scirs2_cluster/advanced/
quantum.rs

1//! Quantum-inspired clustering algorithms
2//!
3//! This module provides implementations of quantum-inspired clustering algorithms
4//! that leverage quantum computing principles such as superposition, entanglement,
5//! and quantum annealing to potentially find better local optima than classical methods.
6
7use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Zip};
8use scirs2_core::numeric::{Float, FromPrimitive, Zero};
9use scirs2_core::random::{Rng, SeedableRng};
10use serde::{Deserialize, Serialize};
11use std::fmt::Debug;
12
13use crate::error::{ClusteringError, Result};
14use crate::vq::euclidean_distance;
15
16/// Configuration for quantum-inspired clustering algorithms
17#[derive(Debug, Clone, Serialize, Deserialize)]
18pub struct QuantumConfig {
19    /// Number of quantum states (superposition states)
20    pub n_quantum_states: usize,
21    /// Quantum decoherence factor (0.0 to 1.0)
22    pub decoherence_factor: f64,
23    /// Number of quantum iterations
24    pub quantum_iterations: usize,
25    /// Entanglement strength between quantum states
26    pub entanglement_strength: f64,
27    /// Measurement probability threshold
28    pub measurement_threshold: f64,
29    /// Temperature parameter for quantum annealing
30    pub temperature: f64,
31    /// Cooling rate for simulated quantum annealing
32    pub cooling_rate: f64,
33}
34
35impl Default for QuantumConfig {
36    fn default() -> Self {
37        Self {
38            n_quantum_states: 8,
39            decoherence_factor: 0.95,
40            quantum_iterations: 50,
41            entanglement_strength: 0.3,
42            measurement_threshold: 0.1,
43            temperature: 1.0,
44            cooling_rate: 0.95,
45        }
46    }
47}
48
49/// Quantum-inspired K-means clustering algorithm
50///
51/// This algorithm uses quantum superposition principles to maintain multiple
52/// possible cluster assignments simultaneously, potentially finding better
53/// local optima than classical K-means.
54pub struct QuantumKMeans<F: Float> {
55    config: QuantumConfig,
56    n_clusters: usize,
57    quantum_centroids: Option<Array2<F>>,
58    quantum_amplitudes: Option<Array2<F>>,
59    classical_centroids: Option<Array2<F>>,
60    quantum_states: Vec<QuantumState<F>>,
61    initialized: bool,
62}
63
64/// Represents a quantum state in the clustering algorithm
65#[derive(Debug, Clone)]
66pub struct QuantumState<F: Float> {
67    /// Amplitude of this quantum state
68    amplitude: F,
69    /// Phase of this quantum state
70    phase: F,
71    /// Cluster assignment probabilities
72    cluster_probabilities: Array1<F>,
73}
74
75impl<F: Float + FromPrimitive + Debug> QuantumKMeans<F> {
76    /// Create a new quantum K-means instance
77    pub fn new(nclusters: usize, config: QuantumConfig) -> Self {
78        Self {
79            config,
80            n_clusters: nclusters,
81            quantum_centroids: None,
82            quantum_amplitudes: None,
83            classical_centroids: None,
84            quantum_states: Vec::new(),
85            initialized: false,
86        }
87    }
88
89    /// Initialize quantum states and centroids
90    pub fn fit(&mut self, data: ArrayView2<F>) -> Result<()> {
91        let (n_samples, n_features) = data.dim();
92
93        if n_samples == 0 || n_features == 0 {
94            return Err(ClusteringError::InvalidInput(
95                "Data cannot be empty".to_string(),
96            ));
97        }
98
99        // Initialize quantum centroids with superposition
100        let mut quantum_centroids =
101            Array2::zeros((self.config.n_quantum_states * self.n_clusters, n_features));
102        let mut quantum_amplitudes = Array2::zeros((self.config.n_quantum_states, self.n_clusters));
103
104        // Initialize classical centroids using K-means++
105        let mut classical_centroids = Array2::zeros((self.n_clusters, n_features));
106        self.initialize_classical_centroids(&mut classical_centroids, data)?;
107
108        // Create quantum superposition of centroids
109        for quantum_state in 0..self.config.n_quantum_states {
110            for cluster in 0..self.n_clusters {
111                let idx = quantum_state * self.n_clusters + cluster;
112
113                // Add quantum noise to classical centroids
114                let noise_scale = F::from(0.1).unwrap();
115                for feature in 0..n_features {
116                    let noise = self.quantum_noise() * noise_scale;
117                    quantum_centroids[[idx, feature]] =
118                        classical_centroids[[cluster, feature]] + noise;
119                }
120
121                // Initialize quantum amplitudes with equal superposition
122                quantum_amplitudes[[quantum_state, cluster]] =
123                    F::from(1.0 / (self.config.n_quantum_states as f64).sqrt()).unwrap();
124            }
125        }
126
127        // Initialize quantum states for each data point
128        self.quantum_states = Vec::with_capacity(n_samples);
129        for _ in 0..n_samples {
130            let amplitude = F::from(1.0 / (n_samples as f64).sqrt()).unwrap();
131            let phase = F::zero();
132            let cluster_probabilities = Array1::from_elem(
133                self.n_clusters,
134                F::from(1.0 / self.n_clusters as f64).unwrap(),
135            );
136
137            self.quantum_states.push(QuantumState {
138                amplitude,
139                phase,
140                cluster_probabilities,
141            });
142        }
143
144        self.quantum_centroids = Some(quantum_centroids);
145        self.quantum_amplitudes = Some(quantum_amplitudes);
146        self.classical_centroids = Some(classical_centroids);
147        self.initialized = true;
148
149        // Run quantum optimization
150        self.quantum_optimization(data)?;
151
152        Ok(())
153    }
154
155    /// Initialize classical centroids using K-means++
156    fn initialize_classical_centroids(
157        &self,
158        centroids: &mut Array2<F>,
159        data: ArrayView2<F>,
160    ) -> Result<()> {
161        let n_samples = data.nrows();
162
163        // Choose first centroid randomly
164        centroids.row_mut(0).assign(&data.row(0));
165
166        // Choose remaining centroids using K-means++
167        for i in 1..self.n_clusters {
168            let mut distances = Array1::zeros(n_samples);
169            let mut total_distance = F::zero();
170
171            for j in 0..n_samples {
172                let mut min_dist = F::infinity();
173                for k in 0..i {
174                    let dist = euclidean_distance(data.row(j), centroids.row(k));
175                    if dist < min_dist {
176                        min_dist = dist;
177                    }
178                }
179                distances[j] = min_dist * min_dist;
180                total_distance = total_distance + distances[j];
181            }
182
183            // Select next centroid probabilistically
184            let target = total_distance * F::from(0.5).unwrap();
185            let mut cumsum = F::zero();
186            for j in 0..n_samples {
187                cumsum = cumsum + distances[j];
188                if cumsum >= target {
189                    centroids.row_mut(i).assign(&data.row(j));
190                    break;
191                }
192            }
193        }
194
195        Ok(())
196    }
197
198    /// Generate quantum noise for superposition
199    fn quantum_noise(&self) -> F {
200        // Simplified quantum noise generation
201        let mut rng = scirs2_core::random::thread_rng();
202        F::from(rng.gen_range(-1.0..1.0)).unwrap()
203    }
204
205    /// Perform quantum optimization iterations
206    fn quantum_optimization(&mut self, data: ArrayView2<F>) -> Result<()> {
207        let mut temperature = F::from(self.config.temperature).unwrap();
208        let cooling_rate = F::from(self.config.cooling_rate).unwrap();
209
210        for iteration in 0..self.config.quantum_iterations {
211            // Quantum evolution step
212            self.quantum_evolution_step(data)?;
213
214            // Entanglement operation
215            self.apply_entanglement()?;
216
217            // Measurement and decoherence
218            self.measure_and_decohere(temperature)?;
219
220            // Cool down temperature for quantum annealing
221            temperature = temperature * cooling_rate;
222
223            // Update classical centroids based on quantum measurements
224            if iteration % 10 == 0 {
225                self.update_classical_centroids(data)?;
226            }
227        }
228
229        Ok(())
230    }
231
232    /// Quantum evolution step - evolve quantum states
233    fn quantum_evolution_step(&mut self, data: ArrayView2<F>) -> Result<()> {
234        let quantum_centroids = self.quantum_centroids.as_ref().unwrap();
235        let quantum_amplitudes = self.quantum_amplitudes.as_ref().unwrap();
236
237        for (point_idx, point) in data.rows().into_iter().enumerate() {
238            let quantum_state = &mut self.quantum_states[point_idx];
239
240            // Calculate quantum distances to all quantum centroids
241            for cluster in 0..self.n_clusters {
242                let mut total_amplitude = F::zero();
243
244                for quantum_idx in 0..self.config.n_quantum_states {
245                    let centroid_idx = quantum_idx * self.n_clusters + cluster;
246                    let centroid = quantum_centroids.row(centroid_idx);
247                    let distance = euclidean_distance(point, centroid);
248
249                    // Quantum amplitude contribution
250                    let amplitude = quantum_amplitudes[[quantum_idx, cluster]];
251                    let quantum_weight =
252                        amplitude * F::from((-distance.to_f64().unwrap()).exp()).unwrap();
253                    total_amplitude = total_amplitude + quantum_weight;
254                }
255
256                quantum_state.cluster_probabilities[cluster] = total_amplitude;
257            }
258
259            // Normalize probabilities
260            let sum: F = quantum_state.cluster_probabilities.sum();
261            if sum > F::zero() {
262                quantum_state
263                    .cluster_probabilities
264                    .mapv_inplace(|x| x / sum);
265            }
266        }
267
268        Ok(())
269    }
270
271    /// Apply quantum entanglement between states
272    fn apply_entanglement(&mut self) -> Result<()> {
273        let entanglement = F::from(self.config.entanglement_strength).unwrap();
274
275        // Simple entanglement: correlate neighboring quantum states
276        for i in 0..(self.quantum_states.len() - 1) {
277            let (left, right) = self.quantum_states.split_at_mut(i + 1);
278            let state_i = &mut left[i];
279            let state_j = &mut right[0];
280
281            // Entangle cluster probabilities
282            for cluster in 0..self.n_clusters {
283                let prob_i = state_i.cluster_probabilities[cluster];
284                let prob_j = state_j.cluster_probabilities[cluster];
285
286                let entangled_i = prob_i + entanglement * (prob_j - prob_i);
287                let entangled_j = prob_j + entanglement * (prob_i - prob_j);
288
289                state_i.cluster_probabilities[cluster] = entangled_i;
290                state_j.cluster_probabilities[cluster] = entangled_j;
291            }
292
293            // Normalize after entanglement
294            let sum_i: F = state_i.cluster_probabilities.sum();
295            let sum_j: F = state_j.cluster_probabilities.sum();
296
297            if sum_i > F::zero() {
298                state_i.cluster_probabilities.mapv_inplace(|x| x / sum_i);
299            }
300            if sum_j > F::zero() {
301                state_j.cluster_probabilities.mapv_inplace(|x| x / sum_j);
302            }
303        }
304
305        Ok(())
306    }
307
308    /// Measure quantum states and apply decoherence
309    fn measure_and_decohere(&mut self, temperature: F) -> Result<()> {
310        let decoherence = F::from(self.config.decoherence_factor).unwrap();
311        let threshold = F::from(self.config.measurement_threshold).unwrap();
312        let quantum_noise = self.quantum_noise();
313
314        for quantum_state in &mut self.quantum_states {
315            // Apply quantum decoherence
316            quantum_state.amplitude = quantum_state.amplitude * decoherence;
317
318            // Thermal noise based on temperature
319            let thermal_noise = temperature * quantum_noise * F::from(0.01).unwrap();
320            quantum_state.phase = quantum_state.phase + thermal_noise;
321
322            // Measurement collapse - if probability is high enough, collapse to classical state
323            for cluster in 0..self.n_clusters {
324                if quantum_state.cluster_probabilities[cluster] > threshold {
325                    // Partial collapse - increase probability of measured state
326                    quantum_state.cluster_probabilities[cluster] =
327                        quantum_state.cluster_probabilities[cluster] * F::from(1.1).unwrap();
328                }
329            }
330
331            // Renormalize after measurement
332            let sum: F = quantum_state.cluster_probabilities.sum();
333            if sum > F::zero() {
334                quantum_state
335                    .cluster_probabilities
336                    .mapv_inplace(|x| x / sum);
337            }
338        }
339
340        Ok(())
341    }
342
343    /// Update classical centroids based on quantum measurements
344    fn update_classical_centroids(&mut self, data: ArrayView2<F>) -> Result<()> {
345        let classical_centroids = self.classical_centroids.as_mut().unwrap();
346        classical_centroids.fill(F::zero());
347
348        let mut cluster_weights = Array1::zeros(self.n_clusters);
349
350        // Weighted update based on quantum probabilities
351        for (point_idx, point) in data.rows().into_iter().enumerate() {
352            let quantum_state = &self.quantum_states[point_idx];
353
354            for cluster in 0..self.n_clusters {
355                let weight = quantum_state.cluster_probabilities[cluster];
356                cluster_weights[cluster] = cluster_weights[cluster] + weight;
357
358                // Add weighted contribution to centroid
359                Zip::from(classical_centroids.row_mut(cluster))
360                    .and(point)
361                    .for_each(|centroid_val, &point_val| {
362                        *centroid_val = *centroid_val + weight * point_val;
363                    });
364            }
365        }
366
367        // Normalize centroids by weights
368        for cluster in 0..self.n_clusters {
369            if cluster_weights[cluster] > F::zero() {
370                let mut row = classical_centroids.row_mut(cluster);
371                row.mapv_inplace(|x| x / cluster_weights[cluster]);
372            }
373        }
374
375        Ok(())
376    }
377
378    /// Predict cluster assignments using quantum probabilities
379    pub fn predict(&self, data: ArrayView2<F>) -> Result<Array1<usize>> {
380        if !self.initialized {
381            return Err(ClusteringError::InvalidInput(
382                "Model must be fitted before prediction".to_string(),
383            ));
384        }
385
386        let classical_centroids = self.classical_centroids.as_ref().unwrap();
387        let n_samples = data.nrows();
388        let mut labels = Array1::zeros(n_samples);
389
390        for (i, point) in data.rows().into_iter().enumerate() {
391            let mut min_distance = F::infinity();
392            let mut best_cluster = 0;
393
394            for cluster in 0..self.n_clusters {
395                let distance = euclidean_distance(point, classical_centroids.row(cluster));
396                if distance < min_distance {
397                    min_distance = distance;
398                    best_cluster = cluster;
399                }
400            }
401
402            labels[i] = best_cluster;
403        }
404
405        Ok(labels)
406    }
407
408    /// Get the final classical centroids
409    pub fn cluster_centers(&self) -> Option<&Array2<F>> {
410        self.classical_centroids.as_ref()
411    }
412
413    /// Get quantum state information for analysis
414    pub fn quantum_states(&self) -> &[QuantumState<F>] {
415        &self.quantum_states
416    }
417}
418
419/// Convenience function to perform quantum K-means clustering
420pub fn quantum_kmeans<F: Float + FromPrimitive + Debug>(
421    data: ArrayView2<F>,
422    n_clusters: usize,
423    config: Option<QuantumConfig>,
424) -> Result<(Array2<F>, Array1<usize>)> {
425    let config = config.unwrap_or_default();
426    let mut clusterer = QuantumKMeans::new(n_clusters, config);
427    clusterer.fit(data)?;
428
429    let centroids = clusterer.cluster_centers().unwrap().clone();
430    let labels = clusterer.predict(data)?;
431
432    Ok((centroids, labels))
433}
434
435#[cfg(test)]
436mod tests {
437    use super::*;
438    use scirs2_core::ndarray::Array2;
439
440    #[test]
441    fn test_quantum_config_default() {
442        let config = QuantumConfig::default();
443        assert_eq!(config.n_quantum_states, 8);
444        assert_eq!(config.quantum_iterations, 50);
445        assert!((config.decoherence_factor - 0.95).abs() < 1e-10);
446    }
447
448    #[test]
449    fn test_quantum_kmeans_creation() {
450        let config = QuantumConfig::default();
451        let clusterer = QuantumKMeans::<f64>::new(3, config);
452        assert_eq!(clusterer.n_clusters, 3);
453        assert!(!clusterer.initialized);
454    }
455
456    #[test]
457    fn test_quantum_kmeans_simple() {
458        let data = Array2::from_shape_vec(
459            (6, 2),
460            vec![0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 5.0, 5.0, 6.0, 6.0],
461        )
462        .unwrap();
463        let config = QuantumConfig {
464            quantum_iterations: 10,
465            ..Default::default()
466        };
467
468        let result = quantum_kmeans(data.view(), 2, Some(config));
469        assert!(result.is_ok());
470
471        let (centroids, labels) = result.unwrap();
472        assert_eq!(centroids.nrows(), 2);
473        assert_eq!(centroids.ncols(), 2);
474        assert_eq!(labels.len(), 6);
475    }
476
477    #[test]
478    fn test_quantum_state() {
479        let amplitude = 0.5f64;
480        let phase = 0.0f64;
481        let cluster_probs = Array1::from_vec(vec![0.3, 0.7]);
482
483        let state = QuantumState {
484            amplitude,
485            phase,
486            cluster_probabilities: cluster_probs,
487        };
488
489        assert!((state.amplitude - 0.5).abs() < 1e-10);
490        assert_eq!(state.cluster_probabilities.len(), 2);
491    }
492
493    #[test]
494    fn test_quantum_noise_generation() {
495        let config = QuantumConfig::default();
496        let clusterer = QuantumKMeans::<f64>::new(2, config);
497
498        let noise = clusterer.quantum_noise();
499        assert!(noise >= -1.0 && noise <= 1.0);
500    }
501}