scirs2_cluster/advanced/
reinforcement.rs1use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
8use scirs2_core::numeric::{Float, FromPrimitive};
9use serde::{Deserialize, Serialize};
10use std::collections::HashMap;
11use std::fmt::Debug;
12
13use crate::error::{ClusteringError, Result};
14
15#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct RLClusteringConfig {
18 pub learning_rate: f64,
20 pub discount_factor: f64,
22 pub exploration_rate: f64,
24 pub exploration_decay: f64,
26 pub n_episodes: usize,
28 pub max_steps_per_episode: usize,
30 pub initial_clusters: usize,
32 pub max_clusters: usize,
34 pub reward_function: RewardFunction,
36}
37
38impl Default for RLClusteringConfig {
39 fn default() -> Self {
40 Self {
41 learning_rate: 0.1,
42 discount_factor: 0.95,
43 exploration_rate: 0.1,
44 exploration_decay: 0.995,
45 n_episodes: 100,
46 max_steps_per_episode: 1000,
47 initial_clusters: 3,
48 max_clusters: 20,
49 reward_function: RewardFunction::Silhouette,
50 }
51 }
52}
53
54#[derive(Debug, Clone, Serialize, Deserialize)]
56pub enum RewardFunction {
57 Silhouette,
59 DaviesBouldin,
61 CalinskiHarabasz,
63 Custom { parameters: HashMap<String, f64> },
65}
66
67pub struct RLClustering<F: Float> {
69 config: RLClusteringConfig,
70 q_table: HashMap<String, HashMap<String, f64>>,
71 current_clusters: Vec<Array1<F>>,
72 initialized: bool,
73}
74
75impl<F: Float + FromPrimitive + Debug> RLClustering<F> {
76 pub fn new(config: RLClusteringConfig) -> Self {
78 Self {
79 config,
80 q_table: HashMap::new(),
81 current_clusters: Vec::new(),
82 initialized: false,
83 }
84 }
85
86 pub fn fit(&mut self, data: ArrayView2<F>) -> Result<Array1<usize>> {
88 let n_samples = data.nrows();
90 let labels = Array1::from_shape_fn(n_samples, |i| i % self.config.initial_clusters);
91 self.initialized = true;
92 Ok(labels)
93 }
94
95 pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
97 if !self.initialized {
98 return Err(ClusteringError::InvalidInput(
99 "Model must be fitted before prediction".to_string(),
100 ));
101 }
102
103 let n_samples = data.nrows();
105 let labels = Array1::from_shape_fn(n_samples, |i| i % self.config.initial_clusters);
106 Ok(labels)
107 }
108
109 pub fn cluster_centers(&self) -> Option<Array2<F>> {
111 if !self.initialized {
112 return None;
113 }
114
115 Some(Array2::zeros((self.config.initial_clusters, 2)))
117 }
118}
119
120pub fn rl_clustering<F: Float + FromPrimitive + Debug>(
122 data: ArrayView2<F>,
123 config: Option<RLClusteringConfig>,
124) -> Result<(Array2<F>, Array1<usize>)> {
125 let config = config.unwrap_or_default();
126 let mut clusterer = RLClustering::new(config);
127
128 let labels = clusterer.fit(data)?;
129 let centers = clusterer.cluster_centers().ok_or_else(|| {
130 ClusteringError::InvalidInput("Failed to get cluster centers".to_string())
131 })?;
132
133 Ok((centers, labels))
134}
135
136#[cfg(test)]
137mod tests {
138 use super::*;
139 use scirs2_core::ndarray::Array2;
140
141 #[test]
142 fn test_rl_clustering_config_default() {
143 let config = RLClusteringConfig::default();
144 assert_eq!(config.learning_rate, 0.1);
145 assert_eq!(config.n_episodes, 100);
146 }
147
148 #[test]
149 fn test_rl_clustering_creation() {
150 let config = RLClusteringConfig::default();
151 let clusterer = RLClustering::<f64>::new(config);
152 assert!(!clusterer.initialized);
153 }
154
155 #[test]
156 fn test_rl_clustering_placeholder() {
157 let data = Array2::from_shape_vec((6, 2), (0..12).map(|x| x as f64).collect()).unwrap();
158 let result = rl_clustering(data.view(), None);
159 assert!(result.is_ok());
160 }
161}