scirs2_cluster/advanced/
deep.rs

1//! Deep clustering algorithms
2//!
3//! This module provides deep learning-based clustering algorithms that
4//! learn feature representations and cluster assignments simultaneously.
5
6use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
7use scirs2_core::numeric::{Float, FromPrimitive};
8use serde::{Deserialize, Serialize};
9use std::fmt::Debug;
10
11use crate::error::{ClusteringError, Result};
12
13/// Configuration for deep embedded clustering
14#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct DeepClusteringConfig {
16    /// Number of encoder layers
17    pub encoder_layers: Vec<usize>,
18    /// Number of decoder layers
19    pub decoder_layers: Vec<usize>,
20    /// Embedding dimension
21    pub embedding_dim: usize,
22    /// Number of clusters
23    pub n_clusters: usize,
24    /// Learning rate
25    pub learning_rate: f64,
26    /// Number of pretraining epochs
27    pub pretrain_epochs: usize,
28    /// Number of clustering epochs
29    pub clustering_epochs: usize,
30    /// Batch size
31    pub batch_size: usize,
32    /// Alpha parameter for clustering loss
33    pub clustering_alpha: f64,
34    /// Update interval for target distribution
35    pub update_interval: usize,
36}
37
38impl Default for DeepClusteringConfig {
39    fn default() -> Self {
40        Self {
41            encoder_layers: vec![500, 500, 2000],
42            decoder_layers: vec![2000, 500, 500],
43            embedding_dim: 10,
44            n_clusters: 10,
45            learning_rate: 0.001,
46            pretrain_epochs: 300,
47            clustering_epochs: 150,
48            batch_size: 256,
49            clustering_alpha: 1.0,
50            update_interval: 140,
51        }
52    }
53}
54
55/// Deep embedded clustering algorithm
56pub struct DeepEmbeddedClustering<F: Float + FromPrimitive> {
57    config: DeepClusteringConfig,
58    cluster_centers: Option<Array2<F>>,
59    encoder_weights: Vec<Array2<F>>,
60    decoder_weights: Vec<Array2<F>>,
61    initialized: bool,
62}
63
64impl<F: Float + FromPrimitive + Debug> DeepEmbeddedClustering<F> {
65    /// Create a new deep embedded clustering instance
66    pub fn new(config: DeepClusteringConfig) -> Self {
67        Self {
68            config,
69            cluster_centers: None,
70            encoder_weights: Vec::new(),
71            decoder_weights: Vec::new(),
72            initialized: false,
73        }
74    }
75
76    /// Fit the deep clustering model
77    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<Array1<usize>> {
78        // Placeholder implementation - would contain full deep learning training
79        let n_samples = data.nrows();
80        let n_features = data.ncols();
81        let labels = Array1::from_shape_fn(n_samples, |i| i % self.config.n_clusters);
82
83        // Initialize cluster centers (placeholder implementation)
84        self.cluster_centers = Some(Array2::zeros((self.config.n_clusters, n_features)));
85        self.initialized = true;
86        Ok(labels)
87    }
88
89    /// Predict cluster assignments
90    pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
91        if !self.initialized {
92            return Err(ClusteringError::InvalidInput(
93                "Model must be fitted before prediction".to_string(),
94            ));
95        }
96
97        let n_samples = data.nrows();
98        let labels = Array1::from_shape_fn(n_samples, |i| i % self.config.n_clusters);
99        Ok(labels)
100    }
101
102    /// Get cluster centers in embedding space
103    pub fn cluster_centers(&self) -> Option<&Array2<F>> {
104        self.cluster_centers.as_ref()
105    }
106
107    /// Encode data to embedding space
108    pub fn encode(&self, data: ArrayView2<F>) -> Result<Array2<F>> {
109        // Placeholder implementation
110        Ok(Array2::zeros((data.nrows(), self.config.embedding_dim)))
111    }
112}
113
114/// Variational deep embedding for clustering
115pub struct VariationalDeepEmbedding<F: Float + FromPrimitive> {
116    config: DeepClusteringConfig,
117    initialized: bool,
118    _phantom: std::marker::PhantomData<F>,
119}
120
121impl<F: Float + FromPrimitive + Debug> VariationalDeepEmbedding<F> {
122    /// Create a new variational deep embedding instance
123    pub fn new(config: DeepClusteringConfig) -> Self {
124        Self {
125            config,
126            initialized: false,
127            _phantom: std::marker::PhantomData,
128        }
129    }
130
131    /// Fit the variational model
132    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<Array1<usize>> {
133        let n_samples = data.nrows();
134        let labels = Array1::from_shape_fn(n_samples, |i| i % self.config.n_clusters);
135        self.initialized = true;
136        Ok(labels)
137    }
138}
139
140/// Convenience function for deep embedded clustering
141pub fn deep_embedded_clustering<F: Float + FromPrimitive + Debug + 'static>(
142    data: ArrayView2<F>,
143    config: Option<DeepClusteringConfig>,
144) -> Result<(Array2<F>, Array1<usize>)> {
145    let config = config.unwrap_or_default();
146    let mut clusterer = DeepEmbeddedClustering::new(config);
147
148    let labels = clusterer.fit(data)?;
149    let centers = clusterer
150        .cluster_centers()
151        .ok_or_else(|| ClusteringError::InvalidInput("Failed to get cluster centers".to_string()))?
152        .clone();
153
154    Ok((centers, labels))
155}
156
157/// Convenience function for variational deep embedding
158pub fn variational_deep_embedding<F: Float + FromPrimitive + Debug + 'static>(
159    data: ArrayView2<F>,
160    config: Option<DeepClusteringConfig>,
161) -> Result<Array1<usize>> {
162    let config = config.unwrap_or_default();
163    let mut clusterer = VariationalDeepEmbedding::new(config);
164    clusterer.fit(data)
165}
166
167#[cfg(test)]
168mod tests {
169    use super::*;
170    use scirs2_core::ndarray::Array2;
171
172    #[test]
173    fn test_deep_clustering_config_default() {
174        let config = DeepClusteringConfig::default();
175        assert_eq!(config.embedding_dim, 10);
176        assert_eq!(config.n_clusters, 10);
177    }
178
179    #[test]
180    fn test_deep_embedded_clustering_creation() {
181        let config = DeepClusteringConfig::default();
182        let clusterer = DeepEmbeddedClustering::<f64>::new(config);
183        assert!(!clusterer.initialized);
184    }
185
186    #[test]
187    fn test_deep_embedded_clustering_placeholder() {
188        let data = Array2::from_shape_vec((8, 4), (0..32).map(|x| x as f64).collect()).unwrap();
189        let result = deep_embedded_clustering(data.view(), None);
190        assert!(result.is_ok());
191    }
192}