1use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
7use scirs2_core::numeric::{Float, FromPrimitive};
8use serde::{Deserialize, Serialize};
9use std::fmt::Debug;
10
11use crate::error::{ClusteringError, Result};
12
13#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct QAOAConfig {
16 pub p_layers: usize,
18 pub optimization_iterations: usize,
20 pub optimizer: String,
22 pub learning_rate: f64,
24 pub cost_function: QAOACostFunction,
26 pub n_shots: usize,
28 pub enable_noise: bool,
30}
31
32impl Default for QAOAConfig {
33 fn default() -> Self {
34 Self {
35 p_layers: 1,
36 optimization_iterations: 100,
37 optimizer: "COBYLA".to_string(),
38 learning_rate: 0.01,
39 cost_function: QAOACostFunction::MaxCut,
40 n_shots: 1024,
41 enable_noise: false,
42 }
43 }
44}
45
46#[derive(Debug, Clone, Serialize, Deserialize)]
48pub enum QAOACostFunction {
49 MaxCut,
51 MinCut,
53 GraphColoring { n_colors: usize },
55 Custom { hamiltonian_params: Vec<f64> },
57}
58
59pub struct QAOAClustering<F: Float + FromPrimitive> {
61 config: QAOAConfig,
62 optimal_parameters: Option<(Vec<f64>, Vec<f64>)>, cluster_assignments: Option<Array1<usize>>,
64 initialized: bool,
65 _phantom: std::marker::PhantomData<F>,
66}
67
68impl<F: Float + FromPrimitive + Debug> QAOAClustering<F> {
69 pub fn new(config: QAOAConfig) -> Self {
71 Self {
72 config,
73 optimal_parameters: None,
74 cluster_assignments: None,
75 initialized: false,
76 _phantom: std::marker::PhantomData,
77 }
78 }
79
80 pub fn fit(&mut self, data: ArrayView2<F>) -> Result<Array1<usize>> {
82 let n_samples = data.nrows();
84 let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
85 self.cluster_assignments = Some(labels.clone());
86 self.initialized = true;
87 Ok(labels)
88 }
89
90 pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
92 if !self.initialized {
93 return Err(ClusteringError::InvalidInput(
94 "Model must be fitted before prediction".to_string(),
95 ));
96 }
97
98 let n_samples = data.nrows();
99 let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
100 Ok(labels)
101 }
102
103 pub fn optimal_parameters(&self) -> Option<&(Vec<f64>, Vec<f64>)> {
105 self.optimal_parameters.as_ref()
106 }
107}
108
109#[derive(Debug, Clone, Serialize, Deserialize)]
111pub struct VQEConfig {
112 pub max_iterations: usize,
114 pub tolerance: f64,
116 pub optimizer: String,
118 pub ansatz: VQEAnsatz,
120 pub n_shots: usize,
122}
123
124impl Default for VQEConfig {
125 fn default() -> Self {
126 Self {
127 max_iterations: 200,
128 tolerance: 1e-6,
129 optimizer: "SLSQP".to_string(),
130 ansatz: VQEAnsatz::RealAmplitudes { num_layers: 2 },
131 n_shots: 1024,
132 }
133 }
134}
135
136#[derive(Debug, Clone, Serialize, Deserialize)]
138pub enum VQEAnsatz {
139 RealAmplitudes { num_layers: usize },
141 EfficientSU2 { num_layers: usize },
143 TwoLocal {
145 rotation_blocks: Vec<String>,
146 entanglement_blocks: Vec<String>,
147 },
148 Custom { gates: Vec<String> },
150}
151
152pub struct VQEClustering<F: Float + FromPrimitive> {
154 config: VQEConfig,
155 optimal_energy: Option<f64>,
156 optimal_parameters: Option<Vec<f64>>,
157 cluster_assignments: Option<Array1<usize>>,
158 initialized: bool,
159 _phantom: std::marker::PhantomData<F>,
160}
161
162impl<F: Float + FromPrimitive + Debug> VQEClustering<F> {
163 pub fn new(config: VQEConfig) -> Self {
165 Self {
166 config,
167 optimal_energy: None,
168 optimal_parameters: None,
169 cluster_assignments: None,
170 initialized: false,
171 _phantom: std::marker::PhantomData,
172 }
173 }
174
175 pub fn fit(&mut self, data: ArrayView2<F>) -> Result<Array1<usize>> {
177 let n_samples = data.nrows();
179 let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
180 self.cluster_assignments = Some(labels.clone());
181 self.initialized = true;
182 Ok(labels)
183 }
184
185 pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
187 if !self.initialized {
188 return Err(ClusteringError::InvalidInput(
189 "Model must be fitted before prediction".to_string(),
190 ));
191 }
192
193 let n_samples = data.nrows();
194 let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
195 Ok(labels)
196 }
197
198 pub fn optimal_energy(&self) -> Option<f64> {
200 self.optimal_energy
201 }
202
203 pub fn optimal_parameters(&self) -> Option<&Vec<f64>> {
205 self.optimal_parameters.as_ref()
206 }
207}
208
209pub fn qaoa_clustering<F: Float + FromPrimitive + Debug + 'static>(
211 data: ArrayView2<F>,
212 config: Option<QAOAConfig>,
213) -> Result<Array1<usize>> {
214 let config = config.unwrap_or_default();
215 let mut clusterer = QAOAClustering::new(config);
216 clusterer.fit(data)
217}
218
219pub fn vqe_clustering<F: Float + FromPrimitive + Debug + 'static>(
221 data: ArrayView2<F>,
222 config: Option<VQEConfig>,
223) -> Result<Array1<usize>> {
224 let config = config.unwrap_or_default();
225 let mut clusterer = VQEClustering::new(config);
226 clusterer.fit(data)
227}
228
229#[cfg(test)]
230mod tests {
231 use super::*;
232 use scirs2_core::ndarray::Array2;
233
234 #[test]
235 fn test_qaoa_config_default() {
236 let config = QAOAConfig::default();
237 assert_eq!(config.p_layers, 1);
238 assert_eq!(config.optimization_iterations, 100);
239 }
240
241 #[test]
242 fn test_vqe_config_default() {
243 let config = VQEConfig::default();
244 assert_eq!(config.max_iterations, 200);
245 assert!((config.tolerance - 1e-6).abs() < 1e-10);
246 }
247
248 #[test]
249 fn test_qaoa_clustering_placeholder() {
250 let data = Array2::from_shape_vec((4, 2), (0..8).map(|x| x as f64).collect()).unwrap();
251 let result = qaoa_clustering(data.view(), None);
252 assert!(result.is_ok());
253 }
254
255 #[test]
256 fn test_vqe_clustering_placeholder() {
257 let data = Array2::from_shape_vec((4, 2), (0..8).map(|x| x as f64).collect()).unwrap();
258 let result = vqe_clustering(data.view(), None);
259 assert!(result.is_ok());
260 }
261}