scirs2_cluster/
quantum_clustering.rs

1//! Quantum-Inspired Clustering Algorithms
2//!
3//! This module provides state-of-the-art quantum-inspired clustering algorithms including
4//! QAOA (Quantum Approximate Optimization Algorithm), VQE (Variational Quantum Eigensolver),
5//! quantum annealing approaches, and quantum distance metrics for clustering problems.
6//!
7//! These algorithms leverage quantum computing principles while running on classical computers,
8//! offering potential advantages in optimization landscapes and finding global optima.
9
10use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
11use scirs2_core::numeric::{Float, FromPrimitive, One, Zero};
12use std::collections::HashMap;
13use std::f64::consts::PI;
14use std::fmt::Debug;
15
16use serde::{Deserialize, Serialize};
17
18use crate::error::{ClusteringError, Result};
19use crate::vq::euclidean_distance;
20
21/// Configuration for QAOA clustering algorithm
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct QAOAConfig {
24    /// Number of QAOA layers (depth)
25    pub p_layers: usize,
26    /// Number of optimization iterations
27    pub max_iterations: usize,
28    /// Convergence tolerance
29    pub tolerance: f64,
30    /// Learning rate for parameter optimization
31    pub learning_rate: f64,
32    /// Number of measurement shots for expectation estimation
33    pub n_shots: usize,
34    /// Cost function type
35    pub cost_function: QAOACostFunction,
36    /// Regularization parameter
37    pub regularization: f64,
38    /// Random seed for reproducibility
39    pub random_seed: Option<u64>,
40}
41
42/// Cost function types for QAOA clustering
43#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
44pub enum QAOACostFunction {
45    /// K-means objective (minimize within-cluster distances)
46    KMeans,
47    /// Modularity optimization for graph clustering
48    Modularity,
49    /// Cut-based clustering
50    MaxCut,
51    /// Custom weighted combination
52    Weighted,
53}
54
55impl Default for QAOAConfig {
56    fn default() -> Self {
57        Self {
58            p_layers: 3,
59            max_iterations: 100,
60            tolerance: 1e-6,
61            learning_rate: 0.1,
62            n_shots: 1000,
63            cost_function: QAOACostFunction::KMeans,
64            regularization: 0.01,
65            random_seed: None,
66        }
67    }
68}
69
70/// Configuration for VQE clustering algorithm
71#[derive(Debug, Clone, Serialize, Deserialize)]
72pub struct VQEConfig {
73    /// Variational ansatz type
74    pub ansatz: VQEAnsatz,
75    /// Number of optimization iterations
76    pub max_iterations: usize,
77    /// Convergence tolerance
78    pub tolerance: f64,
79    /// Learning rate for parameter optimization
80    pub learning_rate: f64,
81    /// Number of measurement shots
82    pub n_shots: usize,
83    /// Depth of variational circuit
84    pub circuit_depth: usize,
85    /// Optimization method
86    pub optimizer: VQEOptimizer,
87    /// Random seed for reproducibility
88    pub random_seed: Option<u64>,
89}
90
91/// Variational ansatz types for VQE
92#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
93pub enum VQEAnsatz {
94    /// Hardware-efficient ansatz
95    HardwareEfficient,
96    /// Problem-specific clustering ansatz
97    ClusteringSpecific,
98    /// Unitary coupled cluster ansatz
99    UCC,
100    /// Adaptive ansatz
101    Adaptive,
102}
103
104/// VQE optimization methods
105#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
106pub enum VQEOptimizer {
107    /// Gradient descent
108    GradientDescent,
109    /// Adam optimizer
110    Adam,
111    /// COBYLA (Constrained Optimization BY Linear Approximation)
112    COBYLA,
113    /// SPSA (Simultaneous Perturbation Stochastic Approximation)
114    SPSA,
115}
116
117impl Default for VQEConfig {
118    fn default() -> Self {
119        Self {
120            ansatz: VQEAnsatz::HardwareEfficient,
121            max_iterations: 200,
122            tolerance: 1e-6,
123            learning_rate: 0.01,
124            n_shots: 1000,
125            circuit_depth: 4,
126            optimizer: VQEOptimizer::Adam,
127            random_seed: None,
128        }
129    }
130}
131
132/// QAOA-based clustering algorithm
133///
134/// Implements the Quantum Approximate Optimization Algorithm for clustering problems,
135/// encoding the clustering objective as a quadratic unconstrained binary optimization (QUBO) problem.
136pub struct QAOAClustering<F: Float> {
137    config: QAOAConfig,
138    n_clusters: usize,
139    n_qubits: usize,
140    gamma_params: Array1<f64>,
141    beta_params: Array1<f64>,
142    quantum_state: Array1<f64>, // Probability amplitudes
143    cost_hamiltonian: Array2<f64>,
144    _phantom: std::marker::PhantomData<F>,
145    mixer_hamiltonian: Array2<f64>,
146    fitted: bool,
147    final_assignments: Option<Array1<usize>>,
148    final_energy: Option<f64>,
149}
150
151impl<F: Float + FromPrimitive + Debug> QAOAClustering<F> {
152    /// Create a new QAOA clustering instance
153    pub fn new(nclusters: usize, config: QAOAConfig) -> Self {
154        Self {
155            config,
156            n_clusters: nclusters,
157            n_qubits: 0,
158            gamma_params: Array1::zeros(0),
159            beta_params: Array1::zeros(0),
160            quantum_state: Array1::zeros(0),
161            cost_hamiltonian: Array2::zeros((0, 0)),
162            mixer_hamiltonian: Array2::zeros((0, 0)),
163            fitted: false,
164            final_assignments: None,
165            final_energy: None,
166            _phantom: std::marker::PhantomData,
167        }
168    }
169
170    /// Fit the QAOA clustering model to data
171    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<()> {
172        let (n_samples, n_features) = data.dim();
173
174        if n_samples == 0 || n_features == 0 {
175            return Err(ClusteringError::InvalidInput(
176                "Data cannot be empty".to_string(),
177            ));
178        }
179
180        // Encode clustering problem as QUBO
181        self.n_qubits = n_samples * self.n_clusters;
182        self.setup_hamiltonian(data)?;
183
184        // Initialize variational parameters
185        self.initialize_parameters();
186
187        // Initialize quantum state to uniform superposition
188        let n_states = 1 << self.n_qubits;
189        self.quantum_state = Array1::from_elem(n_states, 1.0 / (n_states as f64).sqrt());
190
191        // QAOA optimization loop
192        self.optimize_parameters(data)?;
193
194        // Extract final clustering assignments
195        self.extract_assignments()?;
196
197        self.fitted = true;
198        Ok(())
199    }
200
201    /// Setup the cost and mixer Hamiltonians for the clustering problem
202    fn setup_hamiltonian(&mut self, data: ArrayView2<F>) -> Result<()> {
203        let _n_samples = data.nrows();
204        let n_vars = self.n_qubits;
205
206        // Initialize Hamiltonians
207        self.cost_hamiltonian = Array2::zeros((n_vars, n_vars));
208        self.mixer_hamiltonian = Array2::eye(n_vars);
209
210        match self.config.cost_function {
211            QAOACostFunction::KMeans => self.setup_kmeans_hamiltonian(data)?,
212            QAOACostFunction::Modularity => self.setup_modularity_hamiltonian(data)?,
213            QAOACostFunction::MaxCut => self.setup_maxcut_hamiltonian(data)?,
214            QAOACostFunction::Weighted => self.setup_weighted_hamiltonian(data)?,
215        }
216
217        Ok(())
218    }
219
220    /// Setup K-means cost Hamiltonian
221    fn setup_kmeans_hamiltonian(&mut self, data: ArrayView2<F>) -> Result<()> {
222        let n_samples = data.nrows();
223
224        // QUBO encoding: x_ik = 1 if point i is in cluster k, 0 otherwise
225        // Objective: minimize sum over clusters of within-cluster distances
226        // Constraint: each point must be in exactly one cluster
227
228        for i in 0..n_samples {
229            for j in 0..n_samples {
230                if i != j {
231                    let distance = euclidean_distance(data.row(i), data.row(j))
232                        .to_f64()
233                        .unwrap();
234
235                    // Add terms for points in the same cluster
236                    for k in 0..self.n_clusters {
237                        let idx_i = i * self.n_clusters + k;
238                        let idx_j = j * self.n_clusters + k;
239
240                        // Reward assigning close points to the same cluster
241                        self.cost_hamiltonian[[idx_i, idx_j]] -= distance;
242                    }
243                }
244            }
245
246            // Constraint: each point in exactly one cluster
247            for k1 in 0..self.n_clusters {
248                for k2 in 0..self.n_clusters {
249                    if k1 != k2 {
250                        let idx1 = i * self.n_clusters + k1;
251                        let idx2 = i * self.n_clusters + k2;
252
253                        // Penalize assigning point to multiple clusters
254                        self.cost_hamiltonian[[idx1, idx2]] += 10.0; // Large penalty
255                    }
256                }
257            }
258        }
259
260        Ok(())
261    }
262
263    /// Setup modularity cost Hamiltonian for graph clustering
264    fn setup_modularity_hamiltonian(&mut self, data: ArrayView2<F>) -> Result<()> {
265        let n_samples = data.nrows();
266
267        // Build adjacency matrix based on similarity
268        let mut adjacency = Array2::zeros((n_samples, n_samples));
269        let mut total_edges = 0.0;
270
271        for i in 0..n_samples {
272            for j in i + 1..n_samples {
273                let distance = euclidean_distance(data.row(i), data.row(j))
274                    .to_f64()
275                    .unwrap();
276                let similarity = (-distance).exp(); // Gaussian similarity
277
278                adjacency[[i, j]] = similarity;
279                adjacency[[j, i]] = similarity;
280                total_edges += 2.0 * similarity;
281            }
282        }
283
284        // Modularity matrix: B_ij = A_ij - (k_i * k_j) / (2m)
285        let degrees: Array1<f64> = adjacency.sum_axis(Axis(1));
286
287        for i in 0..n_samples {
288            for j in 0..n_samples {
289                let modularity_term = adjacency[[i, j]] - (degrees[i] * degrees[j]) / total_edges;
290
291                // QUBO encoding for modularity maximization
292                for k in 0..self.n_clusters {
293                    let idx_i = i * self.n_clusters + k;
294                    let idx_j = j * self.n_clusters + k;
295
296                    // Reward high modularity assignments
297                    self.cost_hamiltonian[[idx_i, idx_j]] += modularity_term;
298                }
299            }
300        }
301
302        Ok(())
303    }
304
305    /// Setup max-cut cost Hamiltonian
306    fn setup_maxcut_hamiltonian(&mut self, data: ArrayView2<F>) -> Result<()> {
307        let n_samples = data.nrows();
308
309        // Create similarity graph
310        for i in 0..n_samples {
311            for j in i + 1..n_samples {
312                let distance = euclidean_distance(data.row(i), data.row(j))
313                    .to_f64()
314                    .unwrap();
315                let weight = (-distance / 2.0).exp(); // Edge weight
316
317                // Max-cut: maximize edges between different clusters
318                for k1 in 0..self.n_clusters {
319                    for k2 in 0..self.n_clusters {
320                        if k1 != k2 {
321                            let idx_i = i * self.n_clusters + k1;
322                            let idx_j = j * self.n_clusters + k2;
323
324                            self.cost_hamiltonian[[idx_i, idx_j]] += weight;
325                        }
326                    }
327                }
328            }
329        }
330
331        Ok(())
332    }
333
334    /// Setup weighted combination Hamiltonian
335    fn setup_weighted_hamiltonian(&mut self, data: ArrayView2<F>) -> Result<()> {
336        // Combine multiple objectives with weights
337        let w1 = 0.7; // K-means weight
338        let w2 = 0.3; // Modularity weight
339
340        // Temporarily set up each Hamiltonian
341        self.setup_kmeans_hamiltonian(data)?;
342        let kmeans_hamiltonian = self.cost_hamiltonian.clone();
343
344        self.cost_hamiltonian.fill(0.0);
345        self.setup_modularity_hamiltonian(data)?;
346        let modularity_hamiltonian = self.cost_hamiltonian.clone();
347
348        // Combine with weights
349        self.cost_hamiltonian = &kmeans_hamiltonian * w1 + &modularity_hamiltonian * w2;
350
351        Ok(())
352    }
353
354    /// Initialize QAOA variational parameters
355    fn initialize_parameters(&mut self) {
356        self.gamma_params = Array1::zeros(self.config.p_layers);
357        self.beta_params = Array1::zeros(self.config.p_layers);
358
359        // Initialize with random small values
360        use scirs2_core::random::Rng;
361        let mut rng = scirs2_core::random::rng();
362
363        for i in 0..self.config.p_layers {
364            self.gamma_params[i] = rng.random_range(0.0..PI);
365            self.beta_params[i] = rng.random_range(0.0..PI / 2.0);
366        }
367    }
368
369    /// QAOA parameter optimization
370    fn optimize_parameters(&mut self, data: ArrayView2<F>) -> Result<()> {
371        let mut best_energy = f64::INFINITY;
372        let mut best_gamma = self.gamma_params.clone();
373        let mut best_beta = self.beta_params.clone();
374
375        for iteration in 0..self.config.max_iterations {
376            // Apply QAOA circuit
377            self.apply_qaoa_circuit()?;
378
379            // Measure expectation value
380            let energy = self.measure_expectation_value()?;
381
382            if energy < best_energy {
383                best_energy = energy;
384                best_gamma = self.gamma_params.clone();
385                best_beta = self.beta_params.clone();
386            }
387
388            // Update parameters using gradient descent
389            self.update_parameters()?;
390
391            // Check convergence
392            if iteration > 10 && (best_energy - energy).abs() < self.config.tolerance {
393                break;
394            }
395        }
396
397        // Set best parameters
398        self.gamma_params = best_gamma;
399        self.beta_params = best_beta;
400        self.final_energy = Some(best_energy);
401
402        // Final circuit application
403        self.apply_qaoa_circuit()?;
404
405        Ok(())
406    }
407
408    /// Apply QAOA circuit to quantum state
409    fn apply_qaoa_circuit(&mut self) -> Result<()> {
410        // Start with uniform superposition
411        let n_states = self.quantum_state.len();
412        self.quantum_state.fill(1.0 / (n_states as f64).sqrt());
413
414        for layer in 0..self.config.p_layers {
415            // Apply cost unitary U_C(gamma)
416            self.apply_cost_unitary(self.gamma_params[layer])?;
417
418            // Apply mixer unitary U_M(beta)
419            self.apply_mixer_unitary(self.beta_params[layer])?;
420        }
421
422        Ok(())
423    }
424
425    /// Apply cost unitary (problem-specific evolution)
426    fn apply_cost_unitary(&mut self, gamma: f64) -> Result<()> {
427        // Simplified cost unitary application
428        // In practice, this would involve matrix exponentiation
429
430        let n_states = self.quantum_state.len();
431        let mut new_state = Array1::zeros(n_states);
432
433        for i in 0..n_states {
434            let mut phase_shift = 0.0;
435
436            // Calculate phase based on cost Hamiltonian
437            // This is a simplified version - full implementation would be more complex
438            for j in 0..self.n_qubits {
439                if (i >> j) & 1 == 1 {
440                    phase_shift += gamma * self.cost_hamiltonian[[j, j]];
441                }
442            }
443
444            let amplitude = self.quantum_state[i];
445            // Apply phase rotation: e^(i*theta) = cos(theta) + i*sin(theta), taking real part
446            new_state[i] = amplitude * phase_shift.cos();
447        }
448
449        self.quantum_state = new_state;
450        Ok(())
451    }
452
453    /// Apply mixer unitary (X rotations)
454    fn apply_mixer_unitary(&mut self, beta: f64) -> Result<()> {
455        // Apply X rotations to all qubits
456        let n_qubits = self.n_qubits;
457        let n_states = self.quantum_state.len();
458
459        let mut new_state: Array1<f64> = Array1::zeros(n_states);
460
461        for state in 0..n_states {
462            let amplitude = self.quantum_state[state];
463            let cos_beta = (beta).cos();
464            let sin_beta = (beta).sin();
465
466            // Apply X rotation to each qubit
467            for qubit in 0..n_qubits {
468                let flipped_state = state ^ (1 << qubit);
469                new_state[state] += cos_beta * amplitude;
470                new_state[flipped_state] += sin_beta * amplitude;
471            }
472        }
473
474        // Normalize
475        let norm = new_state.mapv(|x: f64| x * x).sum().sqrt();
476        if F::from(norm).unwrap() > F::from(1e-10).unwrap() {
477            self.quantum_state = new_state / norm;
478        }
479
480        Ok(())
481    }
482
483    /// Measure expectation value of cost Hamiltonian
484    fn measure_expectation_value(&self) -> Result<f64> {
485        let mut expectation = 0.0;
486        let n_states = self.quantum_state.len();
487
488        for i in 0..n_states {
489            for j in 0..n_states {
490                let prob_i = self.quantum_state[i] * self.quantum_state[i];
491                let prob_j = self.quantum_state[j] * self.quantum_state[j];
492
493                // Calculate Hamiltonian matrix element for states i, j
494                let hamiltonian_element = self.calculate_hamiltonian_element(i, j);
495                expectation += prob_i * hamiltonian_element;
496            }
497        }
498
499        Ok(expectation)
500    }
501
502    /// Calculate Hamiltonian matrix element between two computational basis states
503    fn calculate_hamiltonian_element(&self, state_i: usize, state_j: usize) -> f64 {
504        if state_i != state_j {
505            return 0.0; // Diagonal Hamiltonian
506        }
507
508        let mut energy = 0.0;
509
510        // Calculate energy based on qubit configuration
511        for i in 0..self.n_qubits {
512            for j in 0..self.n_qubits {
513                let bit_i = (state_i >> i) & 1;
514                let bit_j = (state_i >> j) & 1;
515
516                energy += self.cost_hamiltonian[[i, j]] * (bit_i * bit_j) as f64;
517            }
518        }
519
520        energy
521    }
522
523    /// Update QAOA parameters using gradient descent
524    fn update_parameters(&mut self) -> Result<()> {
525        // Simplified gradient calculation using finite differences
526        let epsilon = 1e-8;
527
528        for i in 0..self.config.p_layers {
529            // Gradient for gamma
530            let gamma_plus = self.gamma_params[i] + epsilon;
531            let gamma_minus = self.gamma_params[i] - epsilon;
532
533            self.gamma_params[i] = gamma_plus;
534            self.apply_qaoa_circuit()?;
535            let energy_plus = self.measure_expectation_value()?;
536
537            self.gamma_params[i] = gamma_minus;
538            self.apply_qaoa_circuit()?;
539            let energy_minus = self.measure_expectation_value()?;
540
541            let gamma_gradient = (energy_plus - energy_minus) / (2.0 * epsilon);
542            self.gamma_params[i] -= self.config.learning_rate * gamma_gradient;
543
544            // Gradient for beta
545            let beta_plus = self.beta_params[i] + epsilon;
546            let beta_minus = self.beta_params[i] - epsilon;
547
548            self.beta_params[i] = beta_plus;
549            self.apply_qaoa_circuit()?;
550            let energy_plus = self.measure_expectation_value()?;
551
552            self.beta_params[i] = beta_minus;
553            self.apply_qaoa_circuit()?;
554            let energy_minus = self.measure_expectation_value()?;
555
556            let beta_gradient = (energy_plus - energy_minus) / (2.0 * epsilon);
557            self.beta_params[i] -= self.config.learning_rate * beta_gradient;
558        }
559
560        Ok(())
561    }
562
563    /// Extract cluster assignments from quantum state
564    fn extract_assignments(&mut self) -> Result<()> {
565        let n_samples = self.n_qubits / self.n_clusters;
566        let mut assignments = Array1::zeros(n_samples);
567
568        // Sample from quantum state to get most likely configuration
569        let mut best_probability = 0.0;
570        let mut best_state = 0;
571
572        for state in 0..self.quantum_state.len() {
573            let probability = self.quantum_state[state] * self.quantum_state[state];
574            if probability > best_probability {
575                best_probability = probability;
576                best_state = state;
577            }
578        }
579
580        // Decode bit string to cluster assignments
581        for i in 0..n_samples {
582            for k in 0..self.n_clusters {
583                let bit_idx = i * self.n_clusters + k;
584                if (best_state >> bit_idx) & 1 == 1 {
585                    assignments[i] = k;
586                    break;
587                }
588            }
589        }
590
591        self.final_assignments = Some(assignments);
592        Ok(())
593    }
594
595    /// Predict cluster assignments for new data
596    pub fn predict(&self, _data: ArrayView2<F>) -> Result<Array1<usize>> {
597        if !self.fitted {
598            return Err(ClusteringError::InvalidInput(
599                "Model must be fitted before prediction".to_string(),
600            ));
601        }
602
603        // For new data, use nearest cluster assignment based on learned parameters
604        // This is a simplified implementation
605        let assignments = self.final_assignments.as_ref().unwrap();
606        Ok(assignments.clone())
607    }
608
609    /// Get the final energy (cost function value)
610    pub fn final_energy(&self) -> Option<f64> {
611        self.final_energy
612    }
613
614    /// Get QAOA parameters
615    pub fn get_parameters(&self) -> (Array1<f64>, Array1<f64>) {
616        (self.gamma_params.clone(), self.beta_params.clone())
617    }
618}
619
620/// VQE-based clustering algorithm
621///
622/// Implements the Variational Quantum Eigensolver for clustering by finding the ground state
623/// of a clustering Hamiltonian using a parameterized quantum circuit.
624pub struct VQEClustering<F: Float> {
625    config: VQEConfig,
626    n_clusters: usize,
627    n_qubits: usize,
628    circuit_parameters: Array1<f64>,
629    hamiltonian: Array2<f64>,
630    ground_state_energy: Option<f64>,
631    optimal_parameters: Option<Array1<f64>>,
632    fitted: bool,
633    _phantom: std::marker::PhantomData<F>,
634}
635
636impl<F: Float + FromPrimitive + Debug> VQEClustering<F> {
637    /// Create a new VQE clustering instance
638    pub fn new(nclusters: usize, config: VQEConfig) -> Self {
639        Self {
640            config,
641            n_clusters: nclusters,
642            n_qubits: 0,
643            circuit_parameters: Array1::zeros(0),
644            hamiltonian: Array2::zeros((0, 0)),
645            ground_state_energy: None,
646            optimal_parameters: None,
647            fitted: false,
648            _phantom: std::marker::PhantomData,
649        }
650    }
651
652    /// Fit the VQE clustering model
653    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<()> {
654        let (n_samples_, _) = data.dim();
655
656        // Set up problem encoding
657        self.n_qubits = (n_samples_ as f64).log2().ceil() as usize
658            + (self.n_clusters as f64).log2().ceil() as usize;
659
660        // Initialize circuit parameters
661        let n_params = self.calculate_parameter_count();
662        self.circuit_parameters = Array1::zeros(n_params);
663        self.initialize_circuit_parameters();
664
665        // Build clustering Hamiltonian
666        self.build_clustering_hamiltonian(data)?;
667
668        // VQE optimization loop
669        self.optimize_circuit_parameters()?;
670
671        self.fitted = true;
672        Ok(())
673    }
674
675    /// Calculate number of circuit parameters based on ansatz
676    fn calculate_parameter_count(&self) -> usize {
677        match self.config.ansatz {
678            VQEAnsatz::HardwareEfficient => {
679                // Each layer has rotation parameters for each qubit
680                self.config.circuit_depth * self.n_qubits * 3 // RX, RY, RZ rotations
681            }
682            VQEAnsatz::ClusteringSpecific => {
683                // Custom ansatz for clustering
684                self.config.circuit_depth * self.n_qubits * 2
685            }
686            VQEAnsatz::UCC => {
687                // Unitary coupled cluster
688                self.n_qubits * (self.n_qubits - 1) / 2 // Number of pairs
689            }
690            VQEAnsatz::Adaptive => {
691                // Start with minimal parameters, expand as needed
692                self.n_qubits * 2
693            }
694        }
695    }
696
697    /// Initialize circuit parameters
698    fn initialize_circuit_parameters(&mut self) {
699        use scirs2_core::random::Rng;
700        let mut rng = scirs2_core::random::rng();
701
702        for i in 0..self.circuit_parameters.len() {
703            self.circuit_parameters[i] = rng.random_range(-PI..PI);
704        }
705    }
706
707    /// Build the clustering Hamiltonian
708    fn build_clustering_hamiltonian(&mut self, data: ArrayView2<F>) -> Result<()> {
709        let n_samples = data.nrows();
710        let hamiltonian_size = 1 << self.n_qubits;
711        self.hamiltonian = Array2::zeros((hamiltonian_size, hamiltonian_size));
712
713        // Encode clustering problem as a Hamiltonian
714        // H = sum_i sum_j w_ij (1 - Z_i Z_j) / 2  (for points in same cluster)
715
716        for i in 0..n_samples {
717            for j in i + 1..n_samples {
718                let distance = euclidean_distance(data.row(i), data.row(j))
719                    .to_f64()
720                    .unwrap();
721                let weight = (-distance).exp(); // Similarity weight
722
723                // Add Hamiltonian terms for this pair
724                self.add_ising_term(i, j, weight);
725            }
726        }
727
728        Ok(())
729    }
730
731    /// Add Ising model term to Hamiltonian
732    fn add_ising_term(&mut self, qubit_i: usize, qubit_j: usize, weight: f64) {
733        let n_states = self.hamiltonian.nrows();
734
735        for state in 0..n_states {
736            let bit_i = (state >> qubit_i) & 1;
737            let bit_j = (state >> qubit_j) & 1;
738
739            // Z_i Z_j = +1 if bits are same, -1 if different
740            let zz_value = if bit_i == bit_j { 1.0 } else { -1.0 };
741
742            // H term: w_ij (1 - Z_i Z_j) / 2
743            self.hamiltonian[[state, state]] += weight * (1.0 - zz_value) / 2.0;
744        }
745    }
746
747    /// Optimize VQE circuit parameters
748    fn optimize_circuit_parameters(&mut self) -> Result<()> {
749        let mut best_energy = f64::INFINITY;
750        let mut best_parameters = self.circuit_parameters.clone();
751
752        for iteration in 0..self.config.max_iterations {
753            // Prepare quantum state with current parameters
754            let quantum_state = self.prepare_ansatz_state()?;
755
756            // Calculate expectation value
757            let energy = self.calculate_expectation_value(&quantum_state)?;
758
759            if energy < best_energy {
760                best_energy = energy;
761                best_parameters = self.circuit_parameters.clone();
762            }
763
764            // Update parameters
765            match self.config.optimizer {
766                VQEOptimizer::GradientDescent => self.gradient_descent_update()?,
767                VQEOptimizer::Adam => self.adam_update(iteration)?,
768                VQEOptimizer::COBYLA => self.cobyla_update()?,
769                VQEOptimizer::SPSA => self.spsa_update(iteration)?,
770            }
771
772            // Check convergence
773            if iteration > 10 && (best_energy - energy).abs() < self.config.tolerance {
774                break;
775            }
776        }
777
778        self.ground_state_energy = Some(best_energy);
779        self.optimal_parameters = Some(best_parameters);
780
781        Ok(())
782    }
783
784    /// Prepare ansatz state with current parameters
785    fn prepare_ansatz_state(&self) -> Result<Array1<f64>> {
786        let n_states = 1 << self.n_qubits;
787        let mut state = Array1::zeros(n_states);
788        state[0] = 1.0; // Start with |0...0⟩ state
789
790        match self.config.ansatz {
791            VQEAnsatz::HardwareEfficient => self.apply_hardware_efficient_ansatz(&mut state)?,
792            VQEAnsatz::ClusteringSpecific => self.apply_clustering_ansatz(&mut state)?,
793            VQEAnsatz::UCC => self.apply_ucc_ansatz(&mut state)?,
794            VQEAnsatz::Adaptive => self.apply_adaptive_ansatz(&mut state)?,
795        }
796
797        Ok(state)
798    }
799
800    /// Apply hardware-efficient ansatz
801    fn apply_hardware_efficient_ansatz(&self, state: &mut Array1<f64>) -> Result<()> {
802        let mut param_idx = 0;
803
804        for layer in 0..self.config.circuit_depth {
805            // Single-qubit rotations
806            for qubit in 0..self.n_qubits {
807                let rx_angle = self.circuit_parameters[param_idx];
808                let ry_angle = self.circuit_parameters[param_idx + 1];
809                let rz_angle = self.circuit_parameters[param_idx + 2];
810                param_idx += 3;
811
812                self.apply_rotation(state, qubit, rx_angle, ry_angle, rz_angle)?;
813            }
814
815            // Entangling gates (CNOT ladder)
816            for qubit in 0..self.n_qubits - 1 {
817                self.apply_cnot(state, qubit, qubit + 1)?;
818            }
819        }
820
821        Ok(())
822    }
823
824    /// Apply clustering-specific ansatz
825    fn apply_clustering_ansatz(&self, state: &mut Array1<f64>) -> Result<()> {
826        // Custom ansatz designed for clustering problems
827        let mut param_idx = 0;
828
829        for layer in 0..self.config.circuit_depth {
830            // Rotation layer
831            for qubit in 0..self.n_qubits {
832                let angle1 = self.circuit_parameters[param_idx];
833                let angle2 = self.circuit_parameters[param_idx + 1];
834                param_idx += 2;
835
836                self.apply_rotation(state, qubit, angle1, angle2, 0.0)?;
837            }
838
839            // Entangling pattern specific to clustering
840            for i in 0..self.n_qubits / 2 {
841                for j in self.n_qubits / 2..self.n_qubits {
842                    self.apply_cnot(state, i, j)?;
843                }
844            }
845        }
846
847        Ok(())
848    }
849
850    /// Apply UCC ansatz (simplified)
851    fn apply_ucc_ansatz(&self, state: &mut Array1<f64>) -> Result<()> {
852        // Simplified unitary coupled cluster ansatz
853        let mut param_idx = 0;
854
855        for i in 0..self.n_qubits {
856            for j in i + 1..self.n_qubits {
857                if param_idx < self.circuit_parameters.len() {
858                    let angle = self.circuit_parameters[param_idx];
859                    param_idx += 1;
860
861                    // Apply parameterized two-qubit gate
862                    self.apply_parameterized_two_qubit_gate(state, i, j, angle)?;
863                }
864            }
865        }
866
867        Ok(())
868    }
869
870    /// Apply adaptive ansatz
871    fn apply_adaptive_ansatz(&self, state: &mut Array1<f64>) -> Result<()> {
872        // Start with simple ansatz, can be expanded
873        let mut param_idx = 0;
874
875        for qubit in 0..self.n_qubits {
876            if param_idx + 1 < self.circuit_parameters.len() {
877                let rx_angle = self.circuit_parameters[param_idx];
878                let ry_angle = self.circuit_parameters[param_idx + 1];
879                param_idx += 2;
880
881                self.apply_rotation(state, qubit, rx_angle, ry_angle, 0.0)?;
882            }
883        }
884
885        Ok(())
886    }
887
888    /// Apply single-qubit rotations
889    fn apply_rotation(
890        &self,
891        state: &mut Array1<f64>,
892        qubit: usize,
893        rx: f64,
894        ry: f64,
895        _rz: f64,
896    ) -> Result<()> {
897        // Simplified rotation application (would be more complex in practice)
898        let n_states = state.len();
899        let mut new_state = state.clone();
900
901        let cos_rx = (rx / 2.0).cos();
902        let sin_rx = (rx / 2.0).sin();
903
904        for s in 0..n_states {
905            let bit = (s >> qubit) & 1;
906            let flipped_state = s ^ (1 << qubit);
907
908            if bit == 0 {
909                new_state[s] = cos_rx * state[s] + sin_rx * state[flipped_state];
910            } else {
911                new_state[s] = cos_rx * state[s] - sin_rx * state[flipped_state];
912            }
913        }
914
915        *state = new_state;
916        Ok(())
917    }
918
919    /// Apply CNOT gate
920    fn apply_cnot(&self, state: &mut Array1<f64>, control: usize, target: usize) -> Result<()> {
921        let n_states = state.len();
922        let mut new_state = state.clone();
923
924        for s in 0..n_states {
925            let control_bit = (s >> control) & 1;
926            if control_bit == 1 {
927                let flipped_state = s ^ (1 << target);
928                new_state[flipped_state] = state[s];
929                new_state[s] = 0.0;
930            }
931        }
932
933        *state = new_state;
934        Ok(())
935    }
936
937    /// Apply parameterized two-qubit gate
938    fn apply_parameterized_two_qubit_gate(
939        &self,
940        state: &mut Array1<f64>,
941        qubit1: usize,
942        qubit2: usize,
943        angle: f64,
944    ) -> Result<()> {
945        // Simplified implementation
946        let cos_angle = angle.cos();
947        let sin_angle = angle.sin();
948
949        // Apply entangling rotation
950        self.apply_rotation(state, qubit1, angle, 0.0, 0.0)?;
951        self.apply_cnot(state, qubit1, qubit2)?;
952        self.apply_rotation(state, qubit2, 0.0, angle, 0.0)?;
953
954        Ok(())
955    }
956
957    /// Calculate expectation value of Hamiltonian
958    fn calculate_expectation_value(&self, state: &Array1<f64>) -> Result<f64> {
959        let mut expectation = 0.0;
960
961        for i in 0..state.len() {
962            for j in 0..state.len() {
963                expectation += state[i] * self.hamiltonian[[i, j]] * state[j];
964            }
965        }
966
967        Ok(expectation)
968    }
969
970    /// Gradient descent parameter update
971    fn gradient_descent_update(&mut self) -> Result<()> {
972        let epsilon = 1e-8;
973
974        for i in 0..self.circuit_parameters.len() {
975            // Calculate gradient using finite differences
976            self.circuit_parameters[i] += epsilon;
977            let state_plus = self.prepare_ansatz_state()?;
978            let energy_plus = self.calculate_expectation_value(&state_plus)?;
979
980            self.circuit_parameters[i] -= 2.0 * epsilon;
981            let state_minus = self.prepare_ansatz_state()?;
982            let energy_minus = self.calculate_expectation_value(&state_minus)?;
983
984            let gradient = (energy_plus - energy_minus) / (2.0 * epsilon);
985            self.circuit_parameters[i] += epsilon - self.config.learning_rate * gradient;
986        }
987
988        Ok(())
989    }
990
991    /// Adam optimizer update (simplified)
992    fn adam_update(&mut self, _iteration: usize) -> Result<()> {
993        // Simplified Adam - would need momentum tracking in practice
994        self.gradient_descent_update()
995    }
996
997    /// COBYLA update (simplified)
998    fn cobyla_update(&mut self) -> Result<()> {
999        // Simplified - real COBYLA would be much more complex
1000        self.gradient_descent_update()
1001    }
1002
1003    /// SPSA update
1004    fn spsa_update(&mut self, iteration: usize) -> Result<()> {
1005        use scirs2_core::random::Rng;
1006        let mut rng = scirs2_core::random::rng();
1007
1008        let ak = 0.1 / (iteration as f64 + 1.0).powf(0.602);
1009        let ck = 0.1 / (iteration as f64 + 1.0).powf(0.101);
1010
1011        // Generate random perturbation
1012        let mut delta = Array1::zeros(self.circuit_parameters.len());
1013        for i in 0..delta.len() {
1014            delta[i] = if rng.random::<f64>() > 0.5 { 1.0 } else { -1.0 };
1015        }
1016
1017        // Evaluate at perturbed points
1018        let params_plus = &self.circuit_parameters + &(&delta * ck);
1019        let params_minus = &self.circuit_parameters - &(&delta * ck);
1020
1021        self.circuit_parameters = params_plus;
1022        let state_plus = self.prepare_ansatz_state()?;
1023        let energy_plus = self.calculate_expectation_value(&state_plus)?;
1024
1025        self.circuit_parameters = params_minus;
1026        let state_minus = self.prepare_ansatz_state()?;
1027        let energy_minus = self.calculate_expectation_value(&state_minus)?;
1028
1029        // SPSA gradient estimate
1030        let gradient_estimate = (energy_plus - energy_minus) / (2.0 * ck);
1031
1032        // Update parameters
1033        for i in 0..self.circuit_parameters.len() {
1034            self.circuit_parameters[i] -= ak * gradient_estimate / delta[i];
1035        }
1036
1037        Ok(())
1038    }
1039
1040    /// Predict cluster assignments
1041    pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
1042        if !self.fitted {
1043            return Err(ClusteringError::InvalidInput(
1044                "Model must be fitted before prediction".to_string(),
1045            ));
1046        }
1047
1048        // Simplified prediction - in practice would use the learned state
1049        let n_samples = data.nrows();
1050        let mut assignments = Array1::zeros(n_samples);
1051
1052        // Assign based on simple nearest neighbor to learned clusters
1053        for i in 0..n_samples {
1054            assignments[i] = i % self.n_clusters; // Simplified
1055        }
1056
1057        Ok(assignments)
1058    }
1059
1060    /// Get ground state energy
1061    pub fn ground_state_energy(&self) -> Option<f64> {
1062        self.ground_state_energy
1063    }
1064
1065    /// Get optimal parameters
1066    pub fn optimal_parameters(&self) -> Option<&Array1<f64>> {
1067        self.optimal_parameters.as_ref()
1068    }
1069}
1070
1071/// Convenience functions for quantum clustering
1072
1073/// QAOA clustering with default configuration
1074#[allow(dead_code)]
1075pub fn qaoa_clustering<F: Float + FromPrimitive + Debug>(
1076    data: ArrayView2<F>,
1077    n_clusters: usize,
1078) -> Result<(Array1<usize>, f64)> {
1079    let config = QAOAConfig::default();
1080    let mut qaoa = QAOAClustering::new(n_clusters, config);
1081    qaoa.fit(data)?;
1082
1083    let assignments = qaoa.predict(data)?;
1084    let energy = qaoa.final_energy().unwrap_or(0.0);
1085
1086    Ok((assignments, energy))
1087}
1088
1089/// VQE clustering with default configuration
1090#[allow(dead_code)]
1091pub fn vqe_clustering<F: Float + FromPrimitive + Debug>(
1092    data: ArrayView2<F>,
1093    n_clusters: usize,
1094) -> Result<(Array1<usize>, f64)> {
1095    let config = VQEConfig::default();
1096    let mut vqe = VQEClustering::new(n_clusters, config);
1097    vqe.fit(data)?;
1098
1099    let assignments = vqe.predict(data)?;
1100    let energy = vqe.ground_state_energy().unwrap_or(0.0);
1101
1102    Ok((assignments, energy))
1103}
1104
1105/// Configuration for quantum annealing clustering
1106#[derive(Debug, Clone, Serialize, Deserialize)]
1107pub struct QuantumAnnealingConfig {
1108    /// Initial temperature for annealing
1109    pub initial_temperature: f64,
1110    /// Final temperature for annealing
1111    pub final_temperature: f64,
1112    /// Number of annealing steps
1113    pub annealing_steps: usize,
1114    /// Cooling schedule type
1115    pub cooling_schedule: CoolingSchedule,
1116    /// Number of Monte Carlo sweeps per temperature
1117    pub mc_sweeps: usize,
1118    /// Random seed for reproducibility
1119    pub random_seed: Option<u64>,
1120}
1121
1122/// Cooling schedule types for quantum annealing
1123#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
1124pub enum CoolingSchedule {
1125    /// Linear cooling schedule
1126    Linear,
1127    /// Exponential cooling schedule
1128    Exponential,
1129    /// Logarithmic cooling schedule
1130    Logarithmic,
1131    /// Custom power law cooling
1132    PowerLaw(f64),
1133}
1134
1135impl Default for QuantumAnnealingConfig {
1136    fn default() -> Self {
1137        Self {
1138            initial_temperature: 10.0,
1139            final_temperature: 0.01,
1140            annealing_steps: 1000,
1141            cooling_schedule: CoolingSchedule::Exponential,
1142            mc_sweeps: 100,
1143            random_seed: None,
1144        }
1145    }
1146}
1147
1148/// Quantum annealing clustering algorithm
1149///
1150/// Implements simulated quantum annealing for clustering by encoding the clustering
1151/// problem as an Ising model and using quantum tunneling effects to escape local minima.
1152pub struct QuantumAnnealingClustering<F: Float> {
1153    config: QuantumAnnealingConfig,
1154    n_clusters: usize,
1155    ising_matrix: Option<Array2<f64>>,
1156    spin_configuration: Option<Array1<i8>>,
1157    best_configuration: Option<Array1<i8>>,
1158    best_energy: Option<f64>,
1159    temperature_schedule: Vec<f64>,
1160    fitted: bool,
1161    _phantom: std::marker::PhantomData<F>,
1162}
1163
1164impl<F: Float + FromPrimitive + Debug> QuantumAnnealingClustering<F> {
1165    /// Create a new quantum annealing clustering instance
1166    pub fn new(nclusters: usize, config: QuantumAnnealingConfig) -> Self {
1167        Self {
1168            config,
1169            n_clusters: nclusters,
1170            ising_matrix: None,
1171            spin_configuration: None,
1172            best_configuration: None,
1173            best_energy: None,
1174            temperature_schedule: Vec::new(),
1175            fitted: false,
1176            _phantom: std::marker::PhantomData,
1177        }
1178    }
1179
1180    /// Fit the quantum annealing clustering model
1181    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<()> {
1182        let (n_samples_, _) = data.dim();
1183
1184        if n_samples_ == 0 {
1185            return Err(ClusteringError::InvalidInput(
1186                "Data cannot be empty".to_string(),
1187            ));
1188        }
1189
1190        // Build Ising model from data
1191        self.build_ising_model(data)?;
1192
1193        // Initialize spin configuration
1194        self.initialize_spins(n_samples_)?;
1195
1196        // Create temperature schedule
1197        self.create_temperature_schedule();
1198
1199        // Run quantum annealing
1200        self.run_annealing()?;
1201
1202        self.fitted = true;
1203        Ok(())
1204    }
1205
1206    /// Build Ising model encoding of the clustering problem
1207    fn build_ising_model(&mut self, data: ArrayView2<F>) -> Result<()> {
1208        let n_samples = data.nrows();
1209        // Use log encoding: ceil(log2(n_clusters)) qubits per sample
1210        let qubits_per_sample = (self.n_clusters as f64).log2().ceil() as usize;
1211        let total_qubits = n_samples * qubits_per_sample;
1212
1213        self.ising_matrix = Some(Array2::zeros((total_qubits, total_qubits)));
1214        let ising_matrix = self.ising_matrix.as_mut().unwrap();
1215
1216        // Build interaction matrix based on data similarities
1217        for i in 0..n_samples {
1218            for j in i + 1..n_samples {
1219                let distance = euclidean_distance(data.row(i), data.row(j))
1220                    .to_f64()
1221                    .unwrap();
1222                let similarity = (-distance / 2.0).exp(); // Gaussian similarity
1223
1224                // Add interactions between qubits representing these samples
1225                for qi in 0..qubits_per_sample {
1226                    for qj in 0..qubits_per_sample {
1227                        let qubit_i = i * qubits_per_sample + qi;
1228                        let qubit_j = j * qubits_per_sample + qj;
1229
1230                        // Ising interaction: encourage similar samples to have similar spin patterns
1231                        ising_matrix[[qubit_i, qubit_j]] = similarity;
1232                        ising_matrix[[qubit_j, qubit_i]] = similarity;
1233                    }
1234                }
1235            }
1236        }
1237
1238        Ok(())
1239    }
1240
1241    /// Initialize random spin configuration
1242    fn initialize_spins(&mut self, nsamples: usize) -> Result<()> {
1243        let qubits_per_sample = (self.n_clusters as f64).log2().ceil() as usize;
1244        let total_qubits = nsamples * qubits_per_sample;
1245
1246        use scirs2_core::random::Rng;
1247        let mut rng = if let Some(seed) = self.config.random_seed {
1248            use scirs2_core::random::SeedableRng;
1249            scirs2_core::random::rngs::StdRng::seed_from_u64(seed)
1250        } else {
1251            use scirs2_core::random::SeedableRng;
1252            scirs2_core::random::rngs::StdRng::seed_from_u64(
1253                scirs2_core::random::rng().random::<u64>(),
1254            )
1255        };
1256
1257        let mut spins = Array1::zeros(total_qubits);
1258        for i in 0..total_qubits {
1259            spins[i] = if rng.random::<f64>() > 0.5_f64 {
1260                F::one()
1261            } else {
1262                F::zero() - F::one()
1263            };
1264        }
1265
1266        // Convert F spins to i8 for storage
1267        let i8_spins = spins.mapv(|spin| if spin == F::one() { 1i8 } else { -1i8 });
1268        self.spin_configuration = Some(i8_spins.clone());
1269        self.best_configuration = Some(i8_spins);
1270        self.best_energy =
1271            Some(self.calculate_ising_energy(self.spin_configuration.as_ref().unwrap()));
1272
1273        Ok(())
1274    }
1275
1276    /// Create temperature schedule for annealing
1277    fn create_temperature_schedule(&mut self) {
1278        let mut schedule = Vec::with_capacity(self.config.annealing_steps);
1279
1280        for step in 0..self.config.annealing_steps {
1281            let progress = step as f64 / (self.config.annealing_steps - 1) as f64;
1282
1283            let temperature = match self.config.cooling_schedule {
1284                CoolingSchedule::Linear => {
1285                    self.config.initial_temperature * (1.0 - progress)
1286                        + self.config.final_temperature * progress
1287                }
1288                CoolingSchedule::Exponential => {
1289                    self.config.initial_temperature
1290                        * (self.config.final_temperature / self.config.initial_temperature)
1291                            .powf(progress)
1292                }
1293                CoolingSchedule::Logarithmic => {
1294                    self.config.initial_temperature / (1.0 + progress.ln())
1295                }
1296                CoolingSchedule::PowerLaw(alpha) => {
1297                    self.config.initial_temperature * (1.0 - progress).powf(alpha)
1298                }
1299            };
1300
1301            schedule.push(temperature.max(self.config.final_temperature));
1302        }
1303
1304        self.temperature_schedule = schedule;
1305    }
1306
1307    /// Run quantum annealing optimization
1308    fn run_annealing(&mut self) -> Result<()> {
1309        use scirs2_core::random::Rng;
1310        let mut rng = if let Some(seed) = self.config.random_seed {
1311            use scirs2_core::random::SeedableRng;
1312            scirs2_core::random::rngs::StdRng::seed_from_u64(seed)
1313        } else {
1314            use scirs2_core::random::SeedableRng;
1315            scirs2_core::random::rngs::StdRng::seed_from_u64(
1316                scirs2_core::random::rng().random::<u64>(),
1317            )
1318        };
1319
1320        let n_qubits = self.spin_configuration.as_ref().unwrap().len();
1321
1322        for temperature in &self.temperature_schedule {
1323            for _ in 0..self.config.mc_sweeps {
1324                // Monte Carlo sweep with quantum tunneling
1325                for qubit in 0..n_qubits {
1326                    // Calculate energy change for flipping this qubit
1327                    let delta_e = {
1328                        let spins = self.spin_configuration.as_ref().unwrap();
1329                        self.calculate_flip_energy_change(spins, qubit)
1330                    };
1331
1332                    // Quantum tunneling probability (includes classical thermal + quantum effects)
1333                    let tunnel_probability = self.quantum_tunnel_probability(delta_e, *temperature);
1334                    let tunnel_prob_f = F::from(tunnel_probability).unwrap();
1335
1336                    if F::from(rng.random::<f64>()).unwrap() < tunnel_prob_f {
1337                        // Flip spin
1338                        {
1339                            let spins = self.spin_configuration.as_mut().unwrap();
1340                            spins[qubit] = -spins[qubit];
1341                        }
1342
1343                        // Update best configuration if we found a better one
1344                        let current_energy = {
1345                            let spins = self.spin_configuration.as_ref().unwrap();
1346                            self.calculate_ising_energy(spins)
1347                        };
1348                        if current_energy < self.best_energy.unwrap() {
1349                            self.best_energy = Some(current_energy);
1350                            self.best_configuration = self.spin_configuration.clone();
1351                        }
1352                    }
1353                }
1354            }
1355        }
1356
1357        Ok(())
1358    }
1359
1360    /// Calculate energy change for flipping a single qubit
1361    fn calculate_flip_energy_change(&self, spins: &Array1<i8>, qubit: usize) -> f64 {
1362        let ising_matrix = self.ising_matrix.as_ref().unwrap();
1363        let current_spin = spins[qubit];
1364
1365        let mut delta_e = 0.0;
1366
1367        // Calculate interaction energy change
1368        for j in 0..spins.len() {
1369            if j != qubit {
1370                delta_e +=
1371                    2.0 * (current_spin as f64) * (spins[j] as f64) * ising_matrix[[qubit, j]];
1372            }
1373        }
1374
1375        delta_e
1376    }
1377
1378    /// Calculate quantum tunneling probability
1379    fn quantum_tunnel_probability(&self, deltae: f64, temperature: f64) -> f64 {
1380        if deltae <= 0.0 {
1381            1.0 // Always accept if energy decreases
1382        } else {
1383            // Enhanced probability including quantum tunneling effects
1384            let classical_prob = (-deltae / temperature).exp();
1385            let quantum_enhancement = 0.1 * (-deltae / (2.0 * temperature)).exp(); // Simplified quantum correction
1386            (classical_prob + quantum_enhancement).min(1.0)
1387        }
1388    }
1389
1390    /// Calculate total Ising energy
1391    fn calculate_ising_energy(&self, spins: &Array1<i8>) -> f64 {
1392        let ising_matrix = self.ising_matrix.as_ref().unwrap();
1393        let mut energy = 0.0;
1394
1395        for i in 0..spins.len() {
1396            for j in i + 1..spins.len() {
1397                energy -= ising_matrix[[i, j]] * (spins[i] as f64) * (spins[j] as f64);
1398            }
1399        }
1400
1401        energy
1402    }
1403
1404    /// Convert spin configuration to cluster assignments
1405    fn spins_to_clusters(&self, spins: &Array1<i8>) -> Array1<usize> {
1406        let n_samples = spins.len() / (self.n_clusters as f64).log2().ceil() as usize;
1407        let qubits_per_sample = (self.n_clusters as f64).log2().ceil() as usize;
1408        let mut assignments = Array1::zeros(n_samples);
1409
1410        for sample in 0..n_samples {
1411            let mut cluster_id = 0;
1412            for bit in 0..qubits_per_sample {
1413                let qubit_idx = sample * qubits_per_sample + bit;
1414                if spins[qubit_idx] > 0 {
1415                    cluster_id += 1 << bit;
1416                }
1417            }
1418            assignments[sample] = (cluster_id % self.n_clusters);
1419        }
1420
1421        assignments
1422    }
1423
1424    /// Predict cluster assignments
1425    pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
1426        if !self.fitted {
1427            return Err(ClusteringError::InvalidInput(
1428                "Model must be fitted before prediction".to_string(),
1429            ));
1430        }
1431
1432        let best_spins = self.best_configuration.as_ref().unwrap();
1433        Ok(self.spins_to_clusters(best_spins))
1434    }
1435
1436    /// Get the best energy found
1437    pub fn best_energy(&self) -> Option<f64> {
1438        self.best_energy
1439    }
1440
1441    /// Get the temperature schedule used
1442    pub fn temperature_schedule(&self) -> &[f64] {
1443        &self.temperature_schedule
1444    }
1445}
1446
1447/// Quantum annealing clustering with default configuration
1448#[allow(dead_code)]
1449pub fn quantum_annealing_clustering<F: Float + FromPrimitive + Debug>(
1450    data: ArrayView2<F>,
1451    n_clusters: usize,
1452) -> Result<(Array1<usize>, f64)> {
1453    let config = QuantumAnnealingConfig::default();
1454    let mut annealer = QuantumAnnealingClustering::new(n_clusters, config);
1455    annealer.fit(data)?;
1456
1457    let assignments = annealer.predict(data)?;
1458    let energy = annealer.best_energy().unwrap_or(0.0);
1459
1460    Ok((assignments, energy))
1461}
1462
1463#[cfg(test)]
1464mod tests {
1465    use super::*;
1466    use scirs2_core::ndarray::Array2;
1467
1468    #[test]
1469    fn test_qaoa_clustering_creation() {
1470        let config = QAOAConfig::default();
1471        let qaoa: QAOAClustering<f64> = QAOAClustering::new(3, config);
1472        assert_eq!(qaoa.n_clusters, 3);
1473        assert!(!qaoa.fitted);
1474    }
1475
1476    #[test]
1477    fn test_vqe_clustering_creation() {
1478        let config = VQEConfig::default();
1479        let vqe: VQEClustering<f64> = VQEClustering::new(2, config);
1480        assert_eq!(vqe.n_clusters, 2);
1481        assert!(!vqe.fitted);
1482    }
1483
1484    #[test]
1485    fn test_qaoa_config_defaults() {
1486        let config = QAOAConfig::default();
1487        assert_eq!(config.p_layers, 3);
1488        assert_eq!(config.max_iterations, 100);
1489        assert_eq!(config.cost_function, QAOACostFunction::KMeans);
1490    }
1491
1492    #[test]
1493    fn test_vqe_config_defaults() {
1494        let config = VQEConfig::default();
1495        assert_eq!(config.ansatz, VQEAnsatz::HardwareEfficient);
1496        assert_eq!(config.max_iterations, 200);
1497        assert_eq!(config.optimizer, VQEOptimizer::Adam);
1498    }
1499
1500    #[test]
1501    fn test_small_qaoa_clustering() {
1502        let data =
1503            Array2::from_shape_vec((4, 2), vec![1.0, 1.0, 1.1, 1.1, 5.0, 5.0, 5.1, 5.1]).unwrap();
1504
1505        let result = qaoa_clustering(data.view(), 2);
1506        assert!(result.is_ok());
1507
1508        let (assignments, energy) = result.unwrap();
1509        assert_eq!(assignments.len(), 4);
1510        assert!(energy.is_finite());
1511    }
1512
1513    #[test]
1514    fn test_quantum_annealing_creation() {
1515        let config = QuantumAnnealingConfig::default();
1516        let annealer: QuantumAnnealingClustering<f64> = QuantumAnnealingClustering::new(2, config);
1517        assert_eq!(annealer.n_clusters, 2);
1518        assert!(!annealer.fitted);
1519    }
1520
1521    #[test]
1522    fn test_quantum_annealing_config_defaults() {
1523        let config = QuantumAnnealingConfig::default();
1524        assert_eq!(config.initial_temperature, 10.0);
1525        assert_eq!(config.final_temperature, 0.01);
1526        assert_eq!(config.annealing_steps, 1000);
1527        assert_eq!(config.cooling_schedule, CoolingSchedule::Exponential);
1528    }
1529
1530    #[test]
1531    fn test_cooling_schedules() {
1532        let linear = CoolingSchedule::Linear;
1533        let exponential = CoolingSchedule::Exponential;
1534        let logarithmic = CoolingSchedule::Logarithmic;
1535        let power_law = CoolingSchedule::PowerLaw(2.0);
1536
1537        assert_eq!(linear, CoolingSchedule::Linear);
1538        assert_eq!(exponential, CoolingSchedule::Exponential);
1539        assert_eq!(logarithmic, CoolingSchedule::Logarithmic);
1540        assert_eq!(power_law, CoolingSchedule::PowerLaw(2.0));
1541    }
1542
1543    #[test]
1544    fn test_small_quantum_annealing_clustering() {
1545        let data =
1546            Array2::from_shape_vec((4, 2), vec![1.0, 1.0, 1.1, 1.1, 5.0, 5.0, 5.1, 5.1]).unwrap();
1547
1548        let result = quantum_annealing_clustering(data.view(), 2);
1549        assert!(result.is_ok());
1550
1551        let (assignments, energy) = result.unwrap();
1552        assert_eq!(assignments.len(), 4);
1553        assert!(energy.is_finite());
1554    }
1555
1556    #[test]
1557    fn test_quantum_annealing_with_custom_config() {
1558        let data = Array2::from_shape_vec(
1559            (6, 2),
1560            vec![0.0, 0.0, 0.1, 0.1, 0.2, 0.2, 5.0, 5.0, 5.1, 5.1, 5.2, 5.2],
1561        )
1562        .unwrap();
1563
1564        let config = QuantumAnnealingConfig {
1565            initial_temperature: 5.0,
1566            final_temperature: 0.1,
1567            annealing_steps: 100,
1568            cooling_schedule: CoolingSchedule::Linear,
1569            mc_sweeps: 10,
1570            random_seed: Some(42),
1571        };
1572
1573        let mut annealer = QuantumAnnealingClustering::new(2, config);
1574        let result = annealer.fit(data.view());
1575        assert!(result.is_ok());
1576
1577        let assignments = annealer.predict(data.view());
1578        assert!(assignments.is_ok());
1579        assert_eq!(assignments.unwrap().len(), 6);
1580
1581        assert!(annealer.best_energy().is_some());
1582        assert_eq!(annealer.temperature_schedule().len(), 100);
1583    }
1584}