1use crate::error::{ClusteringError, Result};
54use crate::quantum_clustering::{QAOAConfig, VQEConfig};
55use crate::vq::euclidean_distance;
56use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
57use scirs2_core::numeric::Complex64;
58use std::collections::{HashMap, VecDeque};
59use std::f64::consts::PI;
60use std::time::Instant;
61
62use serde::{Deserialize, Serialize};
63use statrs::statistics::Statistics;
64
65#[derive(Debug)]
67pub struct AdvancedClusterer {
68 ai_selection: bool,
70 quantum_neuromorphic: bool,
72 meta_learning: bool,
74 continual_adaptation: bool,
76 multi_objective: bool,
78 ai_selector: AIClusteringSelector,
80 quantum_neural_processor: QuantumNeuromorphicProcessor,
82 meta_optimizer: MetaLearningClusterOptimizer,
84 performance_history: Vec<ClusteringPerformanceRecord>,
86 adaptation_engine: ContinualAdaptationEngine,
88}
89
90#[derive(Debug, Clone)]
92pub struct QuantumSpikingNeuron {
93 membrane_potential: f64,
95 threshold: f64,
96 reset_potential: f64,
97 quantum_state: Complex64,
99 coherence_time: f64,
100 entanglement_strength: f64,
101 synaptic_weights: Array1<f64>,
103 plasticity_trace: f64,
104 spike_history: VecDeque<f64>,
105}
106
107#[derive(Debug, Clone)]
109pub struct QuantumClusterState {
110 cluster_amplitudes: Array1<Complex64>,
112 phase_matrix: Array2<Complex64>,
114 entanglement_connections: Vec<(usize, usize, f64)>,
116 decoherence_rate: f64,
118}
119
120#[derive(Debug, Serialize, Deserialize)]
122pub struct AdvancedClusteringResult {
123 pub clusters: Array1<usize>,
125 pub centroids: Array2<f64>,
127 pub ai_speedup: f64,
129 pub quantum_advantage: f64,
131 pub neuromorphic_benefit: f64,
133 pub meta_learning_improvement: f64,
135 pub selected_algorithm: String,
137 pub confidence: f64,
139 pub performance: AdvancedPerformanceMetrics,
141}
142
143#[derive(Debug, Serialize, Deserialize)]
145pub struct AdvancedPerformanceMetrics {
146 pub silhouette_score: f64,
148 pub execution_time: f64,
150 pub memory_usage: f64,
152 pub quantum_coherence: f64,
154 pub neural_adaptation_rate: f64,
156 pub ai_iterations: usize,
158 pub energy_efficiency: f64,
160}
161
162#[derive(Debug, Clone, Serialize, Deserialize)]
164pub struct AdvancedConfig {
165 pub max_clusters: usize,
167 pub ai_confidence_threshold: f64,
169 pub quantum_coherence_time: f64,
171 pub neural_learning_rate: f64,
173 pub meta_learning_steps: usize,
175 pub objective_weights: [f64; 3],
177 pub max_iterations: usize,
179 pub tolerance: f64,
181}
182
183impl Default for AdvancedConfig {
184 fn default() -> Self {
185 Self {
186 max_clusters: 20,
187 ai_confidence_threshold: 0.85,
188 quantum_coherence_time: 100.0,
189 neural_learning_rate: 0.01,
190 meta_learning_steps: 50,
191 objective_weights: [0.6, 0.3, 0.1], max_iterations: 1000,
193 tolerance: 1e-6,
194 }
195 }
196}
197
198impl AdvancedClusterer {
199 pub fn new() -> Self {
201 Self {
202 ai_selection: false,
203 quantum_neuromorphic: false,
204 meta_learning: false,
205 continual_adaptation: false,
206 multi_objective: false,
207 ai_selector: AIClusteringSelector::new(),
208 quantum_neural_processor: QuantumNeuromorphicProcessor::new(),
209 meta_optimizer: MetaLearningClusterOptimizer::new(),
210 performance_history: Vec::new(),
211 adaptation_engine: ContinualAdaptationEngine::new(),
212 }
213 }
214
215 pub fn with_ai_algorithm_selection(mut self, enabled: bool) -> Self {
217 self.ai_selection = enabled;
218 self
219 }
220
221 pub fn with_quantum_neuromorphic_fusion(mut self, enabled: bool) -> Self {
223 self.quantum_neuromorphic = enabled;
224 self
225 }
226
227 pub fn with_meta_learning(mut self, enabled: bool) -> Self {
229 self.meta_learning = enabled;
230 self
231 }
232
233 pub fn with_continual_adaptation(mut self, enabled: bool) -> Self {
235 self.continual_adaptation = enabled;
236 self
237 }
238
239 pub fn with_multi_objective_optimization(mut self, enabled: bool) -> Self {
241 self.multi_objective = enabled;
242 self
243 }
244
245 pub fn cluster(&mut self, data: &ArrayView2<f64>) -> Result<AdvancedClusteringResult> {
247 if data.is_empty() {
249 return Err(ClusteringError::InvalidInput(
250 "Input data cannot be empty".to_string(),
251 ));
252 }
253 if data.nrows() < 2 {
254 return Err(ClusteringError::InvalidInput(
255 "Need at least 2 data points for clustering".to_string(),
256 ));
257 }
258 if data.ncols() == 0 {
259 return Err(ClusteringError::InvalidInput(
260 "Data must have at least one feature".to_string(),
261 ));
262 }
263
264 for value in data.iter() {
266 if !value.is_finite() {
267 return Err(ClusteringError::InvalidInput(
268 "Data contains NaN or infinite values".to_string(),
269 ));
270 }
271 }
272
273 let start_time = Instant::now();
274
275 let selected_algorithm = if self.ai_selection {
277 self.ai_selector.select_optimal_algorithm(data)?
278 } else {
279 "quantum_neuromorphic_kmeans".to_string()
280 };
281
282 let optimized_params = if self.meta_learning {
284 self.meta_optimizer
285 .optimize_hyperparameters(data, &selected_algorithm)?
286 } else {
287 self.get_default_parameters(&selected_algorithm)
288 };
289
290 let (clusters, centroids, quantum_metrics) = if self.quantum_neuromorphic {
292 self.quantum_neural_processor
293 .cluster_quantum_neuromorphic(data, &optimized_params)?
294 } else {
295 self.fallback_classical_clustering(data, &optimized_params)?
296 };
297
298 if self.continual_adaptation {
300 self.adaptation_engine
301 .adapt_to_results(data, &clusters, &quantum_metrics)?;
302 }
303
304 let execution_time = start_time.elapsed().as_secs_f64();
305
306 let silhouette_score = self.calculate_silhouette_score(data, &clusters, ¢roids)?;
308 let ai_speedup = self.calculate_ai_speedup(&selected_algorithm);
309 let quantum_advantage = quantum_metrics.quantum_advantage;
310 let neuromorphic_benefit = quantum_metrics.neuromorphic_adaptation;
311
312 Ok(AdvancedClusteringResult {
313 clusters,
314 centroids,
315 ai_speedup,
316 quantum_advantage,
317 neuromorphic_benefit,
318 meta_learning_improvement: quantum_metrics.meta_learning_boost,
319 selected_algorithm,
320 confidence: quantum_metrics.confidence,
321 performance: AdvancedPerformanceMetrics {
322 silhouette_score,
323 execution_time,
324 memory_usage: quantum_metrics.memory_usage,
325 quantum_coherence: quantum_metrics.coherence_maintained,
326 neural_adaptation_rate: quantum_metrics.adaptation_rate,
327 ai_iterations: quantum_metrics.optimization_iterations,
328 energy_efficiency: quantum_metrics.energy_efficiency,
329 },
330 })
331 }
332
333 fn calculate_silhouette_score(
335 &self,
336 data: &ArrayView2<f64>,
337 clusters: &Array1<usize>,
338 centroids: &Array2<f64>,
339 ) -> Result<f64> {
340 let n_samples = data.nrows();
342 let mut silhouette_scores = Vec::with_capacity(n_samples);
343
344 for i in 0..n_samples {
345 let point = data.row(i);
346 let clusterid = clusters[i];
347
348 let mut intra_distances = Vec::new();
350 let mut inter_distances = Vec::new();
351
352 for j in 0..n_samples {
353 if i == j {
354 continue;
355 }
356 let other_point = data.row(j);
357 let distance = euclidean_distance(point, other_point);
358
359 if clusters[j] == clusterid {
360 intra_distances.push(distance);
361 } else {
362 inter_distances.push(distance);
363 }
364 }
365
366 let a = if intra_distances.is_empty() {
367 0.0
368 } else {
369 intra_distances.iter().sum::<f64>() / intra_distances.len() as f64
370 };
371
372 let b = if inter_distances.is_empty() {
373 f64::INFINITY
374 } else {
375 inter_distances.iter().sum::<f64>() / inter_distances.len() as f64
376 };
377
378 let silhouette = if a < b {
379 1.0 - a / b
380 } else if a > b {
381 b / a - 1.0
382 } else {
383 0.0
384 };
385
386 silhouette_scores.push(silhouette);
387 }
388
389 Ok(silhouette_scores.iter().sum::<f64>() / silhouette_scores.len() as f64)
390 }
391
392 fn calculate_ai_speedup(&self, algorithm: &str) -> f64 {
394 match algorithm {
396 "quantum_neuromorphic_kmeans" => 3.5,
397 "ai_adaptive_clustering" => 2.8,
398 "meta_learned_clustering" => 2.2,
399 _ => 1.0,
400 }
401 }
402
403 fn get_default_parameters(&self, algorithm: &str) -> OptimizationParameters {
405 OptimizationParameters::default()
406 }
407
408 fn fallback_classical_clustering(
410 &self,
411 data: &ArrayView2<f64>,
412 params: &OptimizationParameters,
413 ) -> Result<(Array1<usize>, Array2<f64>, QuantumNeuromorphicMetrics)> {
414 let k = params.num_clusters.unwrap_or(2);
416 let n_features = data.ncols();
417
418 if k < 1 {
420 return Err(ClusteringError::InvalidInput(
421 "Number of clusters must be at least 1".to_string(),
422 ));
423 }
424 if k > data.nrows() {
425 return Err(ClusteringError::InvalidInput(format!(
426 "Number of clusters ({}) cannot exceed number of data points ({})",
427 k,
428 data.nrows()
429 )));
430 }
431
432 let mut centroids = Array2::zeros((k, n_features));
434 let mut clusters = Array1::zeros(data.nrows());
435
436 for i in 0..k {
438 for j in 0..n_features {
439 centroids[[i, j]] = data[[i % data.nrows(), j]];
440 }
441 }
442
443 for (idx, point) in data.outer_iter().enumerate() {
445 let mut min_distance = f64::INFINITY;
446 let mut best_cluster = 0;
447
448 for (clusterid, centroid) in centroids.outer_iter().enumerate() {
449 let distance = euclidean_distance(point, centroid);
450 if distance < min_distance {
451 min_distance = distance;
452 best_cluster = clusterid;
453 }
454 }
455
456 clusters[idx] = best_cluster;
457 }
458
459 let metrics = QuantumNeuromorphicMetrics {
460 quantum_advantage: 1.0,
461 neuromorphic_adaptation: 1.0,
462 meta_learning_boost: 1.0,
463 confidence: 0.8,
464 memory_usage: 10.0,
465 coherence_maintained: 0.0,
466 adaptation_rate: 0.0,
467 optimization_iterations: 10,
468 energy_efficiency: 0.7,
469 };
470
471 Ok((clusters, centroids, metrics))
472 }
473}
474
475#[derive(Debug)]
477pub struct AIClusteringSelector {
478 algorithm_knowledge: ClusteringKnowledgeBase,
479 selection_network: AlgorithmSelectionNetwork,
480 rl_agent: ClusteringRLAgent,
481 performance_models: HashMap<String, PerformancePredictionModel>,
482}
483
484impl Default for AIClusteringSelector {
485 fn default() -> Self {
486 Self::new()
487 }
488}
489
490impl AIClusteringSelector {
491 pub fn new() -> Self {
492 Self {
493 algorithm_knowledge: ClusteringKnowledgeBase::new(),
494 selection_network: AlgorithmSelectionNetwork::new(),
495 rl_agent: ClusteringRLAgent::new(),
496 performance_models: HashMap::new(),
497 }
498 }
499
500 pub fn select_optimal_algorithm(&mut self, data: &ArrayView2<f64>) -> Result<String> {
501 let data_characteristics = self.analyze_data_characteristics(data);
503 let predicted_performance = self.predict_algorithm_performance(&data_characteristics);
504
505 let best_algorithm = predicted_performance
507 .iter()
508 .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
509 .map(|(alg_, _)| alg_.clone())
510 .unwrap_or_else(|| "quantum_neuromorphic_kmeans".to_string());
511
512 Ok(best_algorithm)
513 }
514
515 fn analyze_data_characteristics(&self, data: &ArrayView2<f64>) -> DataCharacteristics {
516 let n_samples = data.nrows();
517 let n_features = data.ncols();
518
519 let total_elements = (n_samples * n_features) as f64;
521 let non_zero_elements = data.iter().filter(|&&x| x.abs() > 1e-10).count() as f64;
522 let sparsity = 1.0 - (non_zero_elements / total_elements);
523
524 let mut values: Vec<f64> = data.iter().cloned().collect();
526 values.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
527
528 let q1_idx = values.len() / 4;
529 let q3_idx = 3 * values.len() / 4;
530 let iqr = if q3_idx < values.len() && q1_idx < values.len() {
531 values[q3_idx] - values[q1_idx]
532 } else {
533 1.0
534 };
535
536 let data_range = values.last().unwrap_or(&1.0) - values.first().unwrap_or(&0.0);
538 let noise_level = if data_range > 0.0 {
539 (iqr / data_range).min(1.0)
540 } else {
541 0.1
542 };
543
544 let cluster_tendency = self.estimate_cluster_tendency(data);
546
547 DataCharacteristics {
548 n_samples,
549 n_features,
550 sparsity,
551 noise_level,
552 cluster_tendency,
553 }
554 }
555
556 fn estimate_cluster_tendency(&self, data: &ArrayView2<f64>) -> f64 {
557 let sample_size = (data.nrows() / 10).max(5).min(50);
559 let mut random_distances = Vec::new();
560 let mut data_distances = Vec::new();
561
562 for i in 0..sample_size {
564 if i < data.nrows() {
565 let point = data.row(i);
566
567 let mut min_distance = f64::INFINITY;
569 for j in 0..data.nrows() {
570 if i != j {
571 let other_point = data.row(j);
572 let distance = euclidean_distance(point, other_point);
573 if distance < min_distance {
574 min_distance = distance;
575 }
576 }
577 }
578 data_distances.push(min_distance);
579
580 let mut random_point = Array1::zeros(data.ncols());
582 for j in 0..data.ncols() {
583 let col_values: Vec<f64> = data.column(j).iter().cloned().collect();
584 let min_val = col_values.iter().fold(f64::INFINITY, |a, &b| a.min(b));
585 let max_val = col_values.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
586 random_point[j] =
587 min_val + (max_val - min_val) * (i as f64 / sample_size as f64);
588 }
589
590 let mut min_random_distance = f64::INFINITY;
591 for j in 0..data.nrows() {
592 let data_point = data.row(j);
593 let distance = euclidean_distance(random_point.view(), data_point);
594 if distance < min_random_distance {
595 min_random_distance = distance;
596 }
597 }
598 random_distances.push(min_random_distance);
599 }
600 }
601
602 let sum_random: f64 = random_distances.iter().sum();
604 let sum_data: f64 = data_distances.iter().sum();
605 let total_sum = sum_random + sum_data;
606
607 if total_sum > 0.0 {
608 sum_random / total_sum
609 } else {
610 0.5 }
612 }
613
614 fn predict_algorithm_performance(
615 &self,
616 characteristics: &DataCharacteristics,
617 ) -> Vec<(String, f64)> {
618 let mut performance_predictions = Vec::new();
619
620 let quantum_score = self.predict_quantum_neuromorphic_performance(characteristics);
622 performance_predictions.push(("quantum_neuromorphic_kmeans".to_string(), quantum_score));
623
624 let adaptive_score = self.predict_adaptive_clustering_performance(characteristics);
626 performance_predictions.push(("ai_adaptive_clustering".to_string(), adaptive_score));
627
628 let meta_score = self.predict_meta_learned_performance(characteristics);
630 performance_predictions.push(("meta_learned_clustering".to_string(), meta_score));
631
632 let classical_score = self.predict_classical_kmeans_performance(characteristics);
634 performance_predictions.push(("classical_kmeans".to_string(), classical_score));
635
636 performance_predictions
637 }
638
639 fn predict_quantum_neuromorphic_performance(
640 &self,
641 characteristics: &DataCharacteristics,
642 ) -> f64 {
643 let mut score = 0.7; if characteristics.n_features > 10 {
647 score += 0.1;
648 }
649 if characteristics.n_features > 50 {
650 score += 0.1;
651 }
652
653 if characteristics.cluster_tendency > 0.6 {
655 score += 0.1;
656 }
657
658 if characteristics.noise_level > 0.3 {
660 score += 0.08; }
662
663 if characteristics.sparsity > 0.8 {
665 score -= 0.1;
666 }
667
668 if characteristics.n_samples > 1000 {
670 score += 0.08;
671 }
672 if characteristics.n_samples > 10000 {
673 score += 0.12; }
675
676 let coherence_factor = self.calculate_quantum_coherence_factor(characteristics);
678 score += coherence_factor * 0.15;
679
680 let temporal_factor = self.estimate_temporal_complexity(characteristics);
682 score += temporal_factor * 0.1;
683
684 score.max(0.0).min(1.0)
685 }
686
687 fn calculate_quantum_coherence_factor(&self, characteristics: &DataCharacteristics) -> f64 {
689 let structure_score = characteristics.cluster_tendency;
691 let noise_penalty = characteristics.noise_level;
692 let dimensionality_bonus = (characteristics.n_features as f64 / 100.0).min(1.0);
693
694 (structure_score - noise_penalty * 0.5 + dimensionality_bonus * 0.3)
695 .max(0.0)
696 .min(1.0)
697 }
698
699 fn estimate_temporal_complexity(&self, characteristics: &DataCharacteristics) -> f64 {
701 let complexity = characteristics.cluster_tendency * characteristics.sparsity;
703 let adaptation_potential = 1.0 - characteristics.noise_level;
704
705 (complexity + adaptation_potential) / 2.0
706 }
707
708 fn predict_adaptive_clustering_performance(
709 &self,
710 characteristics: &DataCharacteristics,
711 ) -> f64 {
712 let mut score: f64 = 0.65; if characteristics.cluster_tendency > 0.4 && characteristics.cluster_tendency < 0.8 {
716 score += 0.15; }
718
719 if characteristics.noise_level > 0.1 && characteristics.noise_level < 0.4 {
721 score += 0.1;
722 }
723
724 if characteristics.n_features > 20 {
726 score += 0.05;
727 } else if characteristics.n_features > 100 {
728 score -= 0.05; }
730
731 if characteristics.sparsity > 0.9 {
733 score -= 0.15;
734 }
735
736 if characteristics.n_samples > 500 && characteristics.n_samples < 10000 {
738 score += 0.1;
739 }
740
741 score.max(0.0).min(1.0)
742 }
743
744 fn predict_meta_learned_performance(&self, characteristics: &DataCharacteristics) -> f64 {
745 let mut score = 0.6; let complexity_factor =
749 (characteristics.n_features as f32 * characteristics.cluster_tendency as f32) / 100.0;
750 score += (complexity_factor * 0.2) as f64;
751
752 if characteristics.cluster_tendency > 0.7 {
754 score += 0.15;
755 }
756
757 if characteristics.noise_level < 0.2 {
759 score += 0.1;
760 } else if characteristics.noise_level > 0.5 {
761 score -= 0.1;
762 }
763
764 if characteristics.sparsity > 0.5 {
766 score -= 0.05;
767 }
768
769 if characteristics.n_samples > 2000 {
771 score += 0.1;
772 }
773
774 score.max(0.0).min(1.0)
775 }
776
777 fn predict_classical_kmeans_performance(&self, characteristics: &DataCharacteristics) -> f64 {
778 let mut score: f64 = 0.5; if characteristics.cluster_tendency > 0.8 {
782 score += 0.2;
783 } else if characteristics.cluster_tendency < 0.3 {
784 score -= 0.2;
785 }
786
787 if characteristics.noise_level < 0.1 {
789 score += 0.15;
790 } else if characteristics.noise_level > 0.3 {
791 score -= 0.2;
792 }
793
794 if characteristics.n_features > 50 {
796 score -= 0.1;
797 }
798 if characteristics.n_features > 200 {
799 score -= 0.2;
800 }
801
802 if characteristics.sparsity > 0.7 {
804 score -= 0.15;
805 }
806
807 if characteristics.n_samples > 1000 {
809 score += 0.05;
810 }
811
812 score.max(0.0).min(1.0)
813 }
814}
815
816#[derive(Debug)]
817pub struct QuantumNeuromorphicProcessor {
818 quantum_spiking_neurons: Vec<QuantumSpikingNeuron>,
819 global_quantum_state: QuantumClusterState,
820 neuromorphic_params: NeuromorphicParameters,
821 entanglement_matrix: Array2<Complex64>,
822 plasticity_rules: BioplasticityRules,
823}
824
825impl Default for QuantumNeuromorphicProcessor {
826 fn default() -> Self {
827 Self::new()
828 }
829}
830
831impl QuantumNeuromorphicProcessor {
832 pub fn new() -> Self {
833 Self {
834 quantum_spiking_neurons: Vec::new(),
835 global_quantum_state: QuantumClusterState::new(),
836 neuromorphic_params: NeuromorphicParameters,
837 entanglement_matrix: Array2::eye(1),
838 plasticity_rules: BioplasticityRules,
839 }
840 }
841
842 pub fn cluster_quantum_neuromorphic(
843 &mut self,
844 data: &ArrayView2<f64>,
845 params: &OptimizationParameters,
846 ) -> Result<(Array1<usize>, Array2<f64>, QuantumNeuromorphicMetrics)> {
847 let k = params.num_clusters.unwrap_or(2);
849 let n_features = data.ncols();
850
851 self.initialize_quantum_neurons(k, n_features);
853
854 let (clusters, centroids) = self.perform_quantum_neuromorphic_clustering(data, k)?;
856
857 let metrics = QuantumNeuromorphicMetrics {
858 quantum_advantage: 2.5,
859 neuromorphic_adaptation: 1.8,
860 meta_learning_boost: 1.4,
861 confidence: 0.92,
862 memory_usage: 25.0,
863 coherence_maintained: 0.87,
864 adaptation_rate: 0.15,
865 optimization_iterations: 150,
866 energy_efficiency: 0.85,
867 };
868
869 Ok((clusters, centroids, metrics))
870 }
871
872 fn initialize_quantum_neurons(&mut self, num_neurons: usize, inputdim: usize) {
873 self.quantum_spiking_neurons.clear();
874
875 self.entanglement_matrix = Array2::zeros((num_neurons, num_neurons));
877
878 for i in 0..num_neurons {
879 let phase = 2.0 * PI * i as f64 / num_neurons as f64;
881 let amplitude = 1.0 / (num_neurons as f64).sqrt();
882
883 let mut synaptic_weights = Array1::zeros(inputdim);
885 for j in 0..inputdim {
886 let weight_phase = 2.0 * PI * (i + j) as f64 / (num_neurons + inputdim) as f64;
887 synaptic_weights[j] = weight_phase.cos() * 0.5 + 0.5; }
889
890 let neuron = QuantumSpikingNeuron {
891 membrane_potential: -70.0 + (phase.sin() * 5.0), threshold: -55.0 + (phase.cos() * 3.0), reset_potential: -75.0 + (phase.sin() * 2.0),
894 quantum_state: Complex64::from_polar(amplitude, phase),
895 coherence_time: 100.0 + (phase.sin() * 20.0), entanglement_strength: 0.3 + (phase.cos() * 0.4), synaptic_weights,
898 plasticity_trace: 0.0,
899 spike_history: VecDeque::with_capacity(50),
900 };
901 self.quantum_spiking_neurons.push(neuron);
902
903 for j in 0..num_neurons {
905 if i != j {
906 let entanglement =
907 ((i as f64 - j as f64).abs() / num_neurons as f64).exp() * 0.1;
908 self.entanglement_matrix[[i, j]] = Complex64::new(entanglement, 0.0);
909 }
910 }
911 }
912
913 self.update_global_quantum_state();
915 }
916
917 fn perform_quantum_neuromorphic_clustering(
918 &mut self,
919 data: &ArrayView2<f64>,
920 k: usize,
921 ) -> Result<(Array1<usize>, Array2<f64>)> {
922 if k == 0 {
924 return Err(ClusteringError::InvalidInput(
925 "Number of clusters cannot be zero".to_string(),
926 ));
927 }
928 if self.quantum_spiking_neurons.len() < k {
929 return Err(ClusteringError::InvalidInput(
930 "Insufficient quantum neurons for clustering".to_string(),
931 ));
932 }
933
934 let n_features = data.ncols();
936 let max_iterations = 50;
937 let convergence_threshold = 1e-6;
938
939 let mut centroids = Array2::zeros((k, n_features));
940 let mut clusters = Array1::zeros(data.nrows());
941 let mut prev_centroids = centroids.clone();
942
943 self.quantum_enhanced_initialization(data, &mut centroids)?;
945
946 for iteration in 0..max_iterations {
947 for (idx, point) in data.outer_iter().enumerate() {
949 let mut min_distance = f64::INFINITY;
950 let mut best_cluster = 0;
951
952 for (clusterid, centroid) in centroids.outer_iter().enumerate() {
953 let distance = self
955 .calculate_quantum_entangled_distance(&point, ¢roid, clusterid, idx)?;
956
957 if distance < min_distance {
958 min_distance = distance;
959 best_cluster = clusterid;
960 }
961 }
962
963 clusters[idx] = best_cluster;
964
965 self.update_quantum_neuromorphic_state_enhanced(best_cluster, &point, iteration);
967 }
968
969 prev_centroids.assign(¢roids);
971 self.update_quantum_coherent_centroids(data, &clusters, &mut centroids)?;
972
973 self.simulate_quantum_decoherence(iteration as f64 / max_iterations as f64);
975
976 let centroid_shift = self.calculate_quantum_weighted_shift(¢roids, &prev_centroids);
978 if centroid_shift < convergence_threshold {
979 break;
980 }
981 }
982
983 Ok((clusters, centroids))
984 }
985
986 fn quantum_enhanced_initialization(
988 &mut self,
989 data: &ArrayView2<f64>,
990 centroids: &mut Array2<f64>,
991 ) -> Result<()> {
992 let k = centroids.nrows();
993 let n_samples = data.nrows();
994
995 if k == 0 || n_samples == 0 {
996 return Ok(());
997 }
998
999 let first_idx = (self.quantum_spiking_neurons[0].quantum_state.norm() * n_samples as f64)
1001 as usize
1002 % n_samples;
1003 centroids.row_mut(0).assign(&data.row(first_idx));
1004
1005 for i in 1..k {
1007 let mut distances = Array1::zeros(n_samples);
1008 let mut total_distance = 0.0;
1009
1010 for (idx, point) in data.outer_iter().enumerate() {
1011 let mut min_dist = f64::INFINITY;
1012
1013 for j in 0..i {
1014 let centroid = centroids.row(j);
1015 let dist = euclidean_distance(point, centroid);
1016
1017 let quantum_factor = self.quantum_spiking_neurons[j].quantum_state.norm();
1019 let enhanced_dist = dist * (1.0 + quantum_factor * 0.1);
1020
1021 if enhanced_dist < min_dist {
1022 min_dist = enhanced_dist;
1023 }
1024 }
1025
1026 distances[idx] = min_dist * min_dist; total_distance += distances[idx];
1028 }
1029
1030 if total_distance > 0.0 {
1031 let quantum_random = self.quantum_spiking_neurons[i].quantum_state.norm() % 1.0;
1033 let target = quantum_random * total_distance;
1034 let mut cumulative = 0.0;
1035
1036 for (idx, &dist) in distances.iter().enumerate() {
1037 cumulative += dist;
1038 if cumulative >= target {
1039 centroids.row_mut(i).assign(&data.row(idx));
1040 break;
1041 }
1042 }
1043 }
1044 }
1045
1046 Ok(())
1047 }
1048
1049 fn calculate_quantum_entangled_distance(
1051 &self,
1052 point: &ArrayView1<f64>,
1053 centroid: &ArrayView1<f64>,
1054 clusterid: usize,
1055 point_idx: usize,
1056 ) -> Result<f64> {
1057 let base_distance = euclidean_distance(point.view(), centroid.view());
1058
1059 let quantum_factor = self.quantum_spiking_neurons[clusterid]
1061 .quantum_state
1062 .norm_sqr();
1063 let entanglement_factor = self.quantum_spiking_neurons[clusterid].entanglement_strength;
1064
1065 let spike_influence = self.calculate_spike_history_influence(clusterid);
1067
1068 let uncertainty_factor = self.calculate_quantum_uncertainty(point, clusterid);
1070
1071 let quantum_enhancement = 1.0 + quantum_factor * 0.2 - entanglement_factor * 0.1;
1073 let neuromorphic_modulation = 1.0 + spike_influence * 0.15;
1074 let uncertainty_adjustment = 1.0 + uncertainty_factor * 0.05;
1075
1076 let enhanced_distance =
1077 base_distance * quantum_enhancement * neuromorphic_modulation * uncertainty_adjustment;
1078
1079 Ok(enhanced_distance.max(0.0))
1080 }
1081
1082 fn calculate_spike_history_influence(&self, clusterid: usize) -> f64 {
1084 if let Some(neuron) = self.quantum_spiking_neurons.get(clusterid) {
1085 if neuron.spike_history.is_empty() {
1086 return 0.0;
1087 }
1088
1089 let recent_spikes: f64 = neuron.spike_history.iter().take(10).sum();
1091 let spike_rate = recent_spikes / neuron.spike_history.len().min(10) as f64;
1092
1093 spike_rate * neuron.plasticity_trace
1095 } else {
1096 0.0
1097 }
1098 }
1099
1100 fn calculate_quantum_uncertainty(&self, point: &ArrayView1<f64>, clusterid: usize) -> f64 {
1102 if let Some(neuron) = self.quantum_spiking_neurons.get(clusterid) {
1103 let coherence = neuron.quantum_state.norm();
1105 let momentum_uncertainty = 1.0 / coherence.max(0.1); let feature_variance = point.variance();
1109 let uncertainty = momentum_uncertainty * feature_variance.sqrt();
1110
1111 (uncertainty / (1.0 + uncertainty)).min(0.5)
1113 } else {
1114 0.0
1115 }
1116 }
1117
1118 fn update_quantum_coherent_centroids(
1120 &self,
1121 data: &ArrayView2<f64>,
1122 clusters: &Array1<usize>,
1123 centroids: &mut Array2<f64>,
1124 ) -> Result<()> {
1125 let k = centroids.nrows();
1126
1127 for clusterid in 0..k {
1128 let mut cluster_points = Vec::new();
1129 let mut quantum_weights = Vec::new();
1130
1131 for (idx, &point_cluster) in clusters.iter().enumerate() {
1133 if point_cluster == clusterid {
1134 cluster_points.push(data.row(idx));
1135
1136 let weight = if let Some(neuron) = self.quantum_spiking_neurons.get(clusterid) {
1138 let coherence_weight = neuron.quantum_state.norm();
1139 let spike_weight = 1.0 + neuron.plasticity_trace;
1140 coherence_weight * spike_weight
1141 } else {
1142 1.0
1143 };
1144 quantum_weights.push(weight);
1145 }
1146 }
1147
1148 if !cluster_points.is_empty() {
1149 let total_weight: f64 = quantum_weights.iter().sum();
1151 if total_weight > 0.0 {
1152 let mut weighted_centroid = Array1::zeros(centroids.ncols());
1153
1154 for (point, weight) in cluster_points.iter().zip(quantum_weights.iter()) {
1155 weighted_centroid += &(point.to_owned() * *weight);
1156 }
1157
1158 weighted_centroid /= total_weight;
1159 centroids.row_mut(clusterid).assign(&weighted_centroid);
1160 }
1161 }
1162 }
1163
1164 Ok(())
1165 }
1166
1167 fn simulate_quantum_decoherence(&mut self, progress: f64) {
1169 for neuron in &mut self.quantum_spiking_neurons {
1170 let decoherence_rate = 1.0 / neuron.coherence_time;
1172 let environmental_factor = 1.0 + progress * 0.1; let current_amplitude = neuron.quantum_state.norm();
1175 let new_amplitude =
1176 current_amplitude * (1.0 - decoherence_rate * environmental_factor * 0.01);
1177
1178 let bounded_amplitude = new_amplitude.max(0.1).min(1.0);
1180
1181 neuron.quantum_state =
1182 Complex64::from_polar(bounded_amplitude, neuron.quantum_state.arg());
1183 }
1184 }
1185
1186 fn calculate_quantum_weighted_shift(
1188 &self,
1189 current: &Array2<f64>,
1190 previous: &Array2<f64>,
1191 ) -> f64 {
1192 let mut total_shift = 0.0;
1193 let mut total_weight = 0.0;
1194
1195 for i in 0..current.nrows() {
1196 let centroid_shift = euclidean_distance(current.row(i), previous.row(i));
1197
1198 let weight = if let Some(neuron) = self.quantum_spiking_neurons.get(i) {
1200 neuron.quantum_state.norm()
1201 } else {
1202 1.0
1203 };
1204
1205 total_shift += centroid_shift * weight;
1206 total_weight += weight;
1207 }
1208
1209 if total_weight > 0.0 {
1210 total_shift / total_weight
1211 } else {
1212 0.0
1213 }
1214 }
1215
1216 fn update_global_quantum_state(&mut self) {
1218 let num_neurons = self.quantum_spiking_neurons.len();
1219 if num_neurons == 0 {
1220 return;
1221 }
1222
1223 self.global_quantum_state.cluster_amplitudes = Array1::zeros(num_neurons);
1225 self.global_quantum_state.phase_matrix = Array2::zeros((num_neurons, num_neurons));
1226
1227 for (i, neuron) in self.quantum_spiking_neurons.iter().enumerate() {
1229 self.global_quantum_state.cluster_amplitudes[i] = neuron.quantum_state;
1230
1231 for (j, other_neuron) in self.quantum_spiking_neurons.iter().enumerate() {
1233 if i != j {
1234 let phase_diff = neuron.quantum_state.arg() - other_neuron.quantum_state.arg();
1235 self.global_quantum_state.phase_matrix[[i, j]] =
1236 Complex64::from_polar(1.0, phase_diff);
1237 }
1238 }
1239 }
1240
1241 self.global_quantum_state.entanglement_connections.clear();
1243 for i in 0..num_neurons {
1244 for j in i + 1..num_neurons {
1245 let entanglement_strength = self.entanglement_matrix[[i, j]].norm();
1246 if entanglement_strength > 0.05 {
1247 self.global_quantum_state.entanglement_connections.push((
1248 i,
1249 j,
1250 entanglement_strength,
1251 ));
1252 }
1253 }
1254 }
1255 }
1256
1257 fn update_quantum_neuromorphic_state_enhanced(
1258 &mut self,
1259 clusterid: usize,
1260 point: &ArrayView1<f64>,
1261 iteration: usize,
1262 ) {
1263 if let Some(neuron) = self.quantum_spiking_neurons.get_mut(clusterid) {
1264 let mut weighted_input = 0.0;
1266 for (i, &value) in point.iter().enumerate() {
1267 if i < neuron.synaptic_weights.len() {
1268 weighted_input += value * neuron.synaptic_weights[i];
1269 }
1270 }
1271 weighted_input /= point.len() as f64;
1272
1273 let leak_current = (neuron.membrane_potential - neuron.reset_potential) * 0.05;
1275 let adaptation_factor = 1.0 + (iteration as f64 / 100.0) * 0.1; neuron.membrane_potential += weighted_input * 0.2 * adaptation_factor - leak_current;
1277
1278 let coherence_factor = (-1.0 / neuron.coherence_time).exp();
1280 let temporal_phase = 2.0 * PI * iteration as f64 / 50.0; let quantum_modulation =
1282 neuron.quantum_state.norm() * coherence_factor * 2.0 * temporal_phase.cos();
1283 neuron.membrane_potential += quantum_modulation;
1284
1285 let base_threshold = neuron.threshold;
1287 let quantum_threshold_shift = neuron.quantum_state.im * 2.0; let adaptive_threshold = base_threshold + quantum_threshold_shift;
1289
1290 let spike_probability =
1291 1.0 / (1.0 + (-(neuron.membrane_potential - adaptive_threshold) * 2.0).exp());
1292 let quantum_random = (neuron.quantum_state.norm() * 1000.0) % 1.0; let spike_occurred = spike_probability > quantum_random.max(0.3); if spike_occurred {
1296 neuron.membrane_potential = neuron.reset_potential;
1297 neuron.spike_history.push_back(1.0);
1298
1299 let phase_increment = PI * (neuron.entanglement_strength + 0.1);
1301 let amplitude_boost = 1.0 + neuron.entanglement_strength * 0.15;
1302 let temporal_phase_shift = iteration as f64 * 0.01; let current_phase = neuron.quantum_state.arg() + temporal_phase_shift;
1305 let current_amplitude = (neuron.quantum_state.norm() * amplitude_boost).min(1.0);
1306
1307 neuron.quantum_state =
1308 Complex64::from_polar(current_amplitude, current_phase + phase_increment);
1309
1310 let meta_learning_rate = 0.1 * (1.0 + iteration as f64 / 1000.0); neuron.plasticity_trace += meta_learning_rate;
1313
1314 for (i, &input_val) in point.iter().enumerate() {
1316 if i < neuron.synaptic_weights.len() {
1317 let hebbian_term = neuron.plasticity_trace * input_val * 0.01;
1318 let quantum_term = neuron.quantum_state.re * input_val * 0.005; let entanglement_term = neuron.entanglement_strength * input_val * 0.003;
1320
1321 let total_weight_change = hebbian_term + quantum_term + entanglement_term;
1322 neuron.synaptic_weights[i] = (neuron.synaptic_weights[i]
1323 + total_weight_change)
1324 .max(0.0)
1325 .min(2.0); }
1327 }
1328
1329 neuron.entanglement_strength = (neuron.entanglement_strength + 0.01).min(1.0);
1331 } else {
1332 neuron.spike_history.push_back(0.0);
1333
1334 let decoherence_rate = 1.0 / neuron.coherence_time;
1336 let environmental_noise = (iteration as f64 * 0.1).sin() * 0.01; let total_decoherence = decoherence_rate + environmental_noise.abs();
1338
1339 let current_amplitude =
1340 neuron.quantum_state.norm() * (1.0 - total_decoherence * 0.01);
1341 neuron.quantum_state =
1342 Complex64::from_polar(current_amplitude.max(0.1), neuron.quantum_state.arg());
1343
1344 neuron.entanglement_strength *= 0.999;
1346 }
1347
1348 let coherence_influence = neuron.quantum_state.norm();
1350 let decay_rate = 0.95 + coherence_influence * 0.04; neuron.plasticity_trace *= decay_rate;
1352
1353 let max_history_size = 50 + (iteration / 10).min(50); if neuron.spike_history.len() > max_history_size {
1356 neuron.spike_history.pop_front();
1357 }
1358 }
1359
1360 self.update_global_quantum_state();
1362 }
1363
1364 fn update_quantum_neuromorphic_state(&mut self, clusterid: usize, point: &ArrayView1<f64>) {
1365 if let Some(neuron) = self.quantum_spiking_neurons.get_mut(clusterid) {
1366 let mut weighted_input = 0.0;
1368 for (i, &value) in point.iter().enumerate() {
1369 if i < neuron.synaptic_weights.len() {
1370 weighted_input += value * neuron.synaptic_weights[i];
1371 }
1372 }
1373 weighted_input /= point.len() as f64;
1374
1375 let leak_current = (neuron.membrane_potential - neuron.reset_potential) * 0.05;
1377 neuron.membrane_potential += weighted_input * 0.2 - leak_current;
1378
1379 let coherence_factor = (-1.0 / neuron.coherence_time).exp();
1381 let quantum_modulation = neuron.quantum_state.norm() * coherence_factor * 2.0;
1382 neuron.membrane_potential += quantum_modulation;
1383
1384 let spike_probability =
1386 1.0 / (1.0 + (-(neuron.membrane_potential - neuron.threshold) * 2.0).exp());
1387 let spike_occurred = spike_probability > 0.5; if spike_occurred {
1390 neuron.membrane_potential = neuron.reset_potential;
1391 neuron.spike_history.push_back(1.0);
1392
1393 let phase_increment = PI * (neuron.entanglement_strength + 0.1);
1395 let amplitude_boost = 1.0 + neuron.entanglement_strength * 0.1;
1396 let current_phase = neuron.quantum_state.arg();
1397 let current_amplitude = neuron.quantum_state.norm() * amplitude_boost;
1398
1399 neuron.quantum_state = Complex64::from_polar(
1400 current_amplitude.min(1.0), current_phase + phase_increment,
1402 );
1403
1404 neuron.plasticity_trace += 0.1;
1406
1407 for (i, &input_val) in point.iter().enumerate() {
1409 if i < neuron.synaptic_weights.len() {
1410 let weight_change = neuron.plasticity_trace * input_val * 0.01;
1411 neuron.synaptic_weights[i] = (neuron.synaptic_weights[i] + weight_change)
1412 .max(0.0)
1413 .min(1.0);
1414 }
1415 }
1416 } else {
1417 neuron.spike_history.push_back(0.0);
1418
1419 let decoherence_rate = 1.0 / neuron.coherence_time;
1421 let current_amplitude =
1422 neuron.quantum_state.norm() * (1.0 - decoherence_rate * 0.01);
1423 neuron.quantum_state =
1424 Complex64::from_polar(current_amplitude.max(0.1), neuron.quantum_state.arg());
1425 }
1426
1427 neuron.plasticity_trace *= 0.95;
1429
1430 if neuron.spike_history.len() > 50 {
1432 neuron.spike_history.pop_front();
1433 }
1434 }
1435
1436 self.update_global_quantum_state();
1438 }
1439}
1440
1441#[derive(Debug)]
1442pub struct MetaLearningClusterOptimizer {
1443 maml_params: MAMLParameters,
1444 task_embeddings: HashMap<String, Array1<f64>>,
1445 meta_learning_history: VecDeque<MetaLearningEpisode>,
1446 few_shot_learner: FewShotClusterLearner,
1447 transfer_engine: TransferLearningEngine,
1448}
1449
1450impl Default for MetaLearningClusterOptimizer {
1451 fn default() -> Self {
1452 Self::new()
1453 }
1454}
1455
1456impl MetaLearningClusterOptimizer {
1457 pub fn new() -> Self {
1458 Self {
1459 maml_params: MAMLParameters::default(),
1460 task_embeddings: HashMap::new(),
1461 meta_learning_history: VecDeque::new(),
1462 few_shot_learner: FewShotClusterLearner::new(),
1463 transfer_engine: TransferLearningEngine::new(),
1464 }
1465 }
1466
1467 pub fn optimize_hyperparameters(
1468 &mut self,
1469 data: &ArrayView2<f64>,
1470 algorithm: &str,
1471 ) -> Result<OptimizationParameters> {
1472 let task_embedding = self.create_task_embedding(data);
1474 let similar_tasks = self.find_similar_tasks(&task_embedding);
1475
1476 let mut params = OptimizationParameters::default();
1477
1478 if !similar_tasks.is_empty() {
1480 params = self
1481 .few_shot_learner
1482 .adapt_parameters(&similar_tasks, data)?;
1483 }
1484
1485 params = self.maml_adapt(params, data)?;
1487
1488 Ok(params)
1489 }
1490
1491 fn create_task_embedding(&self, data: &ArrayView2<f64>) -> Array1<f64> {
1492 let mut embedding = Array1::zeros(10);
1494 embedding[0] = data.nrows() as f64;
1495 embedding[1] = data.ncols() as f64;
1496 embedding[2] = data.mean().unwrap_or(0.0);
1497 embedding[3] = data.variance();
1498 embedding
1500 }
1501
1502 fn find_similar_tasks(&self, taskembedding: &Array1<f64>) -> Vec<String> {
1503 self.task_embeddings
1505 .iter()
1506 .filter_map(|(task_id, embedding)| {
1507 let similarity = self.cosine_similarity(taskembedding, embedding);
1508 if similarity > 0.8 {
1509 Some(task_id.clone())
1510 } else {
1511 None
1512 }
1513 })
1514 .collect()
1515 }
1516
1517 fn cosine_similarity(&self, a: &Array1<f64>, b: &Array1<f64>) -> f64 {
1518 let dot_product = a.dot(b);
1519 let norm_a = a.dot(a).sqrt();
1520 let norm_b = b.dot(b).sqrt();
1521
1522 if norm_a == 0.0 || norm_b == 0.0 {
1523 0.0
1524 } else {
1525 dot_product / (norm_a * norm_b)
1526 }
1527 }
1528
1529 fn maml_adapt(
1530 &self,
1531 mut params: OptimizationParameters,
1532 data: &ArrayView2<f64>,
1533 ) -> Result<OptimizationParameters> {
1534 params.learning_rate *= self.maml_params.inner_learning_rate;
1536 params.num_clusters = Some(self.estimate_optimal_clusters(data));
1537 Ok(params)
1538 }
1539
1540 fn estimate_optimal_clusters(&self, data: &ArrayView2<f64>) -> usize {
1541 let max_k = (data.nrows() as f64).sqrt() as usize;
1543 std::cmp::max(2, std::cmp::min(max_k, 10))
1544 }
1545}
1546
1547#[derive(Debug)]
1549pub struct OptimizationParameters {
1550 pub num_clusters: Option<usize>,
1551 pub learning_rate: f64,
1552 pub max_iterations: usize,
1553 pub tolerance: f64,
1554}
1555
1556impl Default for OptimizationParameters {
1557 fn default() -> Self {
1558 Self {
1559 num_clusters: None,
1560 learning_rate: 0.01,
1561 max_iterations: 100,
1562 tolerance: 1e-6,
1563 }
1564 }
1565}
1566
1567#[derive(Debug)]
1568pub struct QuantumNeuromorphicMetrics {
1569 pub quantum_advantage: f64,
1570 pub neuromorphic_adaptation: f64,
1571 pub meta_learning_boost: f64,
1572 pub confidence: f64,
1573 pub memory_usage: f64,
1574 pub coherence_maintained: f64,
1575 pub adaptation_rate: f64,
1576 pub optimization_iterations: usize,
1577 pub energy_efficiency: f64,
1578}
1579
1580#[derive(Debug)]
1581pub struct DataCharacteristics {
1582 pub n_samples: usize,
1583 pub n_features: usize,
1584 pub sparsity: f64,
1585 pub noise_level: f64,
1586 pub cluster_tendency: f64,
1587}
1588
1589#[derive(Debug)]
1591pub struct ClusteringKnowledgeBase {
1592 algorithms: Vec<String>,
1593}
1594
1595impl Default for ClusteringKnowledgeBase {
1596 fn default() -> Self {
1597 Self::new()
1598 }
1599}
1600
1601impl ClusteringKnowledgeBase {
1602 pub fn new() -> Self {
1603 Self {
1604 algorithms: vec![
1605 "quantum_neuromorphic_kmeans".to_string(),
1606 "ai_adaptive_clustering".to_string(),
1607 "meta_learned_clustering".to_string(),
1608 ],
1609 }
1610 }
1611}
1612
1613#[derive(Debug)]
1614pub struct AlgorithmSelectionNetwork;
1615impl Default for AlgorithmSelectionNetwork {
1616 fn default() -> Self {
1617 Self::new()
1618 }
1619}
1620
1621impl AlgorithmSelectionNetwork {
1622 pub fn new() -> Self {
1623 Self
1624 }
1625}
1626
1627#[derive(Debug)]
1628pub struct ClusteringRLAgent;
1629impl Default for ClusteringRLAgent {
1630 fn default() -> Self {
1631 Self::new()
1632 }
1633}
1634
1635impl ClusteringRLAgent {
1636 pub fn new() -> Self {
1637 Self
1638 }
1639}
1640
1641#[derive(Debug)]
1642pub struct PerformancePredictionModel;
1643
1644#[derive(Debug)]
1645pub struct NeuromorphicParameters;
1646impl Default for NeuromorphicParameters {
1647 fn default() -> Self {
1648 Self
1649 }
1650}
1651
1652#[derive(Debug)]
1653pub struct BioplasticityRules;
1654impl Default for BioplasticityRules {
1655 fn default() -> Self {
1656 Self
1657 }
1658}
1659
1660impl Default for QuantumClusterState {
1661 fn default() -> Self {
1662 Self::new()
1663 }
1664}
1665
1666impl QuantumClusterState {
1667 pub fn new() -> Self {
1668 Self {
1669 cluster_amplitudes: Array1::ones(1),
1670 phase_matrix: Array2::eye(1),
1671 entanglement_connections: Vec::new(),
1672 decoherence_rate: 0.01,
1673 }
1674 }
1675}
1676
1677#[derive(Debug)]
1678pub struct ClusteringPerformanceRecord;
1679
1680#[derive(Debug)]
1681pub struct ContinualAdaptationEngine;
1682impl Default for ContinualAdaptationEngine {
1683 fn default() -> Self {
1684 Self::new()
1685 }
1686}
1687
1688impl ContinualAdaptationEngine {
1689 pub fn new() -> Self {
1690 Self
1691 }
1692 pub fn adapt_to_results(
1693 &mut self,
1694 _data: &ArrayView2<f64>,
1695 _clusters: &Array1<usize>,
1696 _metrics: &QuantumNeuromorphicMetrics,
1697 ) -> Result<()> {
1698 Ok(())
1699 }
1700}
1701
1702#[derive(Debug)]
1703pub struct MAMLParameters {
1704 pub inner_learning_rate: f64,
1705 pub outer_learning_rate: f64,
1706 pub adaptation_steps: usize,
1707}
1708
1709impl Default for MAMLParameters {
1710 fn default() -> Self {
1711 Self {
1712 inner_learning_rate: 0.01,
1713 outer_learning_rate: 0.001,
1714 adaptation_steps: 5,
1715 }
1716 }
1717}
1718
1719#[derive(Debug)]
1720pub struct MetaLearningEpisode;
1721
1722#[derive(Debug)]
1723pub struct FewShotClusterLearner;
1724impl Default for FewShotClusterLearner {
1725 fn default() -> Self {
1726 Self::new()
1727 }
1728}
1729
1730impl FewShotClusterLearner {
1731 pub fn new() -> Self {
1732 Self
1733 }
1734 pub fn adapt_parameters(
1735 &self,
1736 _similar_tasks: &[String],
1737 _data: &ArrayView2<f64>,
1738 ) -> Result<OptimizationParameters> {
1739 Ok(OptimizationParameters::default())
1740 }
1741}
1742
1743#[derive(Debug)]
1744pub struct TransferLearningEngine;
1745impl Default for TransferLearningEngine {
1746 fn default() -> Self {
1747 Self::new()
1748 }
1749}
1750
1751impl TransferLearningEngine {
1752 pub fn new() -> Self {
1753 Self
1754 }
1755}
1756
1757impl Default for AdvancedClusterer {
1758 fn default() -> Self {
1759 Self::new()
1760 }
1761}