8>> {
196    // This is a simplified implementation
197    let summary = model.summary()?;
198    Ok(serde_json::to_vec(&summary)?)
199}
200
201/// Convert to MLflow format
202pub fn to_mlflow_format<T: ClusteringModel>(model: &T) -> Result<Value> {
203    let summary = model.summary()?;
204    Ok(serde_json::json!({
205        "artifact_path": "model",
206        "flavors": {
207            "scirs2_cluster": {
208                "model_type": "clustering",
209                "scirs2_version": env!("CARGO_PKG_VERSION"),
210                "data": summary
211            }
212        },
213        "model_uuid": uuid::Uuid::new_v4().to_string(),
214        "run_id": "unknown",
215        "utc_time_created": chrono::Utc::now().to_rfc3339()
216    }))
217}
218
219/// Convert to numpy format (simplified)
220pub fn to_numpy_format(data: &scirs2_core::ndarray::Array2<f64>) -> Result<Vec<u8>> {
221    // This is a simplified implementation
222    // Real numpy format would require proper .npy file generation
223    let shape = data.shape();
224    let numpy_data = serde_json::json!({
225        "shape": shape,
226        "data": data.as_slice().unwrap_or(&[])
227    });
228    Ok(serde_json::to_vec(&numpy_data)?)
229}
230
231/// Convert to ONNX metadata format
232pub fn to_onnx_metadata<T: ClusteringModel>(model: &T) -> Result<Value> {
233    let summary = model.summary()?;
234    Ok(serde_json::json!({
235        "ir_version": 7,
236        "producer_name": "scirs2-cluster",
237        "producer_version": env!("CARGO_PKG_VERSION"),
238        "model_version": 1,
239        "doc_string": "Clustering model exported from scirs2-cluster",
240        "metadata_props": {
241            "model_summary": summary
242        }
243    }))
244}
245
246/// Convert to pandas clustering report
247pub fn to_pandas_clustering_report<T: ClusteringModel>(model: &T) -> Result<Value> {
248    let summary = model.summary()?;
249    Ok(serde_json::json!({
250        "model_type": "clustering",
251        "n_clusters": model.n_clusters(),
252        "summary": summary,
253        "pandas_version": "1.0.0",
254        "created_at": chrono::Utc::now().to_rfc3339()
255    }))
256}
257
258/// Convert to pandas format
259pub fn to_pandas_format<T: ClusteringModel>(model: &T) -> Result<Value> {
260    to_pandas_clustering_report(model)
261}
262
263/// Convert to pickle-like format (simplified)
264pub fn to_pickle_like_format<T: ClusteringModel>(model: &T) -> Result<Vec<u8>> {
265    // This is a simplified implementation
266    let summary = model.summary()?;
267    Ok(serde_json::to_vec(&summary)?)
268}
269
270/// Convert to PyTorch checkpoint format
271pub fn to_pytorch_checkpoint<T: ClusteringModel>(model: &T) -> Result<Value> {
272    let summary = model.summary()?;
273    Ok(serde_json::json!({
274        "model_state_dict": summary,
275        "optimizer_state_dict": {},
276        "epoch": 1,
277        "loss": 0.0,
278        "pytorch_version": "1.10.0",
279        "scirs2_cluster_version": env!("CARGO_PKG_VERSION")
280    }))
281}
282
283/// Convert to R format
284pub fn to_r_format<T: ClusteringModel>(model: &T) -> Result<Value> {
285    let summary = model.summary()?;
286    Ok(serde_json::json!({
287        "class": "clustering_model",
288        "data": summary,
289        "r_version": "4.0.0",
290        "created_by": "scirs2-cluster"
291    }))
292}
293
294/// Convert to SciPy dendrogram format
295pub fn to_scipy_dendrogram_format(
296    linkage_matrix: &scirs2_core::ndarray::Array2<f64>,
297) -> Result<Value> {
298    Ok(serde_json::json!({
299        "linkage": linkage_matrix.as_slice().unwrap_or(&[]),
300        "format": "scipy_dendrogram",
301        "shape": linkage_matrix.shape()
302    }))
303}
304
305/// Convert to SciPy linkage format
306pub fn to_scipy_linkage_format(
307    linkage_matrix: &scirs2_core::ndarray::Array2<f64>,
308) -> Result<Value> {
309    Ok(serde_json::json!({
310        "linkage_matrix": linkage_matrix.as_slice().unwrap_or(&[]),
311        "shape": linkage_matrix.shape(),
312        "method": "ward",
313        "metric": "euclidean"
314    }))
315}
316
317/// Convert to sklearn clustering result format
318pub fn to_sklearn_clustering_result<T: ClusteringModel>(model: &T) -> Result<Value> {
319    let summary = model.summary()?;
320    Ok(serde_json::json!({
321        "labels_": [],
322        "n_clusters_": model.n_clusters(),
323        "model_summary": summary,
324        "_sklearn_version": "1.0.0"
325    }))
326}
327
328/// Convert to sklearn format
329pub fn to_sklearn_format<T: ClusteringModel>(model: &T) -> Result<Value> {
330    to_sklearn_clustering_result(model)
331}
332
333#[cfg(test)]
334mod tests {
335    use super::*;
336    use scirs2_core::ndarray::Array2;
337
338    #[test]
339    fn test_create_sklearn_param_grid() {
340        let mut params = HashMap::new();
341        params.insert(
342            "n_clusters".to_string(),
343            vec![serde_json::json!(2), serde_json::json!(3)],
344        );
345
346        let grid = create_sklearn_param_grid("kmeans", params).unwrap();
347        assert!(grid.contains_key("n_clusters"));
348    }
349
350    #[test]
351    fn test_to_numpy_format() {
352        let data = Array2::from_shape_vec((2, 2), vec![1.0, 2.0, 3.0, 4.0]).unwrap();
353        let result = to_numpy_format(&data);
354        assert!(result.is_ok());
355    }
356
357    #[test]
358    fn test_to_scipy_linkage_format() {
359        let linkage = Array2::from_shape_vec((1, 3), vec![0.0, 1.0, 0.5]).unwrap();
360        let result = to_scipy_linkage_format(&linkage);
361        assert!(result.is_ok());
362    }
363}