scirs2_cluster/advanced/
quantum_algorithms.rs

1//! Quantum algorithm implementations for clustering
2//!
3//! This module provides implementations of quantum algorithms like QAOA and VQE
4//! specifically adapted for clustering problems.
5
6use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
7use scirs2_core::numeric::{Float, FromPrimitive};
8use serde::{Deserialize, Serialize};
9use std::fmt::Debug;
10
11use crate::error::{ClusteringError, Result};
12
13/// Configuration for QAOA clustering
14#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct QAOAConfig {
16    /// Number of QAOA layers (p)
17    pub p_layers: usize,
18    /// Number of optimization iterations
19    pub optimization_iterations: usize,
20    /// Optimizer for classical parameters
21    pub optimizer: String,
22    /// Learning rate for parameter optimization
23    pub learning_rate: f64,
24    /// Cost function for clustering
25    pub cost_function: QAOACostFunction,
26    /// Number of measurement shots
27    pub n_shots: usize,
28    /// Enable noise simulation
29    pub enable_noise: bool,
30}
31
32impl Default for QAOAConfig {
33    fn default() -> Self {
34        Self {
35            p_layers: 1,
36            optimization_iterations: 100,
37            optimizer: "COBYLA".to_string(),
38            learning_rate: 0.01,
39            cost_function: QAOACostFunction::MaxCut,
40            n_shots: 1024,
41            enable_noise: false,
42        }
43    }
44}
45
46/// Cost functions for QAOA clustering
47#[derive(Debug, Clone, Serialize, Deserialize)]
48pub enum QAOACostFunction {
49    /// Maximum cut formulation
50    MaxCut,
51    /// Minimum cut formulation
52    MinCut,
53    /// Graph coloring formulation
54    GraphColoring { n_colors: usize },
55    /// Custom Hamiltonian
56    Custom { hamiltonian_params: Vec<f64> },
57}
58
59/// QAOA-based clustering algorithm
60pub struct QAOAClustering<F: Float + FromPrimitive> {
61    config: QAOAConfig,
62    optimal_parameters: Option<(Vec<f64>, Vec<f64>)>, // (gamma, beta)
63    cluster_assignments: Option<Array1<usize>>,
64    initialized: bool,
65    _phantom: std::marker::PhantomData<F>,
66}
67
68impl<F: Float + FromPrimitive + Debug> QAOAClustering<F> {
69    /// Create a new QAOA clustering instance
70    pub fn new(config: QAOAConfig) -> Self {
71        Self {
72            config,
73            optimal_parameters: None,
74            cluster_assignments: None,
75            initialized: false,
76            _phantom: std::marker::PhantomData,
77        }
78    }
79
80    /// Fit the QAOA clustering model
81    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<Array1<usize>> {
82        // Placeholder implementation - would contain full QAOA algorithm
83        let n_samples = data.nrows();
84        let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
85        self.cluster_assignments = Some(labels.clone());
86        self.initialized = true;
87        Ok(labels)
88    }
89
90    /// Predict cluster assignments
91    pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
92        if !self.initialized {
93            return Err(ClusteringError::InvalidInput(
94                "Model must be fitted before prediction".to_string(),
95            ));
96        }
97
98        let n_samples = data.nrows();
99        let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
100        Ok(labels)
101    }
102
103    /// Get optimal QAOA parameters
104    pub fn optimal_parameters(&self) -> Option<&(Vec<f64>, Vec<f64>)> {
105        self.optimal_parameters.as_ref()
106    }
107}
108
109/// Configuration for VQE clustering
110#[derive(Debug, Clone, Serialize, Deserialize)]
111pub struct VQEConfig {
112    /// Maximum iterations for VQE optimization
113    pub max_iterations: usize,
114    /// Convergence tolerance
115    pub tolerance: f64,
116    /// Optimizer for classical parameters
117    pub optimizer: String,
118    /// Ansatz circuit type
119    pub ansatz: VQEAnsatz,
120    /// Number of measurement shots
121    pub n_shots: usize,
122}
123
124impl Default for VQEConfig {
125    fn default() -> Self {
126        Self {
127            max_iterations: 200,
128            tolerance: 1e-6,
129            optimizer: "SLSQP".to_string(),
130            ansatz: VQEAnsatz::RealAmplitudes { num_layers: 2 },
131            n_shots: 1024,
132        }
133    }
134}
135
136/// Ansatz types for VQE
137#[derive(Debug, Clone, Serialize, Deserialize)]
138pub enum VQEAnsatz {
139    /// Real amplitudes ansatz
140    RealAmplitudes { num_layers: usize },
141    /// Efficient SU(2) ansatz
142    EfficientSU2 { num_layers: usize },
143    /// Two-local ansatz
144    TwoLocal {
145        rotation_blocks: Vec<String>,
146        entanglement_blocks: Vec<String>,
147    },
148    /// Custom ansatz
149    Custom { gates: Vec<String> },
150}
151
152/// VQE-based clustering algorithm
153pub struct VQEClustering<F: Float + FromPrimitive> {
154    config: VQEConfig,
155    optimal_energy: Option<f64>,
156    optimal_parameters: Option<Vec<f64>>,
157    cluster_assignments: Option<Array1<usize>>,
158    initialized: bool,
159    _phantom: std::marker::PhantomData<F>,
160}
161
162impl<F: Float + FromPrimitive + Debug> VQEClustering<F> {
163    /// Create a new VQE clustering instance
164    pub fn new(config: VQEConfig) -> Self {
165        Self {
166            config,
167            optimal_energy: None,
168            optimal_parameters: None,
169            cluster_assignments: None,
170            initialized: false,
171            _phantom: std::marker::PhantomData,
172        }
173    }
174
175    /// Fit the VQE clustering model
176    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<Array1<usize>> {
177        // Placeholder implementation - would contain full VQE algorithm
178        let n_samples = data.nrows();
179        let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
180        self.cluster_assignments = Some(labels.clone());
181        self.initialized = true;
182        Ok(labels)
183    }
184
185    /// Predict cluster assignments
186    pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
187        if !self.initialized {
188            return Err(ClusteringError::InvalidInput(
189                "Model must be fitted before prediction".to_string(),
190            ));
191        }
192
193        let n_samples = data.nrows();
194        let labels = Array1::from_shape_fn(n_samples, |i| i % 2);
195        Ok(labels)
196    }
197
198    /// Get optimal VQE energy
199    pub fn optimal_energy(&self) -> Option<f64> {
200        self.optimal_energy
201    }
202
203    /// Get optimal VQE parameters
204    pub fn optimal_parameters(&self) -> Option<&Vec<f64>> {
205        self.optimal_parameters.as_ref()
206    }
207}
208
209/// Convenience function for QAOA clustering
210pub fn qaoa_clustering<F: Float + FromPrimitive + Debug + 'static>(
211    data: ArrayView2<F>,
212    config: Option<QAOAConfig>,
213) -> Result<Array1<usize>> {
214    let config = config.unwrap_or_default();
215    let mut clusterer = QAOAClustering::new(config);
216    clusterer.fit(data)
217}
218
219/// Convenience function for VQE clustering
220pub fn vqe_clustering<F: Float + FromPrimitive + Debug + 'static>(
221    data: ArrayView2<F>,
222    config: Option<VQEConfig>,
223) -> Result<Array1<usize>> {
224    let config = config.unwrap_or_default();
225    let mut clusterer = VQEClustering::new(config);
226    clusterer.fit(data)
227}
228
229#[cfg(test)]
230mod tests {
231    use super::*;
232    use scirs2_core::ndarray::Array2;
233
234    #[test]
235    fn test_qaoa_config_default() {
236        let config = QAOAConfig::default();
237        assert_eq!(config.p_layers, 1);
238        assert_eq!(config.optimization_iterations, 100);
239    }
240
241    #[test]
242    fn test_vqe_config_default() {
243        let config = VQEConfig::default();
244        assert_eq!(config.max_iterations, 200);
245        assert!((config.tolerance - 1e-6).abs() < 1e-10);
246    }
247
248    #[test]
249    fn test_qaoa_clustering_placeholder() {
250        let data = Array2::from_shape_vec((4, 2), (0..8).map(|x| x as f64).collect()).unwrap();
251        let result = qaoa_clustering(data.view(), None);
252        assert!(result.is_ok());
253    }
254
255    #[test]
256    fn test_vqe_clustering_placeholder() {
257        let data = Array2::from_shape_vec((4, 2), (0..8).map(|x| x as f64).collect()).unwrap();
258        let result = vqe_clustering(data.view(), None);
259        assert!(result.is_ok());
260    }
261}