Module advanced

Module advanced 

Source
Expand description

Cutting-edge clustering algorithms including quantum-inspired methods and advanced online learning.

This module provides state-of-the-art clustering algorithms that push the boundaries of traditional clustering methods. It includes quantum-inspired algorithms that leverage quantum computing principles and advanced online learning variants with concept drift detection.

§Features

  • Quantum K-means: Uses quantum superposition principles for potentially better optimization
  • Adaptive Online Clustering: Automatically adapts to changing data distributions
  • Concept Drift Detection: Detects and adapts to changes in streaming data
  • Dynamic Cluster Management: Creates, merges, and removes clusters automatically
  • Quantum Annealing: Simulated quantum annealing for global optimization Cutting-edge clustering algorithms including quantum-inspired methods and advanced online learning

This module provides implementations of state-of-the-art clustering algorithms that push the boundaries of traditional clustering methods. It includes quantum-inspired algorithms that leverage quantum computing principles, advanced online learning variants, reinforcement learning approaches, transfer learning methods, and deep clustering techniques.

§Examples

§Quantum-Inspired Clustering

use scirs2_cluster::advanced::quantum::{quantum_kmeans, QuantumConfig};
use scirs2_core::ndarray::Array2;

let data = Array2::from_shape_vec((10, 2), (0..20).map(|x| x as f64).collect()).unwrap();
let config = QuantumConfig::default();
let (centroids, labels) = quantum_kmeans(data.view(), 3, Some(config)).unwrap();

§Adaptive Online Clustering

use scirs2_cluster::advanced::online::{adaptive_online_clustering, AdaptiveOnlineConfig};
use scirs2_core::ndarray::Array2;

let data = Array2::from_shape_vec((20, 3), (0..60).map(|x| x as f64).collect()).unwrap();
let config = AdaptiveOnlineConfig::default();
let (centers, labels) = adaptive_online_clustering(data.view(), Some(config)).unwrap();

Re-exports§

pub use online::adaptive_online_clustering;
pub use online::AdaptiveOnlineClustering;
pub use online::AdaptiveOnlineConfig;
pub use quantum::quantum_kmeans;
pub use quantum::QuantumConfig;
pub use quantum::QuantumKMeans;
pub use quantum::QuantumState;
pub use deep::*;
pub use quantum_algorithms::*;
pub use reinforcement::*;
pub use transfer::*;

Modules§

deep
Deep clustering algorithms
online
Adaptive online clustering with concept drift detection
quantum
Quantum-inspired clustering algorithms
quantum_algorithms
Quantum algorithm implementations for clustering
reinforcement
Reinforcement learning-based clustering algorithms
transfer
Transfer learning clustering algorithms

Functions§

default_adaptive_online_config
Convenience function to create a default adaptive online configuration
default_quantum_config
Convenience function to create a default quantum configuration
quick_online_clustering
Convenience function for quick online clustering with default parameters
quick_quantum_clustering
Convenience function for quick quantum clustering with default parameters