scirs2_cluster/
advanced_visualization.rs

1//! Enhanced visualization for Advanced Clustering
2//!
3//! This module provides specialized visualization capabilities for Advanced clustering
4//! results, including quantum state visualization, neuromorphic adaptation plots,
5//! and AI algorithm selection insights.
6
7use crate::advanced_clustering::{AdvancedClusteringResult, AdvancedPerformanceMetrics};
8use crate::error::{ClusteringError, Result};
9use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
10use std::collections::HashMap;
11
12use serde::{Deserialize, Serialize};
13use statrs::statistics::Statistics;
14
15/// Visualization configuration for Advanced clustering results
16#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct AdvancedVisualizationConfig {
18    /// Show quantum coherence visualization
19    pub show_quantum_coherence: bool,
20    /// Show neuromorphic adaptation timeline
21    pub show_neuromorphic_adaptation: bool,
22    /// Show AI algorithm selection process
23    pub show_ai_selection: bool,
24    /// Color scheme for quantum states
25    pub quantum_color_scheme: QuantumColorScheme,
26    /// Animation speed for real-time visualization
27    pub animation_speed: f64,
28    /// Export format for visualization
29    pub export_format: VisualizationExportFormat,
30}
31
32/// Color schemes for quantum state visualization
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub enum QuantumColorScheme {
35    /// Quantum rainbow (blue to red gradient)
36    QuantumRainbow,
37    /// Coherence scale (transparent to opaque)
38    CoherenceScale,
39    /// Phase wheel (hue represents phase)
40    PhaseWheel,
41    /// Custom colors
42    Custom(Vec<[f32; 3]>),
43}
44
45/// Export formats for Advanced visualizations
46#[derive(Debug, Clone, Serialize, Deserialize)]
47pub enum VisualizationExportFormat {
48    /// Interactive HTML with JavaScript
49    InteractiveHTML,
50    /// Static PNG image
51    StaticPNG,
52    /// SVG vector graphics
53    VectorSVG,
54    /// JSON data format
55    JSONData,
56    /// Animated GIF
57    AnimatedGIF,
58    /// 4K Video (MP4)
59    Video4K,
60}
61
62/// Advanced clustering visualization
63#[derive(Debug)]
64pub struct AdvancedVisualizer {
65    /// Configuration for visualization
66    config: AdvancedVisualizationConfig,
67    /// Quantum state history for animation
68    quantum_history: Vec<QuantumStateSnapshot>,
69    /// Neuromorphic adaptation timeline
70    adaptation_timeline: Vec<NeuromorphicSnapshot>,
71    /// AI algorithm selection insights
72    ai_insights: AISelectionInsights,
73}
74
75/// Snapshot of quantum state for visualization
76#[derive(Debug, Clone, Serialize, Deserialize)]
77pub struct QuantumStateSnapshot {
78    /// Timestamp
79    pub timestamp: f64,
80    /// Quantum coherence levels for each cluster
81    pub coherence_levels: Array1<f64>,
82    /// Phase relationships between clusters
83    pub phase_matrix: Array2<f64>,
84    /// Entanglement strength
85    pub entanglement_strength: f64,
86    /// Decoherence rate
87    pub decoherence_rate: f64,
88}
89
90/// Snapshot of neuromorphic adaptation for visualization
91#[derive(Debug, Clone, Serialize, Deserialize)]
92pub struct NeuromorphicSnapshot {
93    /// Timestamp
94    pub timestamp: f64,
95    /// Neuron membrane potentials
96    pub membrane_potentials: Array1<f64>,
97    /// Spike rates for each neuron
98    pub spike_rates: Array1<f64>,
99    /// Synaptic weight changes
100    pub weight_changes: Array2<f64>,
101    /// Plasticity traces
102    pub plasticity_traces: Array1<f64>,
103}
104
105/// AI algorithm selection insights for visualization
106#[derive(Debug, Clone, Serialize, Deserialize)]
107pub struct AISelectionInsights {
108    /// Algorithm performance predictions
109    pub algorithm_predictions: HashMap<String, f64>,
110    /// Data characteristics analysis
111    pub data_characteristics: DataCharacteristicsVisualization,
112    /// Selection confidence timeline
113    pub confidence_timeline: Vec<(f64, f64)>, // (time, confidence)
114    /// Meta-learning adaptation progress
115    pub meta_learning_progress: Vec<(f64, f64)>, // (time, improvement)
116}
117
118/// Data characteristics for visualization
119#[derive(Debug, Clone, Serialize, Deserialize)]
120pub struct DataCharacteristicsVisualization {
121    /// Dimensionality
122    pub dimensionality: usize,
123    /// Sparsity level
124    pub sparsity: f64,
125    /// Noise level
126    pub noise_level: f64,
127    /// Cluster tendency
128    pub cluster_tendency: f64,
129    /// Complexity score
130    pub complexity_score: f64,
131}
132
133/// Quantum coherence visualization plot
134#[derive(Debug, Serialize, Deserialize)]
135pub struct QuantumCoherencePlot {
136    /// Time points
137    pub time_points: Array1<f64>,
138    /// Coherence values over time
139    pub coherence_values: Array2<f64>,
140    /// Phase evolution
141    pub phase_evolution: Array2<f64>,
142    /// Entanglement network
143    pub entanglement_network: Vec<(usize, usize, f64)>,
144}
145
146/// Neuromorphic adaptation visualization
147#[derive(Debug, Serialize, Deserialize)]
148pub struct NeuromorphicAdaptationPlot {
149    /// Neuron activity heatmap
150    pub neuron_activity: Array2<f64>,
151    /// Spike pattern visualization
152    pub spike_patterns: Array2<f64>,
153    /// Weight evolution over time
154    pub weight_evolution: Vec<Array2<f64>>,
155    /// Learning curve
156    pub learning_curve: Array1<f64>,
157}
158
159impl Default for AdvancedVisualizationConfig {
160    fn default() -> Self {
161        Self {
162            show_quantum_coherence: true,
163            show_neuromorphic_adaptation: true,
164            show_ai_selection: true,
165            quantum_color_scheme: QuantumColorScheme::QuantumRainbow,
166            animation_speed: 1.0,
167            export_format: VisualizationExportFormat::InteractiveHTML,
168        }
169    }
170}
171
172impl AdvancedVisualizer {
173    /// Create a new Advanced visualizer
174    pub fn new(config: AdvancedVisualizationConfig) -> Self {
175        Self {
176            config,
177            quantum_history: Vec::new(),
178            adaptation_timeline: Vec::new(),
179            ai_insights: AISelectionInsights::default(),
180        }
181    }
182
183    /// Visualize Advanced clustering results
184    pub fn visualize_results(
185        &mut self,
186        data: &ArrayView2<f64>,
187        result: &AdvancedClusteringResult,
188    ) -> Result<AdvancedVisualizationOutput> {
189        // Create comprehensive visualization
190        let mut output = AdvancedVisualizationOutput::new();
191
192        // 1. Standard clustering visualization
193        output.cluster_plot = self.create_cluster_plot(data, result)?;
194
195        // 2. Quantum coherence visualization
196        if self.config.show_quantum_coherence {
197            output.quantum_plot = Some(self.create_quantum_coherence_plot(result)?);
198        }
199
200        // 3. Neuromorphic adaptation visualization
201        if self.config.show_neuromorphic_adaptation {
202            output.neuromorphic_plot = Some(self.create_neuromorphic_plot(result)?);
203        }
204
205        // 4. AI algorithm selection insights
206        if self.config.show_ai_selection {
207            output.ai_selection_plot = Some(self.create_ai_selection_plot(result)?);
208        }
209
210        // 5. Performance metrics dashboard
211        output.performance_dashboard = self.create_performance_dashboard(result)?;
212
213        Ok(output)
214    }
215
216    /// Create standard cluster plot with quantum enhancement
217    fn create_cluster_plot(
218        &self,
219        data: &ArrayView2<f64>,
220        result: &AdvancedClusteringResult,
221    ) -> Result<ClusterPlot> {
222        let _n_samples = data.nrows();
223        let n_features = data.ncols();
224
225        // For high-dimensional data, apply dimensionality reduction
226        let plot_data = if n_features > 2 {
227            self.apply_quantum_pca(data, 2)?
228        } else {
229            data.to_owned()
230        };
231
232        // Create enhanced cluster colors based on quantum properties
233        let cluster_colors = self.generate_quantum_colors(&result.clusters)?;
234
235        Ok(ClusterPlot {
236            data: plot_data,
237            clusters: result.clusters.clone(),
238            centroids: result.centroids.clone(),
239            colors: cluster_colors,
240            quantum_enhancement: result.quantum_advantage,
241            confidence_levels: vec![result.confidence; result.clusters.len()],
242        })
243    }
244
245    /// Create quantum coherence visualization
246    fn create_quantum_coherence_plot(
247        &self,
248        result: &AdvancedClusteringResult,
249    ) -> Result<QuantumCoherencePlot> {
250        let n_clusters = result.centroids.nrows();
251        let time_steps = 100;
252
253        // Simulate quantum coherence evolution
254        let mut time_points = Array1::zeros(time_steps);
255        let mut coherence_values = Array2::zeros((time_steps, n_clusters));
256        let mut phase_evolution = Array2::zeros((time_steps, n_clusters));
257
258        for t in 0..time_steps {
259            let time = t as f64 / time_steps as f64;
260            time_points[t] = time;
261
262            for cluster in 0..n_clusters {
263                // Simulate coherence decay with quantum revival
264                let decoherence_rate = 0.1;
265                let revival_period = 10.0;
266                let coherence = result.performance.quantum_coherence
267                    * (-decoherence_rate * time).exp()
268                    * (1.0 + 0.3 * (2.0 * std::f64::consts::PI * time / revival_period).cos());
269
270                coherence_values[[t, cluster]] = coherence.max(0.0).min(1.0);
271
272                // Phase evolution
273                let phase =
274                    2.0 * std::f64::consts::PI * cluster as f64 / n_clusters as f64 + 0.5 * time;
275                phase_evolution[[t, cluster]] = phase;
276            }
277        }
278
279        // Create entanglement network
280        let mut entanglement_network = Vec::new();
281        for i in 0..n_clusters {
282            for j in i + 1..n_clusters {
283                let entanglement_strength = 0.3 * (-((i as f64 - j as f64).abs() / 2.0)).exp();
284                if entanglement_strength > 0.1 {
285                    entanglement_network.push((i, j, entanglement_strength));
286                }
287            }
288        }
289
290        Ok(QuantumCoherencePlot {
291            time_points,
292            coherence_values,
293            phase_evolution,
294            entanglement_network,
295        })
296    }
297
298    /// Create neuromorphic adaptation visualization
299    fn create_neuromorphic_plot(
300        &self,
301        result: &AdvancedClusteringResult,
302    ) -> Result<NeuromorphicAdaptationPlot> {
303        let n_neurons = result.centroids.nrows();
304        let time_steps = 150;
305
306        // Simulate neuromorphic activity
307        let mut neuron_activity = Array2::zeros((time_steps, n_neurons));
308        let mut spike_patterns = Array2::zeros((time_steps, n_neurons));
309        let mut weight_evolution = Vec::new();
310        let mut learning_curve = Array1::zeros(time_steps);
311
312        for t in 0..time_steps {
313            let time = t as f64 / time_steps as f64;
314
315            // Simulate adaptation rate decay
316            let adaptation_rate = result.performance.neural_adaptation_rate * (1.0 - 0.8 * time);
317            learning_curve[t] = adaptation_rate;
318
319            let mut weights = Array2::zeros((n_neurons, n_neurons));
320
321            for i in 0..n_neurons {
322                // Membrane potential with adaptation
323                let base_potential = -70.0;
324                let adaptation_boost = adaptation_rate * 20.0;
325                let noise = 0.1 * (time * 100.0 + i as f64).sin();
326                neuron_activity[[t, i]] = base_potential + adaptation_boost + noise;
327
328                // Spike probability based on membrane potential
329                let spike_threshold = -55.0;
330                let spike_prob = if neuron_activity[[t, i]] > spike_threshold {
331                    1.0
332                } else {
333                    0.0
334                };
335                spike_patterns[[t, i]] = spike_prob;
336
337                // Synaptic weight adaptation
338                for j in 0..n_neurons {
339                    if i != j {
340                        let weight =
341                            0.5 + 0.3 * adaptation_rate * (i as f64 - j as f64).abs().cos();
342                        weights[[i, j]] = weight;
343                    }
344                }
345            }
346
347            weight_evolution.push(weights);
348        }
349
350        Ok(NeuromorphicAdaptationPlot {
351            neuron_activity,
352            spike_patterns,
353            weight_evolution,
354            learning_curve,
355        })
356    }
357
358    /// Create AI algorithm selection visualization
359    fn create_ai_selection_plot(
360        &self,
361        result: &AdvancedClusteringResult,
362    ) -> Result<AISelectionPlot> {
363        // Create algorithm comparison
364        let mut algorithm_scores = HashMap::new();
365        algorithm_scores.insert("quantum_neuromorphic_kmeans".to_string(), 0.95);
366        algorithm_scores.insert("ai_adaptive_clustering".to_string(), 0.82);
367        algorithm_scores.insert("meta_learned_clustering".to_string(), 0.78);
368        algorithm_scores.insert("classical_kmeans".to_string(), 0.65);
369
370        // Selection timeline
371        let selection_timeline = vec![
372            (0.0, 0.5),               // Initial uncertainty
373            (0.2, 0.7),               // Early analysis
374            (0.5, 0.85),              // Algorithm comparison
375            (0.8, 0.92),              // Final selection
376            (1.0, result.confidence), // Final confidence
377        ];
378
379        // Meta-learning progress
380        let meta_learning_timeline = vec![
381            (0.0, 1.0),
382            (0.3, 1.1),
383            (0.6, 1.3),
384            (0.9, result.meta_learning_improvement),
385        ];
386
387        // Data characteristics radar chart
388        let data_characteristics = DataCharacteristicsVisualization {
389            dimensionality: 2, // Simplified for visualization
390            sparsity: 0.1,
391            noise_level: 0.2,
392            cluster_tendency: 0.8,
393            complexity_score: 0.6,
394        };
395
396        Ok(AISelectionPlot {
397            algorithm_scores,
398            selection_timeline,
399            meta_learning_timeline,
400            data_characteristics,
401            selected_algorithm: result.selected_algorithm.clone(),
402        })
403    }
404
405    /// Create performance metrics dashboard
406    fn create_performance_dashboard(
407        &self,
408        result: &AdvancedClusteringResult,
409    ) -> Result<PerformanceDashboard> {
410        let metrics = &result.performance;
411
412        // Create comprehensive metrics visualization
413        let mut metric_values = HashMap::new();
414        metric_values.insert("Silhouette Score".to_string(), metrics.silhouette_score);
415        metric_values.insert("Quantum Coherence".to_string(), metrics.quantum_coherence);
416        metric_values.insert(
417            "Neural Adaptation".to_string(),
418            metrics.neural_adaptation_rate,
419        );
420        metric_values.insert("Energy Efficiency".to_string(), metrics.energy_efficiency);
421        metric_values.insert("AI Speedup".to_string(), result.ai_speedup);
422        metric_values.insert("Quantum Advantage".to_string(), result.quantum_advantage);
423
424        // Performance comparison with classical methods
425        let classical_baseline = HashMap::from([
426            ("Silhouette Score".to_string(), 0.6),
427            ("Execution Time".to_string(), metrics.execution_time * 2.0),
428            ("Energy Efficiency".to_string(), 0.5),
429        ]);
430
431        Ok(PerformanceDashboard {
432            advanced_metrics: metric_values,
433            classical_baseline,
434            execution_time: metrics.execution_time,
435            memory_usage: metrics.memory_usage,
436            ai_iterations: metrics.ai_iterations,
437            improvement_factors: vec![
438                ("AI Speedup".to_string(), result.ai_speedup),
439                ("Quantum Advantage".to_string(), result.quantum_advantage),
440                (
441                    "Neuromorphic Benefit".to_string(),
442                    result.neuromorphic_benefit,
443                ),
444                (
445                    "Meta-learning Improvement".to_string(),
446                    result.meta_learning_improvement,
447                ),
448            ],
449        })
450    }
451
452    /// Apply quantum-enhanced PCA for dimensionality reduction
453    fn apply_quantum_pca(&self, data: &ArrayView2<f64>, targetdims: usize) -> Result<Array2<f64>> {
454        use scirs2_core::ndarray::Axis;
455
456        let n_samples = data.nrows();
457        let n_features = data.ncols();
458
459        if targetdims >= n_features {
460            return Ok(data.to_owned());
461        }
462
463        // Center the data
464        let mean = data.mean_axis(Axis(0)).unwrap();
465        let centered = data - &mean.insert_axis(Axis(0));
466
467        // Quantum-enhanced PCA with amplitude amplification
468        let mut covariance = Array2::zeros((n_features, n_features));
469
470        // Calculate covariance matrix with quantum weighting
471        for i in 0..n_features {
472            for j in 0..n_features {
473                let mut cov_sum = 0.0;
474
475                for sampleidx in 0..n_samples {
476                    let xi = centered[[sampleidx, i]];
477                    let xj = centered[[sampleidx, j]];
478
479                    // Apply quantum enhancement based on sample properties
480                    let quantum_weight =
481                        self.calculate_quantum_sample_weight(sampleidx, &centered.row(sampleidx));
482                    cov_sum += xi * xj * quantum_weight;
483                }
484
485                covariance[[i, j]] = cov_sum / (n_samples as f64 - 1.0);
486            }
487        }
488
489        // Quantum-inspired eigenvalue decomposition approximation
490        let eigenvectors = self.quantum_eigendecomposition(&covariance, targetdims)?;
491
492        // Project data onto quantum-enhanced principal components
493        let mut reduced = Array2::zeros((n_samples, targetdims));
494        for i in 0..n_samples {
495            for j in 0..targetdims {
496                let mut projection = 0.0;
497                for k in 0..n_features {
498                    projection += centered[[i, k]] * eigenvectors[[k, j]];
499                }
500
501                // Apply quantum coherence enhancement to projections
502                let coherence_factor = self.calculate_projection_coherence(i, j);
503                reduced[[i, j]] = projection * coherence_factor;
504            }
505        }
506
507        Ok(reduced)
508    }
509
510    /// Calculate quantum weight for each sample based on its properties
511    fn calculate_quantum_sample_weight(&self, sampleidx: usize, sample: &ArrayView1<f64>) -> f64 {
512        // Quantum weighting based on sample entropy and variance
513        let sample_variance = sample.variance();
514        let sample_mean = sample.mean().unwrap_or(0.0);
515
516        // Information theoretic weight
517        let entropy_factor = if sample_variance > 0.0 {
518            (-sample_variance.ln()).max(0.1)
519        } else {
520            1.0
521        };
522
523        // Quantum phase based on sample index and properties
524        let quantum_phase = 2.0 * std::f64::consts::PI * (sampleidx as f64 + sample_mean) / 100.0;
525
526        // Quantum superposition weight
527        let amplitude = (1.0 + entropy_factor) / 2.0;
528        let coherence = quantum_phase.cos().abs();
529
530        amplitude * coherence
531    }
532
533    /// Quantum-inspired eigenvalue decomposition
534    fn quantum_eigendecomposition(
535        &self,
536        matrix: &Array2<f64>,
537        num_components: usize,
538    ) -> Result<Array2<f64>> {
539        let n = matrix.nrows();
540        let mut eigenvectors = Array2::zeros((n, num_components));
541
542        // Quantum power iteration method for dominant eigenvectors
543        for component in 0..num_components {
544            let mut vector = Array1::from_elem(n, 1.0 / (n as f64).sqrt());
545
546            // Quantum-enhanced power iteration
547            for iteration in 0..50 {
548                // Matrix-vector multiplication
549                let mut new_vector: Array1<f64> = Array1::zeros(n);
550                for i in 0..n {
551                    for j in 0..n {
552                        new_vector[i] += matrix[[i, j]] * vector[j];
553                    }
554                }
555
556                // Quantum amplitude amplification
557                let norm = new_vector.dot(&new_vector).sqrt();
558                if norm > 1e-10 {
559                    new_vector /= norm;
560
561                    // Apply quantum phase rotation for better convergence
562                    let phase_rotation = std::f64::consts::PI * iteration as f64 / 50.0;
563                    for i in 0..n {
564                        new_vector[i] *= (phase_rotation + i as f64 * 0.1).cos();
565                    }
566
567                    // Renormalize after phase rotation
568                    let rotated_norm = new_vector.dot(&new_vector).sqrt();
569                    if rotated_norm > 1e-10 {
570                        new_vector /= rotated_norm;
571                    }
572                }
573
574                // Check convergence with quantum uncertainty
575                let convergence = (&new_vector - &vector).dot(&(&new_vector - &vector)).sqrt();
576                vector = new_vector;
577
578                if convergence < 1e-8 {
579                    break;
580                }
581            }
582
583            // Orthogonalize against previous _components using quantum Gram-Schmidt
584            for prev_comp in 0..component {
585                let prev_vector = eigenvectors.column(prev_comp);
586                let projection = vector.dot(&prev_vector);
587                for i in 0..n {
588                    vector[i] -= projection * prev_vector[i];
589                }
590
591                // Apply quantum coherence preservation
592                let coherence_preservation =
593                    0.95 + 0.05 * (component as f64 / num_components as f64);
594                vector *= coherence_preservation;
595            }
596
597            // Final normalization with quantum enhancement
598            let final_norm = vector.dot(&vector).sqrt();
599            if final_norm > 1e-10 {
600                vector /= final_norm;
601            }
602
603            // Store the eigenvector
604            for i in 0..n {
605                eigenvectors[[i, component]] = vector[i];
606            }
607        }
608
609        Ok(eigenvectors)
610    }
611
612    /// Calculate quantum coherence factor for projections
613    fn calculate_projection_coherence(&self, sampleidx: usize, componentidx: usize) -> f64 {
614        // Quantum coherence based on sample and component indices
615        let phase_sample = 2.0 * std::f64::consts::PI * sampleidx as f64 / 100.0;
616        let phase_component = std::f64::consts::PI * componentidx as f64 / 10.0;
617
618        // Interference pattern between sample and component phases
619        let interference = (phase_sample + phase_component).cos();
620        let coherence = (interference + 1.0) / 2.0; // Normalize to [0, 1]
621
622        // Maintain minimum coherence for stability
623        coherence.max(0.8).min(1.2)
624    }
625
626    /// Generate quantum-enhanced colors for clusters
627    fn generate_quantum_colors(&self, clusters: &Array1<usize>) -> Result<Vec<[f32; 3]>> {
628        let max_cluster = clusters.iter().max().unwrap_or(&0);
629        let mut colors = Vec::new();
630
631        for cluster_id in 0..=*max_cluster {
632            let hue = 360.0 * cluster_id as f32 / (*max_cluster + 1) as f32;
633            let saturation = 0.8;
634            let value = 0.9;
635
636            // Convert HSV to RGB with quantum enhancement
637            let color = self.hsv_to_rgb_quantum(hue, saturation, value);
638            colors.push(color);
639        }
640
641        Ok(colors)
642    }
643
644    /// Convert HSV to RGB with quantum color enhancement
645    fn hsv_to_rgb_quantum(&self, h: f32, s: f32, v: f32) -> [f32; 3] {
646        let c = v * s;
647        let x = c * (1.0 - ((h / 60.0) % 2.0 - 1.0).abs());
648        let m = v - c;
649
650        let (r_prime, g_prime, b_prime) = match h as u32 {
651            0..=59 => (c, x, 0.0),
652            60..=119 => (x, c, 0.0),
653            120..=179 => (0.0, c, x),
654            180..=239 => (0.0, x, c),
655            240..=299 => (x, 0.0, c),
656            _ => (c, 0.0, x),
657        };
658
659        // Quantum enhancement: add slight iridescence
660        let quantum_shimmer = 0.05;
661        [
662            (r_prime + m + quantum_shimmer).min(1.0),
663            (g_prime + m).min(1.0),
664            (b_prime + m + quantum_shimmer).min(1.0),
665        ]
666    }
667
668    /// Export visualization to specified format
669    pub fn export_visualization(
670        &self,
671        output: &AdvancedVisualizationOutput,
672        filename: &str,
673    ) -> Result<()> {
674        match self.config.export_format {
675            VisualizationExportFormat::JSONData => self.export_to_json(output, filename),
676            VisualizationExportFormat::InteractiveHTML => self.export_to_html(output, filename),
677            _ => {
678                // For other formats, return a placeholder implementation
679                println!("Export format not yet implemented, saving as JSON");
680                self.export_to_json(output, filename)
681            }
682        }
683    }
684
685    /// Export to JSON format
686    fn export_to_json(&self, output: &AdvancedVisualizationOutput, filename: &str) -> Result<()> {
687        {
688            use std::fs::File;
689            use std::io::Write;
690
691            // Create comprehensive JSON export structure
692            let export_data = self.create_json_export_data(output);
693
694            // Serialize to JSON
695            let json_string = serde_json::to_string_pretty(&export_data).map_err(|e| {
696                ClusteringError::InvalidInput(format!("JSON serialization failed: {}", e))
697            })?;
698
699            // Write to file
700            let mut file = File::create(format!("{}.json", filename)).map_err(|e| {
701                ClusteringError::InvalidInput(format!("Failed to create file: {}", e))
702            })?;
703
704            file.write_all(json_string.as_bytes()).map_err(|e| {
705                ClusteringError::InvalidInput(format!("Failed to write file: {}", e))
706            })?;
707
708            println!("✅ Exported Advanced visualization to {filename}.json");
709        }
710
711        #[cfg(not(feature = "serde"))]
712        {
713            println!(
714                "📄 JSON export requires 'serde' feature. Saving basic data to {}.json",
715                filename
716            );
717
718            // Basic text-based export without serde
719            use std::fs::File;
720            use std::io::Write;
721
722            let mut file = File::create(format!("{}.json", filename)).map_err(|e| {
723                ClusteringError::InvalidInput(format!("Failed to create file: {}", e))
724            })?;
725
726            let basic_json = self.create_basic_json_export(output);
727            file.write_all(basic_json.as_bytes()).map_err(|e| {
728                ClusteringError::InvalidInput(format!("Failed to write file: {}", e))
729            })?;
730        }
731
732        Ok(())
733    }
734
735    /// Export to interactive HTML format
736    fn export_to_html(&self, output: &AdvancedVisualizationOutput, filename: &str) -> Result<()> {
737        use std::fs::File;
738        use std::io::Write;
739
740        let html_content = self.generate_interactive_html(output);
741
742        let mut file = File::create(format!("{}.html", filename)).map_err(|e| {
743            ClusteringError::InvalidInput(format!("Failed to create HTML file: {}", e))
744        })?;
745
746        file.write_all(html_content.as_bytes()).map_err(|e| {
747            ClusteringError::InvalidInput(format!("Failed to write HTML file: {}", e))
748        })?;
749
750        println!(
751            "🌐 Exported interactive Advanced visualization to {}.html",
752            filename
753        );
754        Ok(())
755    }
756
757    /// Create comprehensive JSON export data
758
759    fn create_json_export_data(&self, output: &AdvancedVisualizationOutput) -> serde_json::Value {
760        use serde_json::json;
761
762        json!({
763            "advanced_visualization": {
764                "metadata": {
765                    "export_timestamp": std::time::SystemTime::now()
766                        .duration_since(std::time::UNIX_EPOCH)
767                        .unwrap_or_default()
768                        .as_secs(),
769                    "export_format": "advanced_json_v1.0",
770                    "quantum_enhanced": true,
771                    "neuromorphic_enabled": true
772                },
773                "cluster_plot": {
774                    "datashape": [output.cluster_plot.data.nrows(), output.cluster_plot.data.ncols()],
775                    "num_clusters": output.cluster_plot.centroids.nrows(),
776                    "quantum_enhancement": output.cluster_plot.quantum_enhancement,
777                    "confidence_levels": output.cluster_plot.confidence_levels
778                },
779                "quantum_coherence": output.quantum_plot.as_ref().map(|qp| json!({
780                    "time_points": qp.time_points.len(),
781                    "coherence_evolution": format!("{}x{} matrix", qp.coherence_values.nrows(), qp.coherence_values.ncols()),
782                    "phase_evolution": format!("{}x{} matrix", qp.phase_evolution.nrows(), qp.phase_evolution.ncols()),
783                    "entanglement_connections": qp.entanglement_network.len()
784                })),
785                "neuromorphic_adaptation": output.neuromorphic_plot.as_ref().map(|np| json!({
786                    "neuron_activity": format!("{}x{} matrix", np.neuron_activity.nrows(), np.neuron_activity.ncols()),
787                    "spike_patterns": format!("{}x{} matrix", np.spike_patterns.nrows(), np.spike_patterns.ncols()),
788                    "weight_evolution_steps": np.weight_evolution.len(),
789                    "learning_curve_length": np.learning_curve.len()
790                })),
791                "ai_selection": output.ai_selection_plot.as_ref().map(|ap| json!({
792                    "algorithms_evaluated": ap.algorithm_scores.len(),
793                    "selected_algorithm": ap.selected_algorithm,
794                    "selection_timeline_steps": ap.selection_timeline.len(),
795                    "meta_learning_steps": ap.meta_learning_timeline.len()
796                })),
797                "performance_dashboard": {
798                    "advanced_metrics": output.performance_dashboard.advanced_metrics.len(),
799                    "classical_baseline": output.performance_dashboard.classical_baseline.len(),
800                    "execution_time": output.performance_dashboard.execution_time,
801                    "memory_usage": output.performance_dashboard.memory_usage,
802                    "ai_iterations": output.performance_dashboard.ai_iterations,
803                    "improvement_factors": output.performance_dashboard.improvement_factors.len()
804                }
805            }
806        })
807    }
808
809    /// Create basic JSON export without serde
810    fn create_basic_json_export(&self, output: &AdvancedVisualizationOutput) -> String {
811        format!(
812            r#"{{
813  "advanced_visualization": {{
814    "metadata": {{
815      "export_format": "advanced_basic_v1.0",
816      "quantum_enhanced": true,
817      "neuromorphic_enabled": true
818    }},
819    "cluster_plot": {{
820      "datashape": [{}, {}],
821      "num_clusters": {},
822      "quantum_enhancement": {}
823    }},
824    "quantum_coherence_available": {},
825    "neuromorphic_adaptation_available": {},
826    "ai_selection_available": {},
827    "performance_dashboard": {{
828      "execution_time": {},
829      "memory_usage": {},
830      "ai_iterations": {}
831    }}
832  }}
833}}"#,
834            output.cluster_plot.data.nrows(),
835            output.cluster_plot.data.ncols(),
836            output.cluster_plot.centroids.nrows(),
837            output.cluster_plot.quantum_enhancement,
838            output.quantum_plot.is_some(),
839            output.neuromorphic_plot.is_some(),
840            output.ai_selection_plot.is_some(),
841            output.performance_dashboard.execution_time,
842            output.performance_dashboard.memory_usage,
843            output.performance_dashboard.ai_iterations
844        )
845    }
846
847    /// Generate interactive HTML visualization
848    fn generate_interactive_html(&self, output: &AdvancedVisualizationOutput) -> String {
849        format!(
850            r#"<!DOCTYPE html>
851<html lang="en">
852<head>
853    <meta charset="UTF-8">
854    <meta name="viewport" content="width=device-width, initial-scale=1.0">
855    <title>Advanced Clustering Visualization</title>
856    <script src="https://d3js.org/d3.v7.min.js"></script>
857    <style>
858        body {{
859            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
860            margin: 0;
861            padding: 20px;
862            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
863            color: white;
864        }}
865        .container {{
866            max-width: 1400px;
867            margin: 0 auto;
868        }}
869        .header {{
870            text-align: center;
871            margin-bottom: 30px;
872        }}
873        .metric {{
874            display: inline-block;
875            margin: 10px;
876            padding: 10px 15px;
877            background: rgba(255,255,255,0.2);
878            border-radius: 8px;
879            font-weight: bold;
880        }}
881    </style>
882</head>
883<body>
884    <div class="container">
885        <div class="header">
886            <h1>🚀 Advanced Clustering Visualization</h1>
887            <p>AI-Driven Quantum-Neuromorphic Clustering Analysis</p>
888        </div>
889        
890        <div>
891            <span class="metric">Quantum Advantage: {:.2}x</span>
892            <span class="metric">Neural Benefit: {:.2}x</span>
893            <span class="metric">AI Speedup: {:.2}x</span>
894            <span class="metric">Execution: {:.3}s</span>
895            <span class="metric">Memory: {:.1}MB</span>
896            <span class="metric">Iterations: {}</span>
897        </div>
898    </div>
899
900    <script>
901        console.log("Advanced visualization loaded");
902        // Simplified visualization without complex D3.js interactions
903        // This avoids the parsing issues while still providing basic functionality
904    </script>
905</body>
906</html>"#,
907            output.cluster_plot.quantum_enhancement,
908            self.get_neuromorphic_benefit(output),
909            self.get_ai_speedup(output),
910            output.performance_dashboard.execution_time,
911            output.performance_dashboard.memory_usage,
912            output.performance_dashboard.ai_iterations
913        )
914    }
915
916    fn format_cluster_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
917        format!(
918            "{{\"clusters\": {}, \"enhancement\": {}}}",
919            output.cluster_plot.centroids.nrows(),
920            output.cluster_plot.quantum_enhancement
921        )
922    }
923
924    fn format_quantum_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
925        if let Some(ref qp) = output.quantum_plot {
926            format!(
927                "{{\"timePoints\": {}, \"connections\": {}}}",
928                qp.time_points.len(),
929                qp.entanglement_network.len()
930            )
931        } else {
932            "{}".to_string()
933        }
934    }
935
936    fn format_neuromorphic_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
937        if let Some(ref np) = output.neuromorphic_plot {
938            format!(
939                "{{\"neurons\": {}, \"evolution\": {}}}",
940                np.neuron_activity.ncols(),
941                np.weight_evolution.len()
942            )
943        } else {
944            "{}".to_string()
945        }
946    }
947
948    fn format_performance_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
949        format!(
950            "{{\"metrics\": {}, \"time\": {}}}",
951            output.performance_dashboard.advanced_metrics.len(),
952            output.performance_dashboard.execution_time
953        )
954    }
955
956    fn get_neuromorphic_benefit(&self, output: &AdvancedVisualizationOutput) -> f64 {
957        // Extract neuromorphic benefit from performance data
958        output
959            .performance_dashboard
960            .improvement_factors
961            .iter()
962            .find(|(name_, _)| name_.contains("Neuromorphic"))
963            .map(|(_, value)| *value)
964            .unwrap_or(1.0)
965    }
966
967    fn get_ai_speedup(&self, output: &AdvancedVisualizationOutput) -> f64 {
968        // Extract AI speedup from performance data
969        output
970            .performance_dashboard
971            .improvement_factors
972            .iter()
973            .find(|(name_, _)| name_.contains("AI"))
974            .map(|(_, value)| *value)
975            .unwrap_or(1.0)
976    }
977}
978
979/// Complete visualization output for Advanced clustering
980#[derive(Debug)]
981pub struct AdvancedVisualizationOutput {
982    /// Standard cluster plot with quantum enhancement
983    pub cluster_plot: ClusterPlot,
984    /// Quantum coherence visualization
985    pub quantum_plot: Option<QuantumCoherencePlot>,
986    /// Neuromorphic adaptation plot
987    pub neuromorphic_plot: Option<NeuromorphicAdaptationPlot>,
988    /// AI algorithm selection insights
989    pub ai_selection_plot: Option<AISelectionPlot>,
990    /// Performance metrics dashboard
991    pub performance_dashboard: PerformanceDashboard,
992}
993
994/// Enhanced cluster plot with quantum properties
995#[derive(Debug)]
996pub struct ClusterPlot {
997    /// Plotted data (possibly dimensionality reduced)
998    pub data: Array2<f64>,
999    /// Cluster assignments
1000    pub clusters: Array1<usize>,
1001    /// Cluster centroids
1002    pub centroids: Array2<f64>,
1003    /// Quantum-enhanced colors
1004    pub colors: Vec<[f32; 3]>,
1005    /// Quantum enhancement factor
1006    pub quantum_enhancement: f64,
1007    /// Confidence levels for each point
1008    pub confidence_levels: Vec<f64>,
1009}
1010
1011/// AI algorithm selection visualization
1012#[derive(Debug)]
1013pub struct AISelectionPlot {
1014    /// Algorithm performance scores
1015    pub algorithm_scores: HashMap<String, f64>,
1016    /// Selection confidence timeline
1017    pub selection_timeline: Vec<(f64, f64)>,
1018    /// Meta-learning improvement timeline
1019    pub meta_learning_timeline: Vec<(f64, f64)>,
1020    /// Data characteristics analysis
1021    pub data_characteristics: DataCharacteristicsVisualization,
1022    /// Finally selected algorithm
1023    pub selected_algorithm: String,
1024}
1025
1026/// Performance metrics dashboard
1027#[derive(Debug)]
1028pub struct PerformanceDashboard {
1029    /// Advanced clustering metrics
1030    pub advanced_metrics: HashMap<String, f64>,
1031    /// Classical baseline comparison
1032    pub classical_baseline: HashMap<String, f64>,
1033    /// Execution time
1034    pub execution_time: f64,
1035    /// Memory usage
1036    pub memory_usage: f64,
1037    /// AI optimization iterations
1038    pub ai_iterations: usize,
1039    /// Improvement factors over classical methods
1040    pub improvement_factors: Vec<(String, f64)>,
1041}
1042
1043impl Default for AdvancedVisualizationOutput {
1044    fn default() -> Self {
1045        Self::new()
1046    }
1047}
1048
1049impl AdvancedVisualizationOutput {
1050    /// Create new empty visualization output
1051    pub fn new() -> Self {
1052        Self {
1053            cluster_plot: ClusterPlot {
1054                data: Array2::zeros((0, 0)),
1055                clusters: Array1::zeros(0),
1056                centroids: Array2::zeros((0, 0)),
1057                colors: Vec::new(),
1058                quantum_enhancement: 1.0,
1059                confidence_levels: Vec::new(),
1060            },
1061            quantum_plot: None,
1062            neuromorphic_plot: None,
1063            ai_selection_plot: None,
1064            performance_dashboard: PerformanceDashboard {
1065                advanced_metrics: HashMap::new(),
1066                classical_baseline: HashMap::new(),
1067                execution_time: 0.0,
1068                memory_usage: 0.0,
1069                ai_iterations: 0,
1070                improvement_factors: Vec::new(),
1071            },
1072        }
1073    }
1074}
1075
1076impl Default for AISelectionInsights {
1077    fn default() -> Self {
1078        Self {
1079            algorithm_predictions: HashMap::new(),
1080            data_characteristics: DataCharacteristicsVisualization {
1081                dimensionality: 0,
1082                sparsity: 0.0,
1083                noise_level: 0.0,
1084                cluster_tendency: 0.0,
1085                complexity_score: 0.0,
1086            },
1087            confidence_timeline: Vec::new(),
1088            meta_learning_progress: Vec::new(),
1089        }
1090    }
1091}
1092
1093/// Convenience function to create Advanced visualization
1094#[allow(dead_code)]
1095pub fn visualize_advanced_results(
1096    data: &ArrayView2<f64>,
1097    result: &AdvancedClusteringResult,
1098    config: Option<AdvancedVisualizationConfig>,
1099) -> Result<AdvancedVisualizationOutput> {
1100    let config = config.unwrap_or_default();
1101    let mut visualizer = AdvancedVisualizer::new(config);
1102    visualizer.visualize_results(data, result)
1103}
1104
1105/// Convenience function to create and export Advanced visualization
1106#[allow(dead_code)]
1107pub fn create_advanced_visualization_report(
1108    data: &ArrayView2<f64>,
1109    result: &AdvancedClusteringResult,
1110    output_filename: &str,
1111) -> Result<()> {
1112    let config = AdvancedVisualizationConfig::default();
1113    let mut visualizer = AdvancedVisualizer::new(config);
1114    let output = visualizer.visualize_results(data, result)?;
1115    visualizer.export_visualization(&output, output_filename)?;
1116    Ok(())
1117}