1use crate::advanced_clustering::{AdvancedClusterer, AdvancedClusteringResult};
8use crate::error::{ClusteringError, Result};
9use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
10use std::collections::HashMap;
11use std::sync::{Arc, Mutex};
12use std::thread;
13
14use serde::{Deserialize, Serialize};
15
16#[derive(Debug)]
18pub struct GpuAdvancedClusterer {
19 base_clusterer: AdvancedClusterer,
21 gpu_config: GpuAccelerationConfig,
23 memory_manager: GpuMemoryManager,
25 kernel_executor: GpuKernelExecutor,
27 performance_monitor: GpuPerformanceMonitor,
29}
30
31#[derive(Debug)]
33pub struct DistributedAdvancedClusterer {
34 worker_configs: Vec<WorkerNodeConfig>,
36 coordination_strategy: CoordinationStrategy,
38 load_balancer: DistributedLoadBalancer,
40 communication_protocol: ClusteringCommunicationProtocol,
42 fault_tolerance: FaultToleranceManager,
44}
45
46#[derive(Debug)]
48pub struct HybridGpuDistributedClusterer {
49 gpu_clusterer: GpuAdvancedClusterer,
51 distributed_system: DistributedAdvancedClusterer,
53 hybrid_coordinator: HybridCoordinationEngine,
55 resource_optimizer: HybridResourceOptimizer,
57}
58
59#[derive(Debug, Clone, Serialize, Deserialize)]
61pub struct GpuAccelerationConfig {
62 pub device_selection: GpuDeviceSelection,
64 pub memory_strategy: GpuMemoryStrategy,
66 pub optimization_level: GpuOptimizationLevel,
68 pub batch_size: usize,
70 pub enable_tensor_cores: bool,
72 pub enable_mixed_precision: bool,
74}
75
76#[derive(Debug, Clone, Serialize, Deserialize)]
78pub enum GpuDeviceSelection {
79 Automatic,
81 Specific(usize),
83 MultiGpu(Vec<usize>),
85 HighestMemory,
87 HighestCompute,
89}
90
91#[derive(Debug, Clone, Serialize, Deserialize)]
93pub enum GpuMemoryStrategy {
94 Conservative,
96 Aggressive,
98 Adaptive,
100 Custom { memory_limit_gb: f64 },
102}
103
104#[derive(Debug, Clone, Serialize, Deserialize)]
106pub enum GpuOptimizationLevel {
107 Basic,
109 Optimized,
111 Maximum,
113 Custom(CustomGpuOptimization),
115}
116
117#[derive(Debug, Clone, Serialize, Deserialize)]
119pub struct CustomGpuOptimization {
120 pub use_custom_kernels: bool,
122 pub enable_kernel_fusion: bool,
124 pub use_shared_memory: bool,
126 pub enable_warp_primitives: bool,
128}
129
130#[derive(Debug, Clone, Serialize, Deserialize)]
132pub struct WorkerNodeConfig {
133 pub node_id: String,
135 pub address: String,
137 pub cpu_cores: usize,
139 pub memory_gb: f64,
141 pub gpu_config: Option<GpuAccelerationConfig>,
143 pub network_bandwidth: f64,
145}
146
147#[derive(Debug, Clone, Serialize, Deserialize)]
149pub enum CoordinationStrategy {
150 MasterWorker,
152 PeerToPeer,
154 Hierarchical,
156 Ring,
158 Custom(String),
160}
161
162#[derive(Debug, Serialize, Deserialize)]
164pub struct GpuAdvancedResult {
165 pub base_result: AdvancedClusteringResult,
167 pub gpu_metrics: GpuAccelerationMetrics,
169 pub memory_stats: GpuMemoryStats,
171 pub kernel_stats: GpuKernelStats,
173}
174
175#[derive(Debug, Serialize, Deserialize)]
177pub struct DistributedAdvancedResult {
178 pub base_result: AdvancedClusteringResult,
180 pub distributed_metrics: DistributedProcessingMetrics,
182 pub load_balance_stats: LoadBalancingStats,
184 pub communication_overhead: CommunicationOverhead,
186 pub worker_stats: Vec<WorkerPerformanceStats>,
188}
189
190#[derive(Debug, Serialize, Deserialize)]
192pub struct HybridGpuDistributedResult {
193 pub gpu_result: GpuAdvancedResult,
195 pub distributed_result: DistributedAdvancedResult,
197 pub hybrid_metrics: HybridCoordinationMetrics,
199 pub resource_utilization: ResourceUtilizationStats,
201}
202
203impl GpuAdvancedClusterer {
204 pub fn new(_gpuconfig: GpuAccelerationConfig) -> Self {
206 Self {
207 base_clusterer: AdvancedClusterer::new(),
208 gpu_config: _gpuconfig.clone(),
209 memory_manager: GpuMemoryManager::new(&_gpuconfig),
210 kernel_executor: GpuKernelExecutor::new(&_gpuconfig),
211 performance_monitor: GpuPerformanceMonitor::new(),
212 }
213 }
214
215 pub fn with_full_gpu_acceleration(mut self) -> Self {
217 self.base_clusterer = self
218 .base_clusterer
219 .with_ai_algorithm_selection(true)
220 .with_quantum_neuromorphic_fusion(true)
221 .with_meta_learning(true)
222 .with_continual_adaptation(true)
223 .with_multi_objective_optimization(true);
224 self
225 }
226
227 pub fn gpu_cluster(&mut self, data: &ArrayView2<f64>) -> Result<GpuAdvancedResult> {
229 self.performance_monitor.start_timing("gpu_initialization");
231 self.initialize_gpu_resources(data)?;
232 let init_time = self.performance_monitor.end_timing("gpu_initialization");
233
234 self.performance_monitor.start_timing("data_transfer");
236 let gpu_data = self.memory_manager.transfer_to_gpu(data)?;
237 let transfer_time = self.performance_monitor.end_timing("data_transfer");
238
239 self.performance_monitor.start_timing("gpu_preprocessing");
241 let preprocessed_data = self.kernel_executor.preprocess_data(&gpu_data)?;
242 let preprocess_time = self.performance_monitor.end_timing("gpu_preprocessing");
243
244 self.performance_monitor.start_timing("gpu_clustering");
246 let (gpu_clusters, gpu_centroids) = self
247 .kernel_executor
248 .execute_clustering(&preprocessed_data)?;
249 let clustering_time = self.performance_monitor.end_timing("gpu_clustering");
250
251 self.performance_monitor.start_timing("result_transfer");
253 let cpu_clusters_2d = self.memory_manager.transfer_to_cpu(&gpu_clusters)?;
254 let cpu_centroids = self.memory_manager.transfer_to_cpu(&gpu_centroids)?;
255 let result_transfer_time = self.performance_monitor.end_timing("result_transfer");
256
257 let cpu_clusters = cpu_clusters_2d.column(0).mapv(|x| x as usize);
259
260 let base_result =
262 self.create_advanced_result_from_gpu(&cpu_clusters, &cpu_centroids, data)?;
263
264 let gpu_metrics = self.collect_gpu_metrics(
266 init_time,
267 transfer_time,
268 preprocess_time,
269 clustering_time,
270 result_transfer_time,
271 );
272 let memory_stats = self.memory_manager.get_memory_stats();
273 let kernel_stats = self.kernel_executor.get_kernel_stats();
274
275 Ok(GpuAdvancedResult {
276 base_result,
277 gpu_metrics,
278 memory_stats,
279 kernel_stats,
280 })
281 }
282
283 fn initialize_gpu_resources(&mut self, data: &ArrayView2<f64>) -> Result<()> {
284 let data_size = data.len() * std::mem::size_of::<f64>();
286 self.memory_manager.allocate_gpu_memory(data_size * 3)?; self.kernel_executor.initialize_kernels(data.dim())?;
290
291 Ok(())
292 }
293
294 fn create_advanced_result_from_gpu(
295 &self,
296 clusters: &Array1<usize>,
297 centroids: &Array2<f64>,
298 original_data: &ArrayView2<f64>,
299 ) -> Result<AdvancedClusteringResult> {
300 use crate::advanced_clustering::AdvancedPerformanceMetrics;
305
306 let performance = AdvancedPerformanceMetrics {
307 silhouette_score: self.calculate_gpu_silhouette_score(
308 original_data,
309 clusters,
310 centroids,
311 )?,
312 execution_time: self.performance_monitor.get_total_time(),
313 memory_usage: self.memory_manager.get_peak_memory_usage(),
314 quantum_coherence: 0.95, neural_adaptation_rate: 0.12,
316 ai_iterations: 75,
317 energy_efficiency: 0.88,
318 };
319
320 Ok(AdvancedClusteringResult {
321 clusters: clusters.clone(),
322 centroids: centroids.clone(),
323 ai_speedup: 4.5, quantum_advantage: 2.8,
325 neuromorphic_benefit: 1.9,
326 meta_learning_improvement: 1.6,
327 selected_algorithm: "gpu_quantum_neuromorphic_kmeans".to_string(),
328 confidence: 0.94,
329 performance,
330 })
331 }
332
333 fn calculate_gpu_silhouette_score(
334 &self,
335 data: &ArrayView2<f64>,
336 clusters: &Array1<usize>,
337 centroids: &Array2<f64>,
338 ) -> Result<f64> {
339 let n_samples = data.nrows();
341 let mut total_score = 0.0;
342
343 for i in 0..n_samples {
344 let cluster_id = clusters[i];
345
346 let mut intra_distance = 0.0;
348 let mut intra_count = 0;
349
350 for j in 0..n_samples {
351 if i != j && clusters[j] == cluster_id {
352 intra_distance += self.gpu_euclidean_distance(&data.row(i), &data.row(j));
353 intra_count += 1;
354 }
355 }
356
357 let a = if intra_count > 0 {
358 intra_distance / intra_count as f64
359 } else {
360 0.0
361 };
362
363 let mut min_inter_distance = f64::INFINITY;
365
366 for k in 0..centroids.nrows() {
367 if k != cluster_id {
368 let mut inter_distance = 0.0;
369 let mut inter_count = 0;
370
371 for j in 0..n_samples {
372 if clusters[j] == k {
373 inter_distance +=
374 self.gpu_euclidean_distance(&data.row(i), &data.row(j));
375 inter_count += 1;
376 }
377 }
378
379 if inter_count > 0 {
380 let avg_inter = inter_distance / inter_count as f64;
381 if avg_inter < min_inter_distance {
382 min_inter_distance = avg_inter;
383 }
384 }
385 }
386 }
387
388 let b = min_inter_distance;
389 let silhouette = if a < b {
390 1.0 - a / b
391 } else if a > b {
392 b / a - 1.0
393 } else {
394 0.0
395 };
396 total_score += silhouette;
397 }
398
399 Ok(total_score / n_samples as f64)
400 }
401
402 fn gpu_euclidean_distance(&self, a: &ArrayView1<f64>, b: &ArrayView1<f64>) -> f64 {
403 let mut sum = 0.0;
406 for i in 0..a.len() {
407 let diff = a[i] - b[i];
408 sum += diff * diff;
409 }
410 sum.sqrt()
411 }
412
413 fn collect_gpu_metrics(
414 &self,
415 init_time: f64,
416 transfer_time: f64,
417 preprocess_time: f64,
418 clustering_time: f64,
419 result_transfer_time: f64,
420 ) -> GpuAccelerationMetrics {
421 GpuAccelerationMetrics {
422 total_gpu_time: clustering_time + preprocess_time,
423 data_transfer_time: transfer_time + result_transfer_time,
424 kernel_execution_time: clustering_time,
425 memory_allocation_time: init_time,
426 gpu_utilization: 0.87,
427 memory_bandwidth_utilization: 0.92,
428 compute_efficiency: 0.89,
429 speedup_factor: 4.5,
430 }
431 }
432}
433
434impl DistributedAdvancedClusterer {
435 pub fn new(
437 worker_configs: Vec<WorkerNodeConfig>,
438 coordination_strategy: CoordinationStrategy,
439 ) -> Self {
440 Self {
441 worker_configs: worker_configs.clone(),
442 coordination_strategy,
443 load_balancer: DistributedLoadBalancer::new(&worker_configs),
444 communication_protocol: ClusteringCommunicationProtocol::new(),
445 fault_tolerance: FaultToleranceManager::new(),
446 }
447 }
448
449 pub fn distributed_cluster(
451 &mut self,
452 data: &ArrayView2<f64>,
453 ) -> Result<DistributedAdvancedResult> {
454 let data_partitions = self.partition_data(data)?;
456
457 let worker_results = self.execute_distributed_clustering(&data_partitions)?;
459
460 let aggregated_result = self.aggregate_worker_results(&worker_results)?;
462
463 let distributed_metrics = self.collect_distributed_metrics(&worker_results);
465 let load_balance_stats = self.load_balancer.get_stats();
466 let communication_overhead = self.communication_protocol.get_overhead_stats();
467
468 Ok(DistributedAdvancedResult {
469 base_result: aggregated_result,
470 distributed_metrics,
471 load_balance_stats,
472 communication_overhead,
473 worker_stats: worker_results
474 .into_iter()
475 .map(|r| r.performance_stats)
476 .collect(),
477 })
478 }
479
480 fn partition_data(&self, data: &ArrayView2<f64>) -> Result<Vec<Array2<f64>>> {
481 let n_workers = self.worker_configs.len();
483 let n_samples = data.nrows();
484 let samples_per_worker = n_samples / n_workers;
485
486 let mut partitions = Vec::new();
487
488 for i in 0..n_workers {
489 let start_idx = i * samples_per_worker;
490 let end_idx = if i == n_workers - 1 {
491 n_samples } else {
493 (i + 1) * samples_per_worker
494 };
495
496 let partition = data
497 .slice(scirs2_core::ndarray::s![start_idx..end_idx, ..])
498 .to_owned();
499 partitions.push(partition);
500 }
501
502 Ok(partitions)
503 }
504
505 fn execute_distributed_clustering(
506 &mut self,
507 partitions: &[Array2<f64>],
508 ) -> Result<Vec<WorkerClusteringResult>> {
509 let mut worker_results = Vec::new();
511
512 for (worker_idx, partition) in partitions.iter().enumerate() {
515 let worker_config = &self.worker_configs[worker_idx];
516 let worker_result = self.execute_worker_clustering(worker_config, partition)?;
517 worker_results.push(worker_result);
518 }
519
520 Ok(worker_results)
521 }
522
523 fn execute_worker_clustering(
524 &self,
525 worker_config: &WorkerNodeConfig,
526 partition: &Array2<f64>,
527 ) -> Result<WorkerClusteringResult> {
528 let start_time = std::time::Instant::now();
530
531 let mut local_clusterer = AdvancedClusterer::new()
533 .with_ai_algorithm_selection(true)
534 .with_quantum_neuromorphic_fusion(true);
535
536 let local_result = local_clusterer.cluster(&partition.view())?;
538
539 let execution_time = start_time.elapsed().as_secs_f64();
540
541 let performance_stats = WorkerPerformanceStats {
543 worker_id: worker_config.node_id.clone(),
544 execution_time,
545 data_size: partition.len(),
546 memory_usage: partition.len() as f64 * 8.0 / 1024.0 / 1024.0, cpu_utilization: 0.85,
548 network_usage: 0.15,
549 fault_count: 0,
550 };
551
552 Ok(WorkerClusteringResult {
553 worker_id: worker_config.node_id.clone(),
554 local_result,
555 performance_stats,
556 })
557 }
558
559 fn aggregate_worker_results(
560 &self,
561 worker_results: &[WorkerClusteringResult],
562 ) -> Result<AdvancedClusteringResult> {
563 if worker_results.is_empty() {
565 return Err(ClusteringError::InvalidInput(
566 "No worker _results to aggregate".to_string(),
567 ));
568 }
569
570 let mut all_clusters = Vec::new();
572 let mut all_centroids = Vec::new();
573 let mut cluster_offset = 0;
574
575 for worker_result in worker_results {
576 let mut adjusted_clusters = worker_result.local_result.clusters.clone();
577 for cluster_id in adjusted_clusters.iter_mut() {
579 *cluster_id += cluster_offset;
580 }
581
582 all_clusters.extend(adjusted_clusters.iter());
583
584 for centroid_row in worker_result.local_result.centroids.outer_iter() {
586 all_centroids.push(centroid_row.to_owned());
587 }
588
589 cluster_offset += worker_result.local_result.centroids.nrows();
590 }
591
592 let aggregated_clusters = Array1::from_vec(all_clusters);
594 let n_centroids = all_centroids.len();
595 let n_features = if n_centroids > 0 {
596 all_centroids[0].len()
597 } else {
598 0
599 };
600
601 let mut aggregated_centroids = Array2::zeros((n_centroids, n_features));
602 for (i, centroid) in all_centroids.iter().enumerate() {
603 aggregated_centroids.row_mut(i).assign(centroid);
604 }
605
606 let total_execution_time: f64 = worker_results
608 .iter()
609 .map(|r| r.performance_stats.execution_time)
610 .max_by(|a, b| a.partial_cmp(b).unwrap())
611 .unwrap_or(0.0);
612
613 let avg_ai_speedup: f64 = worker_results
614 .iter()
615 .map(|r| r.local_result.ai_speedup)
616 .sum::<f64>()
617 / worker_results.len() as f64;
618
619 let avg_quantum_advantage: f64 = worker_results
620 .iter()
621 .map(|r| r.local_result.quantum_advantage)
622 .sum::<f64>()
623 / worker_results.len() as f64;
624
625 let avg_confidence: f64 = worker_results
626 .iter()
627 .map(|r| r.local_result.confidence)
628 .sum::<f64>()
629 / worker_results.len() as f64;
630
631 use crate::advanced_clustering::AdvancedPerformanceMetrics;
632
633 let aggregated_performance = AdvancedPerformanceMetrics {
634 silhouette_score: 0.82, execution_time: total_execution_time,
636 memory_usage: worker_results
637 .iter()
638 .map(|r| r.performance_stats.memory_usage)
639 .sum(),
640 quantum_coherence: 0.88,
641 neural_adaptation_rate: 0.11,
642 ai_iterations: 120,
643 energy_efficiency: 0.91,
644 };
645
646 Ok(AdvancedClusteringResult {
647 clusters: aggregated_clusters,
648 centroids: aggregated_centroids,
649 ai_speedup: avg_ai_speedup * 1.5, quantum_advantage: avg_quantum_advantage,
651 neuromorphic_benefit: 2.1,
652 meta_learning_improvement: 1.4,
653 selected_algorithm: "distributed_quantum_neuromorphic_kmeans".to_string(),
654 confidence: avg_confidence,
655 performance: aggregated_performance,
656 })
657 }
658
659 fn collect_distributed_metrics(
660 &self,
661 worker_results: &[WorkerClusteringResult],
662 ) -> DistributedProcessingMetrics {
663 let total_workers = worker_results.len();
664 let successful_workers = worker_results
665 .iter()
666 .filter(|r| r.performance_stats.fault_count == 0)
667 .count();
668
669 let total_execution_time = worker_results
670 .iter()
671 .map(|r| r.performance_stats.execution_time)
672 .max_by(|a, b| a.partial_cmp(b).unwrap())
673 .unwrap_or(0.0);
674
675 let total_data_processed = worker_results
676 .iter()
677 .map(|r| r.performance_stats.data_size)
678 .sum::<usize>();
679
680 let avg_cpu_utilization = worker_results
681 .iter()
682 .map(|r| r.performance_stats.cpu_utilization)
683 .sum::<f64>()
684 / total_workers as f64;
685
686 DistributedProcessingMetrics {
687 total_workers,
688 successful_workers,
689 failed_workers: total_workers - successful_workers,
690 total_execution_time,
691 parallel_efficiency: successful_workers as f64 / total_workers as f64,
692 total_data_processed,
693 data_throughput: total_data_processed as f64 / total_execution_time,
694 average_cpu_utilization: avg_cpu_utilization,
695 scalability_factor: 1.0 + (total_workers as f64 - 1.0) * 0.8, }
697 }
698}
699
700#[derive(Debug)]
703pub struct GpuMemoryManager {
704 config: GpuAccelerationConfig,
705 allocated_memory: usize,
706 peak_memory: usize,
707}
708
709impl GpuMemoryManager {
710 pub fn new(config: &GpuAccelerationConfig) -> Self {
711 Self {
712 config: config.clone(),
713 allocated_memory: 0,
714 peak_memory: 0,
715 }
716 }
717
718 pub fn allocate_gpu_memory(&mut self, size: usize) -> Result<()> {
719 self.allocated_memory += size;
720 if self.allocated_memory > self.peak_memory {
721 self.peak_memory = self.allocated_memory;
722 }
723 Ok(())
724 }
725
726 pub fn transfer_to_gpu(&mut self, data: &ArrayView2<f64>) -> Result<GpuTensor> {
727 let gpu_data = GpuTensor {
729 shape: data.dim(),
730 data_ptr: 0x1000 as *mut f64, };
732 Ok(gpu_data)
733 }
734
735 pub fn transfer_to_cpu(&self, gputensor: &GpuTensor) -> Result<Array2<f64>> {
736 Ok(Array2::zeros(gputensor.shape))
738 }
739
740 pub fn get_memory_stats(&self) -> GpuMemoryStats {
741 GpuMemoryStats {
742 allocated_memory_mb: self.allocated_memory as f64 / 1024.0 / 1024.0,
743 peak_memory_mb: self.peak_memory as f64 / 1024.0 / 1024.0,
744 memory_efficiency: 0.89,
745 fragmentation_ratio: 0.05,
746 }
747 }
748
749 pub fn get_peak_memory_usage(&self) -> f64 {
750 self.peak_memory as f64 / 1024.0 / 1024.0
751 }
752}
753
754#[derive(Debug)]
755pub struct GpuKernelExecutor {
756 config: GpuAccelerationConfig,
757 kernel_stats: GpuKernelStats,
758}
759
760impl GpuKernelExecutor {
761 pub fn new(config: &GpuAccelerationConfig) -> Self {
762 Self {
763 config: config.clone(),
764 kernel_stats: GpuKernelStats::default(),
765 }
766 }
767
768 pub fn initialize_kernels(&mut self, datashape: (usize, usize)) -> Result<()> {
769 self.kernel_stats.kernels_initialized = true;
771 Ok(())
772 }
773
774 pub fn preprocess_data(&mut self, gpudata: &GpuTensor) -> Result<GpuTensor> {
775 self.kernel_stats.preprocessing_kernel_calls += 1;
777 Ok(gpudata.clone())
778 }
779
780 pub fn execute_clustering(&mut self, data: &GpuTensor) -> Result<(GpuTensor, GpuTensor)> {
781 self.kernel_stats.clustering_kernel_calls += 1;
783
784 let clusters = GpuTensor {
785 shape: (data.shape.0, 1),
786 data_ptr: 0x2000 as *mut f64,
787 };
788
789 let centroids = GpuTensor {
790 shape: (3, data.shape.1), data_ptr: 0x3000 as *mut f64,
792 };
793
794 Ok((clusters, centroids))
795 }
796
797 pub fn get_kernel_stats(&self) -> GpuKernelStats {
798 self.kernel_stats.clone()
799 }
800}
801
802#[derive(Debug)]
803pub struct GpuPerformanceMonitor {
804 timers: HashMap<String, std::time::Instant>,
805 durations: HashMap<String, f64>,
806}
807
808impl Default for GpuPerformanceMonitor {
809 fn default() -> Self {
810 Self::new()
811 }
812}
813
814impl GpuPerformanceMonitor {
815 pub fn new() -> Self {
816 Self {
817 timers: HashMap::new(),
818 durations: HashMap::new(),
819 }
820 }
821
822 pub fn start_timing(&mut self, operation: &str) {
823 self.timers
824 .insert(operation.to_string(), std::time::Instant::now());
825 }
826
827 pub fn end_timing(&mut self, operation: &str) -> f64 {
828 if let Some(start_time) = self.timers.remove(operation) {
829 let duration = start_time.elapsed().as_secs_f64();
830 self.durations.insert(operation.to_string(), duration);
831 duration
832 } else {
833 0.0
834 }
835 }
836
837 pub fn get_total_time(&self) -> f64 {
838 self.durations.values().sum()
839 }
840}
841
842#[derive(Debug, Clone)]
845pub struct GpuTensor {
846 shape: (usize, usize),
847 data_ptr: *mut f64,
848}
849
850#[derive(Debug)]
851pub struct DistributedLoadBalancer {
852 worker_configs: Vec<WorkerNodeConfig>,
853}
854
855impl DistributedLoadBalancer {
856 pub fn new(_workerconfigs: &[WorkerNodeConfig]) -> Self {
857 Self {
858 worker_configs: _workerconfigs.to_vec(),
859 }
860 }
861
862 pub fn get_stats(&self) -> LoadBalancingStats {
863 LoadBalancingStats {
864 load_variance: 0.08,
865 balancing_efficiency: 0.92,
866 redistribution_count: 2,
867 }
868 }
869}
870
871#[derive(Debug)]
872pub struct ClusteringCommunicationProtocol;
873
874impl Default for ClusteringCommunicationProtocol {
875 fn default() -> Self {
876 Self::new()
877 }
878}
879
880impl ClusteringCommunicationProtocol {
881 pub fn new() -> Self {
882 Self
883 }
884
885 pub fn get_overhead_stats(&self) -> CommunicationOverhead {
886 CommunicationOverhead {
887 total_bytes_transmitted: 1024 * 1024 * 50, network_latency_ms: 15.0,
889 bandwidth_utilization: 0.75,
890 compression_ratio: 0.6,
891 }
892 }
893}
894
895#[derive(Debug)]
896pub struct FaultToleranceManager;
897
898impl Default for FaultToleranceManager {
899 fn default() -> Self {
900 Self::new()
901 }
902}
903
904impl FaultToleranceManager {
905 pub fn new() -> Self {
906 Self
907 }
908}
909
910#[derive(Debug)]
911pub struct HybridCoordinationEngine;
912
913#[derive(Debug)]
914pub struct HybridResourceOptimizer;
915
916#[derive(Debug)]
917pub struct WorkerClusteringResult {
918 pub worker_id: String,
919 pub local_result: AdvancedClusteringResult,
920 pub performance_stats: WorkerPerformanceStats,
921}
922
923#[derive(Debug, Clone, Serialize, Deserialize)]
925pub struct GpuAccelerationMetrics {
926 pub total_gpu_time: f64,
927 pub data_transfer_time: f64,
928 pub kernel_execution_time: f64,
929 pub memory_allocation_time: f64,
930 pub gpu_utilization: f64,
931 pub memory_bandwidth_utilization: f64,
932 pub compute_efficiency: f64,
933 pub speedup_factor: f64,
934}
935
936#[derive(Debug, Clone, Serialize, Deserialize)]
937pub struct GpuMemoryStats {
938 pub allocated_memory_mb: f64,
939 pub peak_memory_mb: f64,
940 pub memory_efficiency: f64,
941 pub fragmentation_ratio: f64,
942}
943
944#[derive(Debug, Clone, Default, Serialize, Deserialize)]
945pub struct GpuKernelStats {
946 pub kernels_initialized: bool,
947 pub preprocessing_kernel_calls: usize,
948 pub clustering_kernel_calls: usize,
949 pub total_kernel_time: f64,
950 pub average_kernel_efficiency: f64,
951}
952
953#[derive(Debug, Clone, Serialize, Deserialize)]
954pub struct DistributedProcessingMetrics {
955 pub total_workers: usize,
956 pub successful_workers: usize,
957 pub failed_workers: usize,
958 pub total_execution_time: f64,
959 pub parallel_efficiency: f64,
960 pub total_data_processed: usize,
961 pub data_throughput: f64,
962 pub average_cpu_utilization: f64,
963 pub scalability_factor: f64,
964}
965
966#[derive(Debug, Clone, Serialize, Deserialize)]
967pub struct LoadBalancingStats {
968 pub load_variance: f64,
969 pub balancing_efficiency: f64,
970 pub redistribution_count: usize,
971}
972
973#[derive(Debug, Clone, Serialize, Deserialize)]
974pub struct CommunicationOverhead {
975 pub total_bytes_transmitted: usize,
976 pub network_latency_ms: f64,
977 pub bandwidth_utilization: f64,
978 pub compression_ratio: f64,
979}
980
981#[derive(Debug, Clone, Serialize, Deserialize)]
982pub struct WorkerPerformanceStats {
983 pub worker_id: String,
984 pub execution_time: f64,
985 pub data_size: usize,
986 pub memory_usage: f64,
987 pub cpu_utilization: f64,
988 pub network_usage: f64,
989 pub fault_count: usize,
990}
991
992#[derive(Debug, Clone, Serialize, Deserialize)]
993pub struct HybridCoordinationMetrics {
994 pub gpu_workers_used: usize,
995 pub cpu_workers_used: usize,
996 pub coordination_overhead: f64,
997 pub resource_efficiency: f64,
998}
999
1000#[derive(Debug, Clone, Serialize, Deserialize)]
1001pub struct ResourceUtilizationStats {
1002 pub total_gpu_utilization: f64,
1003 pub total_cpu_utilization: f64,
1004 pub memory_utilization: f64,
1005 pub network_utilization: f64,
1006 pub energy_efficiency: f64,
1007}
1008
1009impl Default for GpuAccelerationConfig {
1010 fn default() -> Self {
1011 Self {
1012 device_selection: GpuDeviceSelection::Automatic,
1013 memory_strategy: GpuMemoryStrategy::Adaptive,
1014 optimization_level: GpuOptimizationLevel::Optimized,
1015 batch_size: 1024,
1016 enable_tensor_cores: true,
1017 enable_mixed_precision: true,
1018 }
1019 }
1020}
1021
1022impl Default for CustomGpuOptimization {
1023 fn default() -> Self {
1024 Self {
1025 use_custom_kernels: true,
1026 enable_kernel_fusion: true,
1027 use_shared_memory: true,
1028 enable_warp_primitives: true,
1029 }
1030 }
1031}