scirs2_cluster/advanced/
transfer.rs1use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
8use scirs2_core::numeric::{Float, FromPrimitive};
9use serde::{Deserialize, Serialize};
10use std::collections::HashMap;
11use std::fmt::Debug;
12
13use crate::error::{ClusteringError, Result};
14
15#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct TransferLearningConfig {
18 pub source_weight: f64,
20 pub target_weight: f64,
22 pub adaptation_iterations: usize,
24 pub adaptation_learning_rate: f64,
26 pub feature_alignment: FeatureAlignment,
28 pub domain_adaptation_strength: f64,
30 pub adversarial_training: bool,
32 pub max_mismatch_tolerance: f64,
34}
35
36impl Default for TransferLearningConfig {
37 fn default() -> Self {
38 Self {
39 source_weight: 0.7,
40 target_weight: 0.3,
41 adaptation_iterations: 50,
42 adaptation_learning_rate: 0.01,
43 feature_alignment: FeatureAlignment::Linear,
44 domain_adaptation_strength: 0.1,
45 adversarial_training: false,
46 max_mismatch_tolerance: 0.5,
47 }
48 }
49}
50
51#[derive(Debug, Clone, Serialize, Deserialize)]
53pub enum FeatureAlignment {
54 Linear,
56 Neural { hidden_layers: Vec<usize> },
58 CCA,
60 MMD,
62 Adversarial { discriminator_layers: Vec<usize> },
64}
65
66pub struct TransferLearningClustering<F: Float> {
68 config: TransferLearningConfig,
69 source_centroids: Option<Array2<F>>,
70 target_centroids: Option<Array2<F>>,
71 alignment_matrix: Option<Array2<F>>,
72 initialized: bool,
73}
74
75impl<F: Float + FromPrimitive + Debug> TransferLearningClustering<F> {
76 pub fn new(config: TransferLearningConfig) -> Self {
78 Self {
79 config,
80 source_centroids: None,
81 target_centroids: None,
82 alignment_matrix: None,
83 initialized: false,
84 }
85 }
86
87 pub fn fit(
89 &mut self,
90 source_data: ArrayView2<F>,
91 target_data: ArrayView2<F>,
92 ) -> Result<Array1<usize>> {
93 let n_samples = target_data.nrows();
95 let n_features = target_data.ncols();
96 let labels = Array1::from_shape_fn(n_samples, |i| i % 3);
97
98 self.source_centroids = Some(Array2::zeros((3, source_data.ncols())));
100 self.target_centroids = Some(Array2::zeros((3, n_features)));
101 self.initialized = true;
102 Ok(labels)
103 }
104
105 pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
107 if !self.initialized {
108 return Err(ClusteringError::InvalidInput(
109 "Model must be fitted before prediction".to_string(),
110 ));
111 }
112
113 let n_samples = data.nrows();
115 let labels = Array1::from_shape_fn(n_samples, |i| i % 3);
116 Ok(labels)
117 }
118
119 pub fn cluster_centers(&self) -> Option<&Array2<F>> {
121 self.target_centroids.as_ref()
122 }
123
124 pub fn alignment_matrix(&self) -> Option<&Array2<F>> {
126 self.alignment_matrix.as_ref()
127 }
128}
129
130pub fn transfer_learning_clustering<F: Float + FromPrimitive + Debug + 'static>(
132 source_data: ArrayView2<F>,
133 target_data: ArrayView2<F>,
134 config: Option<TransferLearningConfig>,
135) -> Result<(Array2<F>, Array1<usize>)> {
136 let config = config.unwrap_or_default();
137 let mut clusterer = TransferLearningClustering::new(config);
138
139 let labels = clusterer.fit(source_data, target_data)?;
140 let centers = clusterer
141 .cluster_centers()
142 .ok_or_else(|| ClusteringError::InvalidInput("Failed to get cluster centers".to_string()))?
143 .clone();
144
145 Ok((centers, labels))
146}
147
148#[cfg(test)]
149mod tests {
150 use super::*;
151 use scirs2_core::ndarray::Array2;
152
153 #[test]
154 fn test_transfer_learning_config_default() {
155 let config = TransferLearningConfig::default();
156 assert_eq!(config.source_weight, 0.7);
157 assert_eq!(config.adaptation_iterations, 50);
158 }
159
160 #[test]
161 fn test_transfer_learning_clustering_creation() {
162 let config = TransferLearningConfig::default();
163 let clusterer = TransferLearningClustering::<f64>::new(config);
164 assert!(!clusterer.initialized);
165 }
166
167 #[test]
168 fn test_transfer_learning_clustering_placeholder() {
169 let source_data =
170 Array2::from_shape_vec((4, 2), (0..8).map(|x| x as f64).collect()).unwrap();
171 let target_data =
172 Array2::from_shape_vec((4, 2), (8..16).map(|x| x as f64).collect()).unwrap();
173 let result = transfer_learning_clustering(source_data.view(), target_data.view(), None);
174 assert!(result.is_ok());
175 }
176}