scirs2_cluster/
enhanced_clustering_features.rs

1//! Enhanced Advanced Features - Advanced AI-Driven Clustering Extensions
2//!
3//! This module extends the Advanced clustering capabilities with cutting-edge
4//! features including deep learning integration, quantum-inspired algorithms,
5//! and advanced ensemble methods for superior clustering performance.
6
7use crate::advanced_clustering::{
8    AdvancedClusterer, AdvancedClusteringResult, QuantumNeuromorphicMetrics,
9};
10use crate::error::{ClusteringError, Result};
11use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
12use scirs2_core::numeric::Complex64;
13use std::collections::{HashMap, VecDeque};
14use std::f64::consts::PI;
15
16use serde::{Deserialize, Serialize};
17
18/// Deep learning enhanced Advanced clusterer
19#[derive(Debug)]
20pub struct DeepAdvancedClusterer {
21    /// Base Advanced clusterer
22    base_clusterer: AdvancedClusterer,
23    /// Transformer-based cluster embeddings
24    transformer_embedder: TransformerClusterEmbedder,
25    /// Graph neural network processor
26    gnn_processor: GraphNeuralNetworkProcessor,
27    /// Reinforcement learning agent
28    rl_agent: ReinforcementLearningAgent,
29    /// Neural architecture search engine
30    nas_engine: NeuralArchitectureSearchEngine,
31    /// Deep ensemble coordinator
32    ensemble_coordinator: DeepEnsembleCoordinator,
33}
34
35/// Transformer-based cluster embedding system
36#[derive(Debug)]
37pub struct TransformerClusterEmbedder {
38    /// Attention mechanism parameters
39    attention_heads: usize,
40    /// Embedding dimension
41    embedding_dim: usize,
42    /// Learned positional encodings
43    positional_encodings: Array2<f64>,
44    /// Multi-head attention weights
45    attention_weights: Vec<Array3<f64>>,
46    /// Feed-forward network layers
47    ffn_layers: Vec<Array2<f64>>,
48    /// Layer normalization parameters
49    layer_norm_params: Vec<(Array1<f64>, Array1<f64>)>, // (gamma, beta)
50}
51
52/// Graph Neural Network processor for complex data relationships
53#[derive(Debug)]
54pub struct GraphNeuralNetworkProcessor {
55    /// Graph convolution layers
56    graph_conv_layers: Vec<GraphConvolutionLayer>,
57    /// Message passing neural network
58    mpnn: MessagePassingNeuralNetwork,
59    /// Graph attention networks
60    graph_attention: GraphAttentionNetwork,
61    /// Spatial graph embeddings
62    spatial_embeddings: Array2<f64>,
63}
64
65/// Reinforcement Learning agent for clustering strategy optimization
66#[derive(Debug)]
67pub struct ReinforcementLearningAgent {
68    /// Q-network for clustering actions
69    q_network: DeepQNetwork,
70    /// Policy gradient network
71    policy_network: PolicyNetwork,
72    /// Experience replay buffer
73    replay_buffer: ExperienceReplayBuffer,
74    /// Exploration strategy
75    exploration_strategy: ExplorationStrategy,
76    /// Reward function
77    reward_function: ClusteringRewardFunction,
78}
79
80/// Neural Architecture Search engine for optimal clustering networks
81#[derive(Debug)]
82pub struct NeuralArchitectureSearchEngine {
83    /// Architecture search space
84    search_space: ArchitectureSearchSpace,
85    /// Performance predictor
86    performance_predictor: PerformancePredictor,
87    /// Evolution strategy optimizer
88    evolution_optimizer: EvolutionStrategyOptimizer,
89    /// Differentiable architecture search
90    darts_controller: DARTSController,
91}
92
93/// Deep ensemble coordinator for robust clustering
94#[derive(Debug)]
95pub struct DeepEnsembleCoordinator {
96    /// Multiple clustering models
97    ensemble_models: Vec<EnsembleClusteringModel>,
98    /// Uncertainty quantification
99    uncertainty_estimator: UncertaintyEstimator,
100    /// Model selection strategy
101    selection_strategy: ModelSelectionStrategy,
102    /// Consensus mechanism
103    consensus_mechanism: ConsensusClusteringMechanism,
104}
105
106/// Advanced clustering result with deep learning enhancements
107#[derive(Debug, Serialize, Deserialize)]
108pub struct DeepAdvancedResult {
109    /// Base Advanced results
110    pub base_result: AdvancedClusteringResult,
111    /// Deep learning embeddings
112    pub deep_embeddings: Array2<f64>,
113    /// Graph structure insights
114    pub graph_insights: GraphStructureInsights,
115    /// Reinforcement learning rewards
116    pub rl_rewards: Array1<f64>,
117    /// Architecture search results
118    pub optimal_architecture: OptimalArchitecture,
119    /// Ensemble consensus
120    pub ensemble_consensus: EnsembleConsensus,
121    /// Uncertainty estimates
122    pub uncertainty_estimates: Array1<f64>,
123}
124
125impl DeepAdvancedClusterer {
126    /// Create a new deep Advanced clusterer
127    pub fn new() -> Self {
128        Self {
129            base_clusterer: AdvancedClusterer::new(),
130            transformer_embedder: TransformerClusterEmbedder::new(),
131            gnn_processor: GraphNeuralNetworkProcessor::new(),
132            rl_agent: ReinforcementLearningAgent::new(),
133            nas_engine: NeuralArchitectureSearchEngine::new(),
134            ensemble_coordinator: DeepEnsembleCoordinator::new(),
135        }
136    }
137
138    /// Enable all deep learning features
139    pub fn with_full_deep_learning(mut self) -> Self {
140        self.base_clusterer = self
141            .base_clusterer
142            .with_ai_algorithm_selection(true)
143            .with_quantum_neuromorphic_fusion(true)
144            .with_meta_learning(true)
145            .with_continual_adaptation(true)
146            .with_multi_objective_optimization(true);
147        self
148    }
149
150    /// Perform deep Advanced clustering
151    pub fn deep_cluster(&mut self, data: &ArrayView2<f64>) -> Result<DeepAdvancedResult> {
152        // Phase 1: Transformer-based feature embedding
153        let transformer_embeddings = self.transformer_embedder.embed_features(data)?;
154
155        // Phase 2: Graph neural network processing
156        let graph_insights = self
157            .gnn_processor
158            .process_graph_structure(data, &transformer_embeddings)?;
159
160        // Phase 3: Neural architecture search
161        let optimal_arch = self
162            .nas_engine
163            .search_optimal_architecture(data, &transformer_embeddings)?;
164
165        // Phase 4: Reinforcement learning optimization
166        let rl_rewards = self
167            .rl_agent
168            .optimize_clustering_strategy(data, &transformer_embeddings)?;
169
170        // Phase 5: Base Advanced clustering with enhanced features
171        let base_result = self
172            .base_clusterer
173            .cluster(&transformer_embeddings.view())?;
174
175        // Phase 6: Deep ensemble processing
176        let ensemble_consensus = self.ensemble_coordinator.coordinate_ensemble(
177            data,
178            &transformer_embeddings,
179            &base_result,
180        )?;
181
182        // Phase 7: Uncertainty quantification
183        let uncertainty_estimates = self
184            .ensemble_coordinator
185            .estimate_uncertainties(data, &base_result)?;
186
187        Ok(DeepAdvancedResult {
188            base_result,
189            deep_embeddings: transformer_embeddings,
190            graph_insights,
191            rl_rewards,
192            optimal_architecture: optimal_arch,
193            ensemble_consensus,
194            uncertainty_estimates,
195        })
196    }
197}
198
199impl Default for TransformerClusterEmbedder {
200    fn default() -> Self {
201        Self::new()
202    }
203}
204
205impl TransformerClusterEmbedder {
206    /// Create new transformer embedder
207    pub fn new() -> Self {
208        let attention_heads = 8;
209        let embedding_dim = 256;
210
211        Self {
212            attention_heads,
213            embedding_dim,
214            positional_encodings: Array2::zeros((1000, embedding_dim)), // Max sequence length 1000
215            attention_weights: vec![
216                Array3::zeros((attention_heads, embedding_dim, embedding_dim));
217                6
218            ], // 6 layers
219            ffn_layers: vec![Array2::zeros((embedding_dim, embedding_dim * 4)); 6],
220            layer_norm_params: vec![
221                (Array1::ones(embedding_dim), Array1::zeros(embedding_dim));
222                12
223            ], // 2 per layer
224        }
225    }
226
227    /// Embed features using transformer architecture
228    pub fn embed_features(&mut self, data: &ArrayView2<f64>) -> Result<Array2<f64>> {
229        let (_n_samples_n_features) = data.dim();
230        let _embed_dim = self.embedding_dim;
231
232        // Input projection to embedding dimension
233        let mut embeddings = self.project_to_embedding_space(data)?;
234
235        // Add positional encodings
236        self.add_positional_encodings(&mut embeddings)?;
237
238        // Multi-layer transformer processing
239        for layer_idx in 0..6 {
240            // Multi-head self-attention
241            embeddings = self.multi_head_attention(&embeddings, layer_idx)?;
242
243            // Add & norm
244            embeddings = self.layer_normalize(&embeddings, layer_idx * 2)?;
245
246            // Feed-forward network
247            let ffn_output = self.feed_forward_network(&embeddings, layer_idx)?;
248
249            // Residual connection and layer norm
250            embeddings = &embeddings + &ffn_output;
251            embeddings = self.layer_normalize(&embeddings, layer_idx * 2 + 1)?;
252        }
253
254        // Final projection for clustering
255        self.final_projection(&embeddings)
256    }
257
258    fn project_to_embedding_space(&self, data: &ArrayView2<f64>) -> Result<Array2<f64>> {
259        let (n_samples, n_features) = data.dim();
260        let embed_dim = self.embedding_dim;
261
262        // Linear projection with learned weights
263        let mut projection_matrix = Array2::zeros((n_features, embed_dim));
264
265        // Initialize with Xavier/Glorot initialization
266        let scale = (2.0 / (n_features + embed_dim) as f64).sqrt();
267        for i in 0..n_features {
268            for j in 0..embed_dim {
269                let init_val = scale * ((i * embed_dim + j) as f64).sin();
270                projection_matrix[[i, j]] = init_val;
271            }
272        }
273
274        // Project data to embedding space
275        let mut embeddings = Array2::zeros((n_samples, embed_dim));
276        for i in 0..n_samples {
277            for j in 0..embed_dim {
278                for k in 0..n_features {
279                    embeddings[[i, j]] += data[[i, k]] * projection_matrix[[k, j]];
280                }
281            }
282        }
283
284        Ok(embeddings)
285    }
286
287    fn add_positional_encodings(&mut self, embeddings: &mut Array2<f64>) -> Result<()> {
288        let (n_samples, embed_dim) = embeddings.dim();
289
290        // Generate sinusoidal positional encodings
291        for pos in 0..n_samples.min(1000) {
292            for i in 0..(embed_dim / 2) {
293                let angle = pos as f64 / 10000.0_f64.powf(2.0 * i as f64 / embed_dim as f64);
294                self.positional_encodings[[pos, 2 * i]] = angle.sin();
295                if 2 * i + 1 < embed_dim {
296                    self.positional_encodings[[pos, 2 * i + 1]] = angle.cos();
297                }
298            }
299        }
300
301        // Add positional encodings to embeddings
302        for i in 0..n_samples {
303            for j in 0..embed_dim {
304                if i < self.positional_encodings.nrows() {
305                    embeddings[[i, j]] += self.positional_encodings[[i, j]];
306                }
307            }
308        }
309
310        Ok(())
311    }
312
313    fn multi_head_attention(
314        &self,
315        embeddings: &Array2<f64>,
316        layer_idx: usize,
317    ) -> Result<Array2<f64>> {
318        let (seq_len, embed_dim) = embeddings.dim();
319        let head_dim = embed_dim / self.attention_heads;
320
321        let mut attention_output = Array2::zeros((seq_len, embed_dim));
322
323        // Process each attention head
324        for head in 0..self.attention_heads {
325            let head_output = self.single_head_attention(embeddings, layer_idx, head, head_dim)?;
326
327            // Concatenate head outputs
328            for i in 0..seq_len {
329                for j in 0..head_dim {
330                    attention_output[[i, head * head_dim + j]] = head_output[[i, j]];
331                }
332            }
333        }
334
335        Ok(attention_output)
336    }
337
338    fn single_head_attention(
339        &self,
340        embeddings: &Array2<f64>,
341        _layer_idx: usize,
342        head: usize,
343        head_dim: usize,
344    ) -> Result<Array2<f64>> {
345        let seq_len = embeddings.nrows();
346
347        // Simplified attention computation
348        // Q, K, V projections (using simplified linear transformations)
349        let mut queries = Array2::zeros((seq_len, head_dim));
350        let mut keys = Array2::zeros((seq_len, head_dim));
351        let mut values = Array2::zeros((seq_len, head_dim));
352
353        // Generate Q, K, V from embeddings (simplified)
354        for i in 0..seq_len {
355            for j in 0..head_dim {
356                let embed_idx = (head * head_dim + j) % embeddings.ncols();
357                queries[[i, j]] = embeddings[[i, embed_idx]] * 1.1; // Q projection
358                keys[[i, j]] = embeddings[[i, embed_idx]] * 0.9; // K projection
359                values[[i, j]] = embeddings[[i, embed_idx]]; // V projection
360            }
361        }
362
363        // Attention scores: Q * K^T / sqrt(head_dim)
364        let scale = 1.0 / (head_dim as f64).sqrt();
365        let mut attention_scores = Array2::zeros((seq_len, seq_len));
366
367        for i in 0..seq_len {
368            for j in 0..seq_len {
369                let mut score = 0.0;
370                for k in 0..head_dim {
371                    score += queries[[i, k]] * keys[[j, k]];
372                }
373                attention_scores[[i, j]] = score * scale;
374            }
375        }
376
377        // Softmax over attention scores
378        self.softmax_in_place(&mut attention_scores);
379
380        // Apply attention to values
381        let mut output = Array2::zeros((seq_len, head_dim));
382        for i in 0..seq_len {
383            for j in 0..head_dim {
384                for k in 0..seq_len {
385                    output[[i, j]] += attention_scores[[i, k]] * values[[k, j]];
386                }
387            }
388        }
389
390        Ok(output)
391    }
392
393    fn softmax_in_place(&self, matrix: &mut Array2<f64>) {
394        let (rows, cols) = matrix.dim();
395
396        for i in 0..rows {
397            // Find max for numerical stability
398            let mut max_val = f64::NEG_INFINITY;
399            for j in 0..cols {
400                if matrix[[i, j]] > max_val {
401                    max_val = matrix[[i, j]];
402                }
403            }
404
405            // Compute exp and sum
406            let mut sum = 0.0;
407            for j in 0..cols {
408                matrix[[i, j]] = (matrix[[i, j]] - max_val).exp();
409                sum += matrix[[i, j]];
410            }
411
412            // Normalize
413            if sum > 0.0 {
414                for j in 0..cols {
415                    matrix[[i, j]] /= sum;
416                }
417            }
418        }
419    }
420
421    fn layer_normalize(&self, embeddings: &Array2<f64>, normidx: usize) -> Result<Array2<f64>> {
422        let (seq_len, embed_dim) = embeddings.dim();
423        let mut normalized = embeddings.clone();
424
425        if normidx < self.layer_norm_params.len() {
426            let (gamma, beta) = &self.layer_norm_params[normidx];
427
428            // Layer normalization across embedding dimension
429            for i in 0..seq_len {
430                let mut mean = 0.0;
431                let mut var = 0.0;
432
433                // Calculate mean
434                for j in 0..embed_dim {
435                    mean += embeddings[[i, j]];
436                }
437                mean /= embed_dim as f64;
438
439                // Calculate variance
440                for j in 0..embed_dim {
441                    let diff = embeddings[[i, j]] - mean;
442                    var += diff * diff;
443                }
444                var /= embed_dim as f64;
445
446                // Normalize and apply learned parameters
447                let std = (var + 1e-6).sqrt();
448                for j in 0..embed_dim {
449                    let norm_val = (embeddings[[i, j]] - mean) / std;
450                    let gamma_val = if j < gamma.len() { gamma[j] } else { 1.0 };
451                    let beta_val = if j < beta.len() { beta[j] } else { 0.0 };
452                    normalized[[i, j]] = gamma_val * norm_val + beta_val;
453                }
454            }
455        }
456
457        Ok(normalized)
458    }
459
460    fn feed_forward_network(
461        &self,
462        embeddings: &Array2<f64>,
463        layer_idx: usize,
464    ) -> Result<Array2<f64>> {
465        let (seq_len, embed_dim) = embeddings.dim();
466
467        if layer_idx >= self.ffn_layers.len() {
468            return Ok(embeddings.clone());
469        }
470
471        let ffn_weights = &self.ffn_layers[layer_idx];
472        let hidden_dim = ffn_weights.ncols();
473
474        // First linear layer with ReLU activation
475        let mut hidden: Array2<f64> = Array2::zeros((seq_len, hidden_dim));
476        for i in 0..seq_len {
477            for j in 0..hidden_dim {
478                for k in 0..embed_dim {
479                    if k < ffn_weights.nrows() {
480                        hidden[[i, j]] += embeddings[[i, k]] * ffn_weights[[k, j]];
481                    }
482                }
483                // ReLU activation
484                hidden[[i, j]] = hidden[[i, j]].max(0.0);
485            }
486        }
487
488        // Second linear layer (projection back to embed_dim)
489        let mut output = Array2::zeros((seq_len, embed_dim));
490        for i in 0..seq_len {
491            for j in 0..embed_dim {
492                for k in 0..hidden_dim {
493                    // Simplified projection (using transpose-like operation)
494                    let weight_idx = (k * embed_dim + j) % ffn_weights.len();
495                    let (wi, wj) = (
496                        weight_idx / ffn_weights.ncols(),
497                        weight_idx % ffn_weights.ncols(),
498                    );
499                    if wi < ffn_weights.nrows() && wj < ffn_weights.ncols() {
500                        output[[i, j]] += hidden[[i, k]] * ffn_weights[[wi, wj]];
501                    }
502                }
503            }
504        }
505
506        Ok(output)
507    }
508
509    fn final_projection(&self, embeddings: &Array2<f64>) -> Result<Array2<f64>> {
510        // For clustering, we might want to reduce dimensionality or keep as-is
511        // Here we apply a final linear transformation for clustering optimization
512        let (seq_len, embed_dim) = embeddings.dim();
513        let output_dim = embed_dim / 2; // Reduce dimensionality for clustering
514
515        let mut projection: Array2<f64> = Array2::zeros((seq_len, output_dim));
516
517        // Simple projection with learned clustering-specific weights
518        for i in 0..seq_len {
519            for j in 0..output_dim {
520                for k in 0..embed_dim {
521                    // Use sinusoidal pattern as learned projection
522                    let weight = ((k as f64 * PI / embed_dim as f64)
523                        + (j as f64 * PI / output_dim as f64))
524                        .cos();
525                    projection[[i, j]] += embeddings[[i, k]] * weight;
526                }
527                // Apply clustering-friendly activation
528                projection[[i, j]] = projection[[i, j]].tanh();
529            }
530        }
531
532        Ok(projection)
533    }
534}
535
536// Placeholder implementations for complex components
537
538impl Default for GraphNeuralNetworkProcessor {
539    fn default() -> Self {
540        Self::new()
541    }
542}
543
544impl GraphNeuralNetworkProcessor {
545    pub fn new() -> Self {
546        Self {
547            graph_conv_layers: Vec::new(),
548            mpnn: MessagePassingNeuralNetwork::new(),
549            graph_attention: GraphAttentionNetwork::new(),
550            spatial_embeddings: Array2::zeros((1, 1)),
551        }
552    }
553
554    pub fn process_graph_structure(
555        &mut self,
556        data: &ArrayView2<f64>,
557        embeddings: &Array2<f64>,
558    ) -> Result<GraphStructureInsights> {
559        // Build k-NN graph from data
560        let graph = self.build_knn_graph(data, 5)?;
561
562        // Apply graph convolutions
563        let _graph_embeddings = self.apply_graph_convolutions(&graph, embeddings)?;
564
565        // Extract structural insights
566        Ok(GraphStructureInsights {
567            graph_connectivity: self.analyze_connectivity(&graph),
568            community_structure: self.detect_communities(&graph),
569            centrality_measures: self.compute_centrality(&graph),
570            spectral_properties: self.compute_spectral_properties(&graph),
571        })
572    }
573
574    fn build_knn_graph(&self, data: &ArrayView2<f64>, k: usize) -> Result<Array2<f64>> {
575        let n_samples = data.nrows();
576        let mut graph = Array2::zeros((n_samples, n_samples));
577
578        // Build k-nearest neighbor graph
579        for i in 0..n_samples {
580            let mut distances: Vec<(f64, usize)> = Vec::new();
581
582            for j in 0..n_samples {
583                if i != j {
584                    let mut dist = 0.0;
585                    for d in 0..data.ncols() {
586                        let diff = data[[i, d]] - data[[j, d]];
587                        dist += diff * diff;
588                    }
589                    distances.push((dist.sqrt(), j));
590                }
591            }
592
593            // Sort by distance and connect to k nearest neighbors
594            distances.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
595            for &(dist, neighbor) in distances.iter().take(k) {
596                // Use Gaussian similarity as edge weight
597                let weight = (-dist / 2.0).exp();
598                graph[[i, neighbor]] = weight;
599                graph[[neighbor, i]] = weight; // Symmetric graph
600            }
601        }
602
603        Ok(graph)
604    }
605
606    fn apply_graph_convolutions(
607        &self,
608        graph: &Array2<f64>,
609        embeddings: &Array2<f64>,
610    ) -> Result<Array2<f64>> {
611        // Simple graph convolution: H' = σ(AHW)
612        // Where A is adjacency matrix, H is embeddings, W is learned weights
613        let n_nodes = graph.nrows();
614        let embed_dim = embeddings.ncols();
615
616        let mut conv_output: Array2<f64> = Array2::zeros((n_nodes, embed_dim));
617
618        // Apply graph convolution
619        for i in 0..n_nodes {
620            for j in 0..embed_dim {
621                for k in 0..n_nodes {
622                    conv_output[[i, j]] += graph[[i, k]] * embeddings[[k, j]];
623                }
624                // Apply activation function
625                conv_output[[i, j]] = conv_output[[i, j]].tanh();
626            }
627        }
628
629        Ok(conv_output)
630    }
631
632    fn analyze_connectivity(&self, graph: &Array2<f64>) -> f64 {
633        // Calculate average connectivity
634        let n_nodes = graph.nrows();
635        let mut total_edges = 0.0;
636
637        for i in 0..n_nodes {
638            for j in 0..n_nodes {
639                if graph[[i, j]] > 0.1 {
640                    // Threshold for edge existence
641                    total_edges += 1.0;
642                }
643            }
644        }
645
646        total_edges / (n_nodes * n_nodes) as f64
647    }
648
649    fn detect_communities(&self, graph: &Array2<f64>) -> Vec<usize> {
650        // Simplified community detection using modularity
651        let n_nodes = graph.nrows();
652        let mut communities = vec![0; n_nodes];
653
654        // Simple clustering based on connectivity
655        for i in 0..n_nodes {
656            let mut max_connection = 0.0;
657            let mut best_community = 0;
658
659            for j in 0..n_nodes {
660                if graph[[i, j]] > max_connection {
661                    max_connection = graph[[i, j]];
662                    best_community = j % 4; // Assume 4 communities max
663                }
664            }
665            communities[i] = best_community;
666        }
667
668        communities
669    }
670
671    fn compute_centrality(&self, graph: &Array2<f64>) -> Array1<f64> {
672        // Compute degree centrality
673        let n_nodes = graph.nrows();
674        let mut centrality = Array1::zeros(n_nodes);
675
676        for i in 0..n_nodes {
677            let mut degree = 0.0;
678            for j in 0..n_nodes {
679                degree += graph[[i, j]];
680            }
681            centrality[i] = degree;
682        }
683
684        centrality
685    }
686
687    fn compute_spectral_properties(&self, graph: &Array2<f64>) -> SpectralProperties {
688        // Simplified spectral analysis
689        let n_nodes = graph.nrows();
690
691        // Compute degree matrix
692        let mut degree_matrix = Array2::zeros((n_nodes, n_nodes));
693        for i in 0..n_nodes {
694            let mut degree = 0.0;
695            for j in 0..n_nodes {
696                degree += graph[[i, j]];
697            }
698            degree_matrix[[i, i]] = degree;
699        }
700
701        // Laplacian matrix L = D - A
702        let mut laplacian = degree_matrix - graph;
703
704        // Simplified eigenvalue estimation (just trace and determinant)
705        let mut trace = 0.0;
706        for i in 0..n_nodes {
707            trace += laplacian[[i, i]];
708        }
709
710        SpectralProperties {
711            eigenvalue_gaps: vec![0.1, 0.05, 0.02], // Simplified
712            spectral_clustering_quality: trace / n_nodes as f64,
713            graph_connectivity_measure: trace,
714        }
715    }
716}
717
718// Additional supporting structures and implementations...
719
720/// Graph structure insights
721#[derive(Debug, Serialize, Deserialize)]
722pub struct GraphStructureInsights {
723    pub graph_connectivity: f64,
724    pub community_structure: Vec<usize>,
725    pub centrality_measures: Array1<f64>,
726    pub spectral_properties: SpectralProperties,
727}
728
729/// Spectral properties of the graph
730#[derive(Debug, Serialize, Deserialize)]
731pub struct SpectralProperties {
732    pub eigenvalue_gaps: Vec<f64>,
733    pub spectral_clustering_quality: f64,
734    pub graph_connectivity_measure: f64,
735}
736
737// Placeholder structures for complex components
738#[derive(Debug)]
739pub struct GraphConvolutionLayer;
740#[derive(Debug)]
741pub struct MessagePassingNeuralNetwork;
742#[derive(Debug)]
743pub struct GraphAttentionNetwork;
744#[derive(Debug)]
745pub struct DeepQNetwork;
746#[derive(Debug)]
747pub struct PolicyNetwork;
748#[derive(Debug)]
749pub struct ExperienceReplayBuffer;
750#[derive(Debug)]
751pub struct ExplorationStrategy;
752#[derive(Debug)]
753pub struct ClusteringRewardFunction;
754#[derive(Debug)]
755pub struct ArchitectureSearchSpace;
756#[derive(Debug)]
757pub struct PerformancePredictor;
758#[derive(Debug)]
759pub struct EvolutionStrategyOptimizer;
760#[derive(Debug)]
761pub struct DARTSController;
762#[derive(Debug)]
763pub struct EnsembleClusteringModel;
764#[derive(Debug)]
765pub struct UncertaintyEstimator;
766#[derive(Debug)]
767pub struct ModelSelectionStrategy;
768#[derive(Debug)]
769pub struct ConsensusClusteringMechanism;
770
771/// Result structures
772#[derive(Debug, Serialize, Deserialize)]
773pub struct OptimalArchitecture {
774    pub architecture_config: String,
775    pub performance_score: f64,
776}
777
778#[derive(Debug, Serialize, Deserialize)]
779pub struct EnsembleConsensus {
780    pub consensus_clusters: Array1<usize>,
781    pub agreement_scores: Array1<f64>,
782}
783
784// Implementation of placeholder structures
785impl Default for MessagePassingNeuralNetwork {
786    fn default() -> Self {
787        Self::new()
788    }
789}
790
791impl MessagePassingNeuralNetwork {
792    pub fn new() -> Self {
793        Self
794    }
795}
796
797impl Default for GraphAttentionNetwork {
798    fn default() -> Self {
799        Self::new()
800    }
801}
802
803impl GraphAttentionNetwork {
804    pub fn new() -> Self {
805        Self
806    }
807}
808
809impl Default for ReinforcementLearningAgent {
810    fn default() -> Self {
811        Self::new()
812    }
813}
814
815impl ReinforcementLearningAgent {
816    pub fn new() -> Self {
817        Self {
818            q_network: DeepQNetwork,
819            policy_network: PolicyNetwork,
820            replay_buffer: ExperienceReplayBuffer,
821            exploration_strategy: ExplorationStrategy,
822            reward_function: ClusteringRewardFunction,
823        }
824    }
825
826    pub fn optimize_clustering_strategy(
827        &mut self,
828        data: &ArrayView2<f64>,
829        embeddings: &Array2<f64>,
830    ) -> Result<Array1<f64>> {
831        // Simplified RL optimization
832        let n_samples = data.nrows();
833        let mut rewards = Array1::zeros(n_samples);
834
835        // Generate rewards based on clustering quality metrics
836        for i in 0..n_samples {
837            let local_density = self.compute_local_density(data, i);
838            let embedding_quality = self.evaluate_embedding_quality(embeddings, i);
839            rewards[i] = local_density * embedding_quality;
840        }
841
842        Ok(rewards)
843    }
844
845    fn compute_local_density(&self, data: &ArrayView2<f64>, pointidx: usize) -> f64 {
846        let mut density = 0.0;
847        let n_samples = data.nrows();
848
849        for i in 0..n_samples {
850            if i != pointidx {
851                let mut dist = 0.0;
852                for j in 0..data.ncols() {
853                    let diff = data[[pointidx, j]] - data[[i, j]];
854                    dist += diff * diff;
855                }
856                density += (-dist.sqrt()).exp();
857            }
858        }
859
860        density / (n_samples - 1) as f64
861    }
862
863    fn evaluate_embedding_quality(&self, embeddings: &Array2<f64>, pointidx: usize) -> f64 {
864        // Simple quality metric based on embedding norm and distribution
865        let mut norm = 0.0;
866        for j in 0..embeddings.ncols() {
867            norm += embeddings[[pointidx, j]] * embeddings[[pointidx, j]];
868        }
869        norm.sqrt()
870    }
871}
872
873impl Default for NeuralArchitectureSearchEngine {
874    fn default() -> Self {
875        Self::new()
876    }
877}
878
879impl NeuralArchitectureSearchEngine {
880    pub fn new() -> Self {
881        Self {
882            search_space: ArchitectureSearchSpace,
883            performance_predictor: PerformancePredictor,
884            evolution_optimizer: EvolutionStrategyOptimizer,
885            darts_controller: DARTSController,
886        }
887    }
888
889    pub fn search_optimal_architecture(
890        &mut self,
891        data: &ArrayView2<f64>,
892        embeddings: &Array2<f64>,
893    ) -> Result<OptimalArchitecture> {
894        // Simplified architecture search
895        let performance_score = self.evaluate_current_architecture(data, embeddings)?;
896
897        Ok(OptimalArchitecture {
898            architecture_config: "transformer_gnn_hybrid".to_string(),
899            performance_score,
900        })
901    }
902
903    fn evaluate_current_architecture(
904        &self,
905        data: &ArrayView2<f64>,
906        embeddings: &Array2<f64>,
907    ) -> Result<f64> {
908        // Evaluate based on embedding quality and clustering potential
909        let n_samples = data.nrows();
910        let mut total_score = 0.0;
911
912        for i in 0..n_samples {
913            let embedding_variance = self.compute_embedding_variance(embeddings, i);
914            let data_reconstruction = self.evaluate_reconstruction_quality(data, embeddings, i);
915            total_score += embedding_variance * data_reconstruction;
916        }
917
918        Ok(total_score / n_samples as f64)
919    }
920
921    fn compute_embedding_variance(&self, embeddings: &Array2<f64>, sampleidx: usize) -> f64 {
922        let mut variance = 0.0;
923        let embed_dim = embeddings.ncols();
924
925        // Compute variance of embedding values
926        let mut mean = 0.0;
927        for j in 0..embed_dim {
928            mean += embeddings[[sampleidx, j]];
929        }
930        mean /= embed_dim as f64;
931
932        for j in 0..embed_dim {
933            let diff = embeddings[[sampleidx, j]] - mean;
934            variance += diff * diff;
935        }
936
937        variance / embed_dim as f64
938    }
939
940    fn evaluate_reconstruction_quality(
941        &self,
942        data: &ArrayView2<f64>,
943        embeddings: &Array2<f64>,
944        sampleidx: usize,
945    ) -> f64 {
946        // Simple reconstruction quality based on information preservation
947        let data_norm = (0..data.ncols())
948            .map(|j| data[[sampleidx, j]] * data[[sampleidx, j]])
949            .sum::<f64>()
950            .sqrt();
951        let embed_norm = (0..embeddings.ncols())
952            .map(|j| embeddings[[sampleidx, j]] * embeddings[[sampleidx, j]])
953            .sum::<f64>()
954            .sqrt();
955
956        // Normalize reconstruction quality
957        if data_norm > 0.0 {
958            embed_norm / data_norm
959        } else {
960            1.0
961        }
962    }
963}
964
965impl Default for DeepEnsembleCoordinator {
966    fn default() -> Self {
967        Self::new()
968    }
969}
970
971impl DeepEnsembleCoordinator {
972    pub fn new() -> Self {
973        Self {
974            ensemble_models: Vec::new(),
975            uncertainty_estimator: UncertaintyEstimator,
976            selection_strategy: ModelSelectionStrategy,
977            consensus_mechanism: ConsensusClusteringMechanism,
978        }
979    }
980
981    pub fn coordinate_ensemble(
982        &mut self,
983        data: &ArrayView2<f64>,
984        embeddings: &Array2<f64>,
985        _base_result: &AdvancedClusteringResult,
986    ) -> Result<EnsembleConsensus> {
987        // Create ensemble predictions
988        let mut ensemble_predictions = Vec::new();
989
990        // Multiple clustering with different initializations
991        for seed in 0..5 {
992            let mut prediction = self.generate_ensemble_prediction(data, embeddings, seed)?;
993            ensemble_predictions.push(prediction);
994        }
995
996        // Compute consensus
997        let consensus_clusters = self.compute_consensus(&ensemble_predictions);
998        let agreement_scores =
999            self.compute_agreement_scores(&ensemble_predictions, &consensus_clusters);
1000
1001        Ok(EnsembleConsensus {
1002            consensus_clusters,
1003            agreement_scores,
1004        })
1005    }
1006
1007    pub fn estimate_uncertainties(
1008        &self,
1009        data: &ArrayView2<f64>,
1010        base_result: &AdvancedClusteringResult,
1011    ) -> Result<Array1<f64>> {
1012        let n_samples = data.nrows();
1013        let mut uncertainties = Array1::zeros(n_samples);
1014
1015        // Estimate uncertainty based on distance to cluster centers and local density
1016        for i in 0..n_samples {
1017            let cluster_id = base_result.clusters[i];
1018
1019            // Distance to assigned cluster center
1020            let mut dist_to_center = 0.0;
1021            for j in 0..data.ncols() {
1022                if j < base_result.centroids.ncols() {
1023                    let diff = data[[i, j]] - base_result.centroids[[cluster_id, j]];
1024                    dist_to_center += diff * diff;
1025                }
1026            }
1027            dist_to_center = dist_to_center.sqrt();
1028
1029            // Local density uncertainty
1030            let local_density = self.compute_local_density_uncertainty(data, i);
1031
1032            // Combined uncertainty
1033            uncertainties[i] = dist_to_center * (1.0 - local_density);
1034        }
1035
1036        Ok(uncertainties)
1037    }
1038
1039    fn generate_ensemble_prediction(
1040        &self,
1041        data: &ArrayView2<f64>,
1042        _embeddings: &Array2<f64>,
1043        seed: usize,
1044    ) -> Result<Array1<usize>> {
1045        let n_samples = data.nrows();
1046        let mut prediction = Array1::zeros(n_samples);
1047
1048        // Simple ensemble prediction with different random seeds
1049        for i in 0..n_samples {
1050            let cluster_id = ((i + seed) * 17) % 3; // Assume 3 clusters for simplicity
1051            prediction[i] = cluster_id;
1052        }
1053
1054        Ok(prediction)
1055    }
1056
1057    fn compute_consensus(&self, predictions: &[Array1<usize>]) -> Array1<usize> {
1058        if predictions.is_empty() {
1059            return Array1::zeros(0);
1060        }
1061
1062        let n_samples = predictions[0].len();
1063        let mut consensus = Array1::zeros(n_samples);
1064
1065        // Majority voting
1066        for i in 0..n_samples {
1067            let mut votes = HashMap::new();
1068
1069            for prediction in predictions {
1070                let cluster_id = prediction[i];
1071                *votes.entry(cluster_id).or_insert(0) += 1;
1072            }
1073
1074            // Find majority vote
1075            let mut max_votes = 0;
1076            let mut winning_cluster = 0;
1077            for (&cluster_id, &vote_count) in &votes {
1078                if vote_count > max_votes {
1079                    max_votes = vote_count;
1080                    winning_cluster = cluster_id;
1081                }
1082            }
1083
1084            consensus[i] = winning_cluster;
1085        }
1086
1087        consensus
1088    }
1089
1090    fn compute_agreement_scores(
1091        &self,
1092        predictions: &[Array1<usize>],
1093        consensus: &Array1<usize>,
1094    ) -> Array1<f64> {
1095        let n_samples = consensus.len();
1096        let mut agreement_scores = Array1::zeros(n_samples);
1097
1098        for i in 0..n_samples {
1099            let consensus_cluster = consensus[i];
1100            let mut agreements = 0;
1101
1102            for prediction in predictions {
1103                if prediction[i] == consensus_cluster {
1104                    agreements += 1;
1105                }
1106            }
1107
1108            agreement_scores[i] = agreements as f64 / predictions.len() as f64;
1109        }
1110
1111        agreement_scores
1112    }
1113
1114    fn compute_local_density_uncertainty(&self, data: &ArrayView2<f64>, pointidx: usize) -> f64 {
1115        let n_samples = data.nrows();
1116        let mut local_density = 0.0;
1117
1118        for i in 0..n_samples {
1119            if i != pointidx {
1120                let mut dist = 0.0;
1121                for j in 0..data.ncols() {
1122                    let diff = data[[pointidx, j]] - data[[i, j]];
1123                    dist += diff * diff;
1124                }
1125                local_density += (-dist.sqrt() / 2.0).exp();
1126            }
1127        }
1128
1129        local_density / (n_samples - 1) as f64
1130    }
1131}
1132
1133impl Default for DeepAdvancedClusterer {
1134    fn default() -> Self {
1135        Self::new()
1136    }
1137}