1use crate::advanced_clustering::{
8 AdvancedClusterer, AdvancedClusteringResult, QuantumNeuromorphicMetrics,
9};
10use crate::error::{ClusteringError, Result};
11use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
12use scirs2_core::numeric::Complex64;
13use std::collections::{HashMap, VecDeque};
14use std::f64::consts::PI;
15
16use serde::{Deserialize, Serialize};
17
18#[derive(Debug)]
20pub struct DeepAdvancedClusterer {
21 base_clusterer: AdvancedClusterer,
23 transformer_embedder: TransformerClusterEmbedder,
25 gnn_processor: GraphNeuralNetworkProcessor,
27 rl_agent: ReinforcementLearningAgent,
29 nas_engine: NeuralArchitectureSearchEngine,
31 ensemble_coordinator: DeepEnsembleCoordinator,
33}
34
35#[derive(Debug)]
37pub struct TransformerClusterEmbedder {
38 attention_heads: usize,
40 embedding_dim: usize,
42 positional_encodings: Array2<f64>,
44 attention_weights: Vec<Array3<f64>>,
46 ffn_layers: Vec<Array2<f64>>,
48 layer_norm_params: Vec<(Array1<f64>, Array1<f64>)>, }
51
52#[derive(Debug)]
54pub struct GraphNeuralNetworkProcessor {
55 graph_conv_layers: Vec<GraphConvolutionLayer>,
57 mpnn: MessagePassingNeuralNetwork,
59 graph_attention: GraphAttentionNetwork,
61 spatial_embeddings: Array2<f64>,
63}
64
65#[derive(Debug)]
67pub struct ReinforcementLearningAgent {
68 q_network: DeepQNetwork,
70 policy_network: PolicyNetwork,
72 replay_buffer: ExperienceReplayBuffer,
74 exploration_strategy: ExplorationStrategy,
76 reward_function: ClusteringRewardFunction,
78}
79
80#[derive(Debug)]
82pub struct NeuralArchitectureSearchEngine {
83 search_space: ArchitectureSearchSpace,
85 performance_predictor: PerformancePredictor,
87 evolution_optimizer: EvolutionStrategyOptimizer,
89 darts_controller: DARTSController,
91}
92
93#[derive(Debug)]
95pub struct DeepEnsembleCoordinator {
96 ensemble_models: Vec<EnsembleClusteringModel>,
98 uncertainty_estimator: UncertaintyEstimator,
100 selection_strategy: ModelSelectionStrategy,
102 consensus_mechanism: ConsensusClusteringMechanism,
104}
105
106#[derive(Debug, Serialize, Deserialize)]
108pub struct DeepAdvancedResult {
109 pub base_result: AdvancedClusteringResult,
111 pub deep_embeddings: Array2<f64>,
113 pub graph_insights: GraphStructureInsights,
115 pub rl_rewards: Array1<f64>,
117 pub optimal_architecture: OptimalArchitecture,
119 pub ensemble_consensus: EnsembleConsensus,
121 pub uncertainty_estimates: Array1<f64>,
123}
124
125impl DeepAdvancedClusterer {
126 pub fn new() -> Self {
128 Self {
129 base_clusterer: AdvancedClusterer::new(),
130 transformer_embedder: TransformerClusterEmbedder::new(),
131 gnn_processor: GraphNeuralNetworkProcessor::new(),
132 rl_agent: ReinforcementLearningAgent::new(),
133 nas_engine: NeuralArchitectureSearchEngine::new(),
134 ensemble_coordinator: DeepEnsembleCoordinator::new(),
135 }
136 }
137
138 pub fn with_full_deep_learning(mut self) -> Self {
140 self.base_clusterer = self
141 .base_clusterer
142 .with_ai_algorithm_selection(true)
143 .with_quantum_neuromorphic_fusion(true)
144 .with_meta_learning(true)
145 .with_continual_adaptation(true)
146 .with_multi_objective_optimization(true);
147 self
148 }
149
150 pub fn deep_cluster(&mut self, data: &ArrayView2<f64>) -> Result<DeepAdvancedResult> {
152 let transformer_embeddings = self.transformer_embedder.embed_features(data)?;
154
155 let graph_insights = self
157 .gnn_processor
158 .process_graph_structure(data, &transformer_embeddings)?;
159
160 let optimal_arch = self
162 .nas_engine
163 .search_optimal_architecture(data, &transformer_embeddings)?;
164
165 let rl_rewards = self
167 .rl_agent
168 .optimize_clustering_strategy(data, &transformer_embeddings)?;
169
170 let base_result = self
172 .base_clusterer
173 .cluster(&transformer_embeddings.view())?;
174
175 let ensemble_consensus = self.ensemble_coordinator.coordinate_ensemble(
177 data,
178 &transformer_embeddings,
179 &base_result,
180 )?;
181
182 let uncertainty_estimates = self
184 .ensemble_coordinator
185 .estimate_uncertainties(data, &base_result)?;
186
187 Ok(DeepAdvancedResult {
188 base_result,
189 deep_embeddings: transformer_embeddings,
190 graph_insights,
191 rl_rewards,
192 optimal_architecture: optimal_arch,
193 ensemble_consensus,
194 uncertainty_estimates,
195 })
196 }
197}
198
199impl Default for TransformerClusterEmbedder {
200 fn default() -> Self {
201 Self::new()
202 }
203}
204
205impl TransformerClusterEmbedder {
206 pub fn new() -> Self {
208 let attention_heads = 8;
209 let embedding_dim = 256;
210
211 Self {
212 attention_heads,
213 embedding_dim,
214 positional_encodings: Array2::zeros((1000, embedding_dim)), attention_weights: vec![
216 Array3::zeros((attention_heads, embedding_dim, embedding_dim));
217 6
218 ], ffn_layers: vec![Array2::zeros((embedding_dim, embedding_dim * 4)); 6],
220 layer_norm_params: vec![
221 (Array1::ones(embedding_dim), Array1::zeros(embedding_dim));
222 12
223 ], }
225 }
226
227 pub fn embed_features(&mut self, data: &ArrayView2<f64>) -> Result<Array2<f64>> {
229 let (_n_samples_n_features) = data.dim();
230 let _embed_dim = self.embedding_dim;
231
232 let mut embeddings = self.project_to_embedding_space(data)?;
234
235 self.add_positional_encodings(&mut embeddings)?;
237
238 for layer_idx in 0..6 {
240 embeddings = self.multi_head_attention(&embeddings, layer_idx)?;
242
243 embeddings = self.layer_normalize(&embeddings, layer_idx * 2)?;
245
246 let ffn_output = self.feed_forward_network(&embeddings, layer_idx)?;
248
249 embeddings = &embeddings + &ffn_output;
251 embeddings = self.layer_normalize(&embeddings, layer_idx * 2 + 1)?;
252 }
253
254 self.final_projection(&embeddings)
256 }
257
258 fn project_to_embedding_space(&self, data: &ArrayView2<f64>) -> Result<Array2<f64>> {
259 let (n_samples, n_features) = data.dim();
260 let embed_dim = self.embedding_dim;
261
262 let mut projection_matrix = Array2::zeros((n_features, embed_dim));
264
265 let scale = (2.0 / (n_features + embed_dim) as f64).sqrt();
267 for i in 0..n_features {
268 for j in 0..embed_dim {
269 let init_val = scale * ((i * embed_dim + j) as f64).sin();
270 projection_matrix[[i, j]] = init_val;
271 }
272 }
273
274 let mut embeddings = Array2::zeros((n_samples, embed_dim));
276 for i in 0..n_samples {
277 for j in 0..embed_dim {
278 for k in 0..n_features {
279 embeddings[[i, j]] += data[[i, k]] * projection_matrix[[k, j]];
280 }
281 }
282 }
283
284 Ok(embeddings)
285 }
286
287 fn add_positional_encodings(&mut self, embeddings: &mut Array2<f64>) -> Result<()> {
288 let (n_samples, embed_dim) = embeddings.dim();
289
290 for pos in 0..n_samples.min(1000) {
292 for i in 0..(embed_dim / 2) {
293 let angle = pos as f64 / 10000.0_f64.powf(2.0 * i as f64 / embed_dim as f64);
294 self.positional_encodings[[pos, 2 * i]] = angle.sin();
295 if 2 * i + 1 < embed_dim {
296 self.positional_encodings[[pos, 2 * i + 1]] = angle.cos();
297 }
298 }
299 }
300
301 for i in 0..n_samples {
303 for j in 0..embed_dim {
304 if i < self.positional_encodings.nrows() {
305 embeddings[[i, j]] += self.positional_encodings[[i, j]];
306 }
307 }
308 }
309
310 Ok(())
311 }
312
313 fn multi_head_attention(
314 &self,
315 embeddings: &Array2<f64>,
316 layer_idx: usize,
317 ) -> Result<Array2<f64>> {
318 let (seq_len, embed_dim) = embeddings.dim();
319 let head_dim = embed_dim / self.attention_heads;
320
321 let mut attention_output = Array2::zeros((seq_len, embed_dim));
322
323 for head in 0..self.attention_heads {
325 let head_output = self.single_head_attention(embeddings, layer_idx, head, head_dim)?;
326
327 for i in 0..seq_len {
329 for j in 0..head_dim {
330 attention_output[[i, head * head_dim + j]] = head_output[[i, j]];
331 }
332 }
333 }
334
335 Ok(attention_output)
336 }
337
338 fn single_head_attention(
339 &self,
340 embeddings: &Array2<f64>,
341 _layer_idx: usize,
342 head: usize,
343 head_dim: usize,
344 ) -> Result<Array2<f64>> {
345 let seq_len = embeddings.nrows();
346
347 let mut queries = Array2::zeros((seq_len, head_dim));
350 let mut keys = Array2::zeros((seq_len, head_dim));
351 let mut values = Array2::zeros((seq_len, head_dim));
352
353 for i in 0..seq_len {
355 for j in 0..head_dim {
356 let embed_idx = (head * head_dim + j) % embeddings.ncols();
357 queries[[i, j]] = embeddings[[i, embed_idx]] * 1.1; keys[[i, j]] = embeddings[[i, embed_idx]] * 0.9; values[[i, j]] = embeddings[[i, embed_idx]]; }
361 }
362
363 let scale = 1.0 / (head_dim as f64).sqrt();
365 let mut attention_scores = Array2::zeros((seq_len, seq_len));
366
367 for i in 0..seq_len {
368 for j in 0..seq_len {
369 let mut score = 0.0;
370 for k in 0..head_dim {
371 score += queries[[i, k]] * keys[[j, k]];
372 }
373 attention_scores[[i, j]] = score * scale;
374 }
375 }
376
377 self.softmax_in_place(&mut attention_scores);
379
380 let mut output = Array2::zeros((seq_len, head_dim));
382 for i in 0..seq_len {
383 for j in 0..head_dim {
384 for k in 0..seq_len {
385 output[[i, j]] += attention_scores[[i, k]] * values[[k, j]];
386 }
387 }
388 }
389
390 Ok(output)
391 }
392
393 fn softmax_in_place(&self, matrix: &mut Array2<f64>) {
394 let (rows, cols) = matrix.dim();
395
396 for i in 0..rows {
397 let mut max_val = f64::NEG_INFINITY;
399 for j in 0..cols {
400 if matrix[[i, j]] > max_val {
401 max_val = matrix[[i, j]];
402 }
403 }
404
405 let mut sum = 0.0;
407 for j in 0..cols {
408 matrix[[i, j]] = (matrix[[i, j]] - max_val).exp();
409 sum += matrix[[i, j]];
410 }
411
412 if sum > 0.0 {
414 for j in 0..cols {
415 matrix[[i, j]] /= sum;
416 }
417 }
418 }
419 }
420
421 fn layer_normalize(&self, embeddings: &Array2<f64>, normidx: usize) -> Result<Array2<f64>> {
422 let (seq_len, embed_dim) = embeddings.dim();
423 let mut normalized = embeddings.clone();
424
425 if normidx < self.layer_norm_params.len() {
426 let (gamma, beta) = &self.layer_norm_params[normidx];
427
428 for i in 0..seq_len {
430 let mut mean = 0.0;
431 let mut var = 0.0;
432
433 for j in 0..embed_dim {
435 mean += embeddings[[i, j]];
436 }
437 mean /= embed_dim as f64;
438
439 for j in 0..embed_dim {
441 let diff = embeddings[[i, j]] - mean;
442 var += diff * diff;
443 }
444 var /= embed_dim as f64;
445
446 let std = (var + 1e-6).sqrt();
448 for j in 0..embed_dim {
449 let norm_val = (embeddings[[i, j]] - mean) / std;
450 let gamma_val = if j < gamma.len() { gamma[j] } else { 1.0 };
451 let beta_val = if j < beta.len() { beta[j] } else { 0.0 };
452 normalized[[i, j]] = gamma_val * norm_val + beta_val;
453 }
454 }
455 }
456
457 Ok(normalized)
458 }
459
460 fn feed_forward_network(
461 &self,
462 embeddings: &Array2<f64>,
463 layer_idx: usize,
464 ) -> Result<Array2<f64>> {
465 let (seq_len, embed_dim) = embeddings.dim();
466
467 if layer_idx >= self.ffn_layers.len() {
468 return Ok(embeddings.clone());
469 }
470
471 let ffn_weights = &self.ffn_layers[layer_idx];
472 let hidden_dim = ffn_weights.ncols();
473
474 let mut hidden: Array2<f64> = Array2::zeros((seq_len, hidden_dim));
476 for i in 0..seq_len {
477 for j in 0..hidden_dim {
478 for k in 0..embed_dim {
479 if k < ffn_weights.nrows() {
480 hidden[[i, j]] += embeddings[[i, k]] * ffn_weights[[k, j]];
481 }
482 }
483 hidden[[i, j]] = hidden[[i, j]].max(0.0);
485 }
486 }
487
488 let mut output = Array2::zeros((seq_len, embed_dim));
490 for i in 0..seq_len {
491 for j in 0..embed_dim {
492 for k in 0..hidden_dim {
493 let weight_idx = (k * embed_dim + j) % ffn_weights.len();
495 let (wi, wj) = (
496 weight_idx / ffn_weights.ncols(),
497 weight_idx % ffn_weights.ncols(),
498 );
499 if wi < ffn_weights.nrows() && wj < ffn_weights.ncols() {
500 output[[i, j]] += hidden[[i, k]] * ffn_weights[[wi, wj]];
501 }
502 }
503 }
504 }
505
506 Ok(output)
507 }
508
509 fn final_projection(&self, embeddings: &Array2<f64>) -> Result<Array2<f64>> {
510 let (seq_len, embed_dim) = embeddings.dim();
513 let output_dim = embed_dim / 2; let mut projection: Array2<f64> = Array2::zeros((seq_len, output_dim));
516
517 for i in 0..seq_len {
519 for j in 0..output_dim {
520 for k in 0..embed_dim {
521 let weight = ((k as f64 * PI / embed_dim as f64)
523 + (j as f64 * PI / output_dim as f64))
524 .cos();
525 projection[[i, j]] += embeddings[[i, k]] * weight;
526 }
527 projection[[i, j]] = projection[[i, j]].tanh();
529 }
530 }
531
532 Ok(projection)
533 }
534}
535
536impl Default for GraphNeuralNetworkProcessor {
539 fn default() -> Self {
540 Self::new()
541 }
542}
543
544impl GraphNeuralNetworkProcessor {
545 pub fn new() -> Self {
546 Self {
547 graph_conv_layers: Vec::new(),
548 mpnn: MessagePassingNeuralNetwork::new(),
549 graph_attention: GraphAttentionNetwork::new(),
550 spatial_embeddings: Array2::zeros((1, 1)),
551 }
552 }
553
554 pub fn process_graph_structure(
555 &mut self,
556 data: &ArrayView2<f64>,
557 embeddings: &Array2<f64>,
558 ) -> Result<GraphStructureInsights> {
559 let graph = self.build_knn_graph(data, 5)?;
561
562 let _graph_embeddings = self.apply_graph_convolutions(&graph, embeddings)?;
564
565 Ok(GraphStructureInsights {
567 graph_connectivity: self.analyze_connectivity(&graph),
568 community_structure: self.detect_communities(&graph),
569 centrality_measures: self.compute_centrality(&graph),
570 spectral_properties: self.compute_spectral_properties(&graph),
571 })
572 }
573
574 fn build_knn_graph(&self, data: &ArrayView2<f64>, k: usize) -> Result<Array2<f64>> {
575 let n_samples = data.nrows();
576 let mut graph = Array2::zeros((n_samples, n_samples));
577
578 for i in 0..n_samples {
580 let mut distances: Vec<(f64, usize)> = Vec::new();
581
582 for j in 0..n_samples {
583 if i != j {
584 let mut dist = 0.0;
585 for d in 0..data.ncols() {
586 let diff = data[[i, d]] - data[[j, d]];
587 dist += diff * diff;
588 }
589 distances.push((dist.sqrt(), j));
590 }
591 }
592
593 distances.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
595 for &(dist, neighbor) in distances.iter().take(k) {
596 let weight = (-dist / 2.0).exp();
598 graph[[i, neighbor]] = weight;
599 graph[[neighbor, i]] = weight; }
601 }
602
603 Ok(graph)
604 }
605
606 fn apply_graph_convolutions(
607 &self,
608 graph: &Array2<f64>,
609 embeddings: &Array2<f64>,
610 ) -> Result<Array2<f64>> {
611 let n_nodes = graph.nrows();
614 let embed_dim = embeddings.ncols();
615
616 let mut conv_output: Array2<f64> = Array2::zeros((n_nodes, embed_dim));
617
618 for i in 0..n_nodes {
620 for j in 0..embed_dim {
621 for k in 0..n_nodes {
622 conv_output[[i, j]] += graph[[i, k]] * embeddings[[k, j]];
623 }
624 conv_output[[i, j]] = conv_output[[i, j]].tanh();
626 }
627 }
628
629 Ok(conv_output)
630 }
631
632 fn analyze_connectivity(&self, graph: &Array2<f64>) -> f64 {
633 let n_nodes = graph.nrows();
635 let mut total_edges = 0.0;
636
637 for i in 0..n_nodes {
638 for j in 0..n_nodes {
639 if graph[[i, j]] > 0.1 {
640 total_edges += 1.0;
642 }
643 }
644 }
645
646 total_edges / (n_nodes * n_nodes) as f64
647 }
648
649 fn detect_communities(&self, graph: &Array2<f64>) -> Vec<usize> {
650 let n_nodes = graph.nrows();
652 let mut communities = vec![0; n_nodes];
653
654 for i in 0..n_nodes {
656 let mut max_connection = 0.0;
657 let mut best_community = 0;
658
659 for j in 0..n_nodes {
660 if graph[[i, j]] > max_connection {
661 max_connection = graph[[i, j]];
662 best_community = j % 4; }
664 }
665 communities[i] = best_community;
666 }
667
668 communities
669 }
670
671 fn compute_centrality(&self, graph: &Array2<f64>) -> Array1<f64> {
672 let n_nodes = graph.nrows();
674 let mut centrality = Array1::zeros(n_nodes);
675
676 for i in 0..n_nodes {
677 let mut degree = 0.0;
678 for j in 0..n_nodes {
679 degree += graph[[i, j]];
680 }
681 centrality[i] = degree;
682 }
683
684 centrality
685 }
686
687 fn compute_spectral_properties(&self, graph: &Array2<f64>) -> SpectralProperties {
688 let n_nodes = graph.nrows();
690
691 let mut degree_matrix = Array2::zeros((n_nodes, n_nodes));
693 for i in 0..n_nodes {
694 let mut degree = 0.0;
695 for j in 0..n_nodes {
696 degree += graph[[i, j]];
697 }
698 degree_matrix[[i, i]] = degree;
699 }
700
701 let mut laplacian = degree_matrix - graph;
703
704 let mut trace = 0.0;
706 for i in 0..n_nodes {
707 trace += laplacian[[i, i]];
708 }
709
710 SpectralProperties {
711 eigenvalue_gaps: vec![0.1, 0.05, 0.02], spectral_clustering_quality: trace / n_nodes as f64,
713 graph_connectivity_measure: trace,
714 }
715 }
716}
717
718#[derive(Debug, Serialize, Deserialize)]
722pub struct GraphStructureInsights {
723 pub graph_connectivity: f64,
724 pub community_structure: Vec<usize>,
725 pub centrality_measures: Array1<f64>,
726 pub spectral_properties: SpectralProperties,
727}
728
729#[derive(Debug, Serialize, Deserialize)]
731pub struct SpectralProperties {
732 pub eigenvalue_gaps: Vec<f64>,
733 pub spectral_clustering_quality: f64,
734 pub graph_connectivity_measure: f64,
735}
736
737#[derive(Debug)]
739pub struct GraphConvolutionLayer;
740#[derive(Debug)]
741pub struct MessagePassingNeuralNetwork;
742#[derive(Debug)]
743pub struct GraphAttentionNetwork;
744#[derive(Debug)]
745pub struct DeepQNetwork;
746#[derive(Debug)]
747pub struct PolicyNetwork;
748#[derive(Debug)]
749pub struct ExperienceReplayBuffer;
750#[derive(Debug)]
751pub struct ExplorationStrategy;
752#[derive(Debug)]
753pub struct ClusteringRewardFunction;
754#[derive(Debug)]
755pub struct ArchitectureSearchSpace;
756#[derive(Debug)]
757pub struct PerformancePredictor;
758#[derive(Debug)]
759pub struct EvolutionStrategyOptimizer;
760#[derive(Debug)]
761pub struct DARTSController;
762#[derive(Debug)]
763pub struct EnsembleClusteringModel;
764#[derive(Debug)]
765pub struct UncertaintyEstimator;
766#[derive(Debug)]
767pub struct ModelSelectionStrategy;
768#[derive(Debug)]
769pub struct ConsensusClusteringMechanism;
770
771#[derive(Debug, Serialize, Deserialize)]
773pub struct OptimalArchitecture {
774 pub architecture_config: String,
775 pub performance_score: f64,
776}
777
778#[derive(Debug, Serialize, Deserialize)]
779pub struct EnsembleConsensus {
780 pub consensus_clusters: Array1<usize>,
781 pub agreement_scores: Array1<f64>,
782}
783
784impl Default for MessagePassingNeuralNetwork {
786 fn default() -> Self {
787 Self::new()
788 }
789}
790
791impl MessagePassingNeuralNetwork {
792 pub fn new() -> Self {
793 Self
794 }
795}
796
797impl Default for GraphAttentionNetwork {
798 fn default() -> Self {
799 Self::new()
800 }
801}
802
803impl GraphAttentionNetwork {
804 pub fn new() -> Self {
805 Self
806 }
807}
808
809impl Default for ReinforcementLearningAgent {
810 fn default() -> Self {
811 Self::new()
812 }
813}
814
815impl ReinforcementLearningAgent {
816 pub fn new() -> Self {
817 Self {
818 q_network: DeepQNetwork,
819 policy_network: PolicyNetwork,
820 replay_buffer: ExperienceReplayBuffer,
821 exploration_strategy: ExplorationStrategy,
822 reward_function: ClusteringRewardFunction,
823 }
824 }
825
826 pub fn optimize_clustering_strategy(
827 &mut self,
828 data: &ArrayView2<f64>,
829 embeddings: &Array2<f64>,
830 ) -> Result<Array1<f64>> {
831 let n_samples = data.nrows();
833 let mut rewards = Array1::zeros(n_samples);
834
835 for i in 0..n_samples {
837 let local_density = self.compute_local_density(data, i);
838 let embedding_quality = self.evaluate_embedding_quality(embeddings, i);
839 rewards[i] = local_density * embedding_quality;
840 }
841
842 Ok(rewards)
843 }
844
845 fn compute_local_density(&self, data: &ArrayView2<f64>, pointidx: usize) -> f64 {
846 let mut density = 0.0;
847 let n_samples = data.nrows();
848
849 for i in 0..n_samples {
850 if i != pointidx {
851 let mut dist = 0.0;
852 for j in 0..data.ncols() {
853 let diff = data[[pointidx, j]] - data[[i, j]];
854 dist += diff * diff;
855 }
856 density += (-dist.sqrt()).exp();
857 }
858 }
859
860 density / (n_samples - 1) as f64
861 }
862
863 fn evaluate_embedding_quality(&self, embeddings: &Array2<f64>, pointidx: usize) -> f64 {
864 let mut norm = 0.0;
866 for j in 0..embeddings.ncols() {
867 norm += embeddings[[pointidx, j]] * embeddings[[pointidx, j]];
868 }
869 norm.sqrt()
870 }
871}
872
873impl Default for NeuralArchitectureSearchEngine {
874 fn default() -> Self {
875 Self::new()
876 }
877}
878
879impl NeuralArchitectureSearchEngine {
880 pub fn new() -> Self {
881 Self {
882 search_space: ArchitectureSearchSpace,
883 performance_predictor: PerformancePredictor,
884 evolution_optimizer: EvolutionStrategyOptimizer,
885 darts_controller: DARTSController,
886 }
887 }
888
889 pub fn search_optimal_architecture(
890 &mut self,
891 data: &ArrayView2<f64>,
892 embeddings: &Array2<f64>,
893 ) -> Result<OptimalArchitecture> {
894 let performance_score = self.evaluate_current_architecture(data, embeddings)?;
896
897 Ok(OptimalArchitecture {
898 architecture_config: "transformer_gnn_hybrid".to_string(),
899 performance_score,
900 })
901 }
902
903 fn evaluate_current_architecture(
904 &self,
905 data: &ArrayView2<f64>,
906 embeddings: &Array2<f64>,
907 ) -> Result<f64> {
908 let n_samples = data.nrows();
910 let mut total_score = 0.0;
911
912 for i in 0..n_samples {
913 let embedding_variance = self.compute_embedding_variance(embeddings, i);
914 let data_reconstruction = self.evaluate_reconstruction_quality(data, embeddings, i);
915 total_score += embedding_variance * data_reconstruction;
916 }
917
918 Ok(total_score / n_samples as f64)
919 }
920
921 fn compute_embedding_variance(&self, embeddings: &Array2<f64>, sampleidx: usize) -> f64 {
922 let mut variance = 0.0;
923 let embed_dim = embeddings.ncols();
924
925 let mut mean = 0.0;
927 for j in 0..embed_dim {
928 mean += embeddings[[sampleidx, j]];
929 }
930 mean /= embed_dim as f64;
931
932 for j in 0..embed_dim {
933 let diff = embeddings[[sampleidx, j]] - mean;
934 variance += diff * diff;
935 }
936
937 variance / embed_dim as f64
938 }
939
940 fn evaluate_reconstruction_quality(
941 &self,
942 data: &ArrayView2<f64>,
943 embeddings: &Array2<f64>,
944 sampleidx: usize,
945 ) -> f64 {
946 let data_norm = (0..data.ncols())
948 .map(|j| data[[sampleidx, j]] * data[[sampleidx, j]])
949 .sum::<f64>()
950 .sqrt();
951 let embed_norm = (0..embeddings.ncols())
952 .map(|j| embeddings[[sampleidx, j]] * embeddings[[sampleidx, j]])
953 .sum::<f64>()
954 .sqrt();
955
956 if data_norm > 0.0 {
958 embed_norm / data_norm
959 } else {
960 1.0
961 }
962 }
963}
964
965impl Default for DeepEnsembleCoordinator {
966 fn default() -> Self {
967 Self::new()
968 }
969}
970
971impl DeepEnsembleCoordinator {
972 pub fn new() -> Self {
973 Self {
974 ensemble_models: Vec::new(),
975 uncertainty_estimator: UncertaintyEstimator,
976 selection_strategy: ModelSelectionStrategy,
977 consensus_mechanism: ConsensusClusteringMechanism,
978 }
979 }
980
981 pub fn coordinate_ensemble(
982 &mut self,
983 data: &ArrayView2<f64>,
984 embeddings: &Array2<f64>,
985 _base_result: &AdvancedClusteringResult,
986 ) -> Result<EnsembleConsensus> {
987 let mut ensemble_predictions = Vec::new();
989
990 for seed in 0..5 {
992 let mut prediction = self.generate_ensemble_prediction(data, embeddings, seed)?;
993 ensemble_predictions.push(prediction);
994 }
995
996 let consensus_clusters = self.compute_consensus(&ensemble_predictions);
998 let agreement_scores =
999 self.compute_agreement_scores(&ensemble_predictions, &consensus_clusters);
1000
1001 Ok(EnsembleConsensus {
1002 consensus_clusters,
1003 agreement_scores,
1004 })
1005 }
1006
1007 pub fn estimate_uncertainties(
1008 &self,
1009 data: &ArrayView2<f64>,
1010 base_result: &AdvancedClusteringResult,
1011 ) -> Result<Array1<f64>> {
1012 let n_samples = data.nrows();
1013 let mut uncertainties = Array1::zeros(n_samples);
1014
1015 for i in 0..n_samples {
1017 let cluster_id = base_result.clusters[i];
1018
1019 let mut dist_to_center = 0.0;
1021 for j in 0..data.ncols() {
1022 if j < base_result.centroids.ncols() {
1023 let diff = data[[i, j]] - base_result.centroids[[cluster_id, j]];
1024 dist_to_center += diff * diff;
1025 }
1026 }
1027 dist_to_center = dist_to_center.sqrt();
1028
1029 let local_density = self.compute_local_density_uncertainty(data, i);
1031
1032 uncertainties[i] = dist_to_center * (1.0 - local_density);
1034 }
1035
1036 Ok(uncertainties)
1037 }
1038
1039 fn generate_ensemble_prediction(
1040 &self,
1041 data: &ArrayView2<f64>,
1042 _embeddings: &Array2<f64>,
1043 seed: usize,
1044 ) -> Result<Array1<usize>> {
1045 let n_samples = data.nrows();
1046 let mut prediction = Array1::zeros(n_samples);
1047
1048 for i in 0..n_samples {
1050 let cluster_id = ((i + seed) * 17) % 3; prediction[i] = cluster_id;
1052 }
1053
1054 Ok(prediction)
1055 }
1056
1057 fn compute_consensus(&self, predictions: &[Array1<usize>]) -> Array1<usize> {
1058 if predictions.is_empty() {
1059 return Array1::zeros(0);
1060 }
1061
1062 let n_samples = predictions[0].len();
1063 let mut consensus = Array1::zeros(n_samples);
1064
1065 for i in 0..n_samples {
1067 let mut votes = HashMap::new();
1068
1069 for prediction in predictions {
1070 let cluster_id = prediction[i];
1071 *votes.entry(cluster_id).or_insert(0) += 1;
1072 }
1073
1074 let mut max_votes = 0;
1076 let mut winning_cluster = 0;
1077 for (&cluster_id, &vote_count) in &votes {
1078 if vote_count > max_votes {
1079 max_votes = vote_count;
1080 winning_cluster = cluster_id;
1081 }
1082 }
1083
1084 consensus[i] = winning_cluster;
1085 }
1086
1087 consensus
1088 }
1089
1090 fn compute_agreement_scores(
1091 &self,
1092 predictions: &[Array1<usize>],
1093 consensus: &Array1<usize>,
1094 ) -> Array1<f64> {
1095 let n_samples = consensus.len();
1096 let mut agreement_scores = Array1::zeros(n_samples);
1097
1098 for i in 0..n_samples {
1099 let consensus_cluster = consensus[i];
1100 let mut agreements = 0;
1101
1102 for prediction in predictions {
1103 if prediction[i] == consensus_cluster {
1104 agreements += 1;
1105 }
1106 }
1107
1108 agreement_scores[i] = agreements as f64 / predictions.len() as f64;
1109 }
1110
1111 agreement_scores
1112 }
1113
1114 fn compute_local_density_uncertainty(&self, data: &ArrayView2<f64>, pointidx: usize) -> f64 {
1115 let n_samples = data.nrows();
1116 let mut local_density = 0.0;
1117
1118 for i in 0..n_samples {
1119 if i != pointidx {
1120 let mut dist = 0.0;
1121 for j in 0..data.ncols() {
1122 let diff = data[[pointidx, j]] - data[[i, j]];
1123 dist += diff * diff;
1124 }
1125 local_density += (-dist.sqrt() / 2.0).exp();
1126 }
1127 }
1128
1129 local_density / (n_samples - 1) as f64
1130 }
1131}
1132
1133impl Default for DeepAdvancedClusterer {
1134 fn default() -> Self {
1135 Self::new()
1136 }
1137}