Expand description
Cutting-edge clustering algorithms including quantum-inspired methods and advanced online learning.
This module provides state-of-the-art clustering algorithms that push the boundaries of traditional clustering methods. It includes quantum-inspired algorithms that leverage quantum computing principles and advanced online learning variants with concept drift detection.
§Features
- Quantum K-means: Uses quantum superposition principles for potentially better optimization
- Adaptive Online Clustering: Automatically adapts to changing data distributions
- Concept Drift Detection: Detects and adapts to changes in streaming data
- Dynamic Cluster Management: Creates, merges, and removes clusters automatically
- Quantum Annealing: Simulated quantum annealing for global optimization Cutting-edge clustering algorithms including quantum-inspired methods and advanced online learning
This module provides implementations of state-of-the-art clustering algorithms that push the boundaries of traditional clustering methods. It includes quantum-inspired algorithms that leverage quantum computing principles, advanced online learning variants, reinforcement learning approaches, transfer learning methods, and deep clustering techniques.
§Examples
§Quantum-Inspired Clustering
use scirs2_cluster::advanced::quantum::{quantum_kmeans, QuantumConfig};
use scirs2_core::ndarray::Array2;
let data = Array2::from_shape_vec((10, 2), (0..20).map(|x| x as f64).collect()).unwrap();
let config = QuantumConfig::default();
let (centroids, labels) = quantum_kmeans(data.view(), 3, Some(config)).unwrap();§Adaptive Online Clustering
use scirs2_cluster::advanced::online::{adaptive_online_clustering, AdaptiveOnlineConfig};
use scirs2_core::ndarray::Array2;
let data = Array2::from_shape_vec((20, 3), (0..60).map(|x| x as f64).collect()).unwrap();
let config = AdaptiveOnlineConfig::default();
let (centers, labels) = adaptive_online_clustering(data.view(), Some(config)).unwrap();Re-exports§
pub use online::adaptive_online_clustering;pub use online::AdaptiveOnlineClustering;pub use online::AdaptiveOnlineConfig;pub use quantum::quantum_kmeans;pub use quantum::QuantumConfig;pub use quantum::QuantumKMeans;pub use quantum::QuantumState;pub use deep::*;pub use quantum_algorithms::*;pub use reinforcement::*;pub use transfer::*;
Modules§
- deep
- Deep clustering algorithms
- online
- Adaptive online clustering with concept drift detection
- quantum
- Quantum-inspired clustering algorithms
- quantum_
algorithms - Quantum algorithm implementations for clustering
- reinforcement
- Reinforcement learning-based clustering algorithms
- transfer
- Transfer learning clustering algorithms
Functions§
- default_
adaptive_ online_ config - Convenience function to create a default adaptive online configuration
- default_
quantum_ config - Convenience function to create a default quantum configuration
- quick_
online_ clustering - Convenience function for quick online clustering with default parameters
- quick_
quantum_ clustering - Convenience function for quick quantum clustering with default parameters