1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//! Executors are utilities that allow easy scheduling and execution of functions or closures.
//! The `CoreExecutor` will use a single thread for scheduling and execution, while the
//! `ThreadPoolExecutor` will use a thread for scheduling, but multiple threads for the execution
//! of the function.
//! Internally, each executor uses a `tokio_core::reactor::Core` as event loop, that will drive
//! the scheduling of the functions (and for the `CoreExecutor`, also their execution). A reference
//! to the event loop is passed to every closure when executed, allowing it to register additional
//! events if needed.
use futures::future::Future;
use futures::sync::oneshot::{channel, Sender};
use futures_cpupool::{Builder, CpuPool};
use tokio_core::reactor::Timeout;
use tokio_core::reactor::{Core, Handle, Remote};

use std::io;
use std::sync::Arc;
use std::thread::{self, JoinHandle};
use std::time::{Instant, Duration};


fn fixed_interval_loop<F>(scheduled_fn: F, interval: Duration, handle: &Handle)
    where F: Fn(&Handle) + Send + 'static
{
    let start_time = Instant::now();
    scheduled_fn(&handle);
    let execution = start_time.elapsed();
    let next_iter_wait = if execution >= interval {
        Duration::from_secs(0)
    } else {
        interval - execution
    };
    let handle_clone = handle.clone();
    let t = Timeout::new(next_iter_wait, handle).unwrap()
        .then(move |_| {
            fixed_interval_loop(scheduled_fn, interval, &handle_clone);
            Ok::<(), ()>(())
        });
    handle.spawn(t);
}

fn calculate_delay(interval: Duration, execution: Duration, delay: Duration) -> (Duration, Duration) {
    if execution >= interval {
        (Duration::from_secs(0), delay + execution - interval)
    } else {
        let wait_gap = interval - execution;
        if delay == Duration::from_secs(0) {
            (wait_gap, Duration::from_secs(0))
        } else {
            if delay < wait_gap {
                (wait_gap - delay, Duration::from_secs(0))
            } else {
                (Duration::from_secs(0), delay - wait_gap)
            }
        }
    }
}

fn fixed_rate_loop<F>(scheduled_fn: F, interval: Duration, handle: &Handle, delay: Duration)
    where F: Fn(&Handle) + Send + 'static
{
    let start_time = Instant::now();
    scheduled_fn(&handle);
    let execution = start_time.elapsed();
    let (next_iter_wait, updated_delay) = calculate_delay(interval, execution, delay);
    let handle_clone = handle.clone();
    let t = Timeout::new(next_iter_wait, handle).unwrap()
        .then(move |_| {
            fixed_rate_loop(scheduled_fn, interval, &handle_clone, updated_delay);
            Ok::<(), ()>(())
        });
    handle.spawn(t);
}


struct CoreExecutorInner {
    remote: Remote,
    termination_sender: Option<Sender<()>>,
    thread_handle: Option<JoinHandle<()>>,
}

impl Drop for CoreExecutorInner {
    fn drop(&mut self) {
        let _ = self.termination_sender.take().unwrap().send(());
        let _ = self.thread_handle.take().unwrap().join();
    }
}

/// A `CoreExecutor` is the most simple executor provided. It runs a single thread, which is
/// responsible for both scheduling the closure (registering the timer for the wakeup), and
/// the actual execution of the closure. The executor will stop once dropped. The `CoreExecutor`
/// can be cloned to generate a new reference to the same underlying executor.
pub struct CoreExecutor {
    inner: Arc<CoreExecutorInner>
}

impl Clone for CoreExecutor {
    fn clone(&self) -> Self {
        CoreExecutor { inner: Arc::clone(&self.inner) }
    }
}

impl CoreExecutor {
    /// Creates a new `CoreExecutor`.
    pub fn new() -> Result<CoreExecutor, io::Error> {
        CoreExecutor::with_name("core_executor")
    }

    /// Creates a new `CoreExecutor` with the specified thread name.
    pub fn with_name(thread_name: &str) -> Result<CoreExecutor, io::Error> {
        let (termination_tx, termination_rx) = channel();
        let (core_tx, core_rx) = channel();
        let thread_handle = thread::Builder::new()
            .name(thread_name.to_owned())
            .spawn(move || {
                debug!("Core starting");
                let mut core = Core::new().expect("Failed to start core");
                let _ = core_tx.send(core.remote());
                match core.run(termination_rx) {
                    Ok(v) => debug!("Core terminated correctly {:?}", v),
                    Err(e) => debug!("Core terminated with error: {:?}", e),
                }
            })?;
        let inner = CoreExecutorInner {
            remote: core_rx.wait().expect("Failed to receive remote"),
            termination_sender: Some(termination_tx),
            thread_handle: Some(thread_handle),
        };
        let executor = CoreExecutor {
            inner: Arc::new(inner)
        };
        debug!("Executor created");
        Ok(executor)
    }

    /// Schedule a function for running at fixed intervals. The executor will try to run the
    /// function every `interval`, but if one execution takes longer than `interval` it will delay
    /// all the subsequent calls.
    pub fn schedule_fixed_interval<F>(&self, initial: Duration, interval: Duration, scheduled_fn: F)
        where F: Fn(&Handle) + Send + 'static
    {
        self.inner.remote.spawn(move |handle| {
            let handle_clone = handle.clone();
            let t = Timeout::new(initial, handle).unwrap()
                .then(move |_| {
                    fixed_interval_loop(scheduled_fn, interval, &handle_clone);
                    Ok::<(), ()>(())
                });
            handle.spawn(t);
            Ok::<(), ()>(())
        });
    }

    pub fn schedule_fixed_rate<F>(&self, initial: Duration, interval: Duration, scheduled_fn: F)
        where F: Fn(&Handle) + Send + 'static
    {
        self.inner.remote.spawn(move |handle| {
            let handle_clone = handle.clone();
            let t = Timeout::new(initial, handle).unwrap()
                .then(move |_| {
                    fixed_rate_loop(scheduled_fn, interval, &handle_clone, Duration::from_secs(0));
                    Ok::<(), ()>(())
                });
            handle.spawn(t);
            Ok::<(), ()>(())
        });
    }
}


#[derive(Clone)]
pub struct ThreadPoolExecutor {
    executor: CoreExecutor,
    pool: CpuPool
}

impl ThreadPoolExecutor {
    pub fn new(threads: usize) -> Result<ThreadPoolExecutor, io::Error> {
        ThreadPoolExecutor::with_prefix(threads, "pool_thread_")
    }

    pub fn with_prefix(threads: usize, prefix: &str) -> Result<ThreadPoolExecutor, io::Error> {
        let new_executor = CoreExecutor::with_name(&format!("{}executor", prefix))?;
        Ok(ThreadPoolExecutor::with_executor(threads, prefix, new_executor))
    }

    pub fn with_executor(threads: usize, prefix: &str, executor: CoreExecutor) -> ThreadPoolExecutor {
        let pool = Builder::new()
            .pool_size(threads)
            .name_prefix(prefix)
            .create();
        ThreadPoolExecutor { pool, executor }
    }

    pub fn schedule_fixed_rate<F>(&self, initial: Duration, interval: Duration, scheduled_fn: F)
        where F: Fn(&Remote) + Send + Sync + 'static
    {
        let pool_clone = self.pool.clone();
        let arc_fn = Arc::new(scheduled_fn);
        self.executor.schedule_fixed_rate(
            initial,
            interval,
            move |handle| {
                let arc_fn_clone = arc_fn.clone();
                let remote = handle.remote().clone();
                let t = pool_clone.spawn_fn(move || {
                    arc_fn_clone(&remote);
                    Ok::<(),()>(())
                });
                handle.spawn(t);
            }
        );
    }

    // TODO: make pub(crate)
    pub fn pool(&self) -> &CpuPool {
        &self.pool
    }
}

#[cfg(test)]
mod tests {
    use std::sync::{Arc, RwLock};
    use std::thread;
    use std::time::{Duration, Instant};

    use super::{CoreExecutor, ThreadPoolExecutor, calculate_delay};

    #[test]
    fn fixed_interval_test() {
        let timings = Arc::new(RwLock::new(Vec::new()));
        {
            let executor = CoreExecutor::new().unwrap();
            let timings_clone = Arc::clone(&timings);
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    timings_clone.write().unwrap().push(Instant::now());
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }

        let timings = timings.read().unwrap();
        assert!(timings.len() == 6);
        for i in 1..6 {
            let execution_interval = timings[i] - timings[i-1];
            assert!(execution_interval < Duration::from_millis(1020));
            assert!(execution_interval > Duration::from_millis(980));
        }
    }

    #[test]
    fn fixed_interval_slow_task_test() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = CoreExecutor::new().unwrap();
            executor.schedule_fixed_interval(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    // TODO: use atomic int when available
                    let counter = {
                        let mut counter = counter_clone.write().unwrap();
                        (*counter) += 1;
                        *counter
                    };
                    if counter == 1 {
                        thread::sleep(Duration::from_secs(3));
                    }
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 4);
    }

    #[test]
    fn calculate_delay_test() {
        fn s(n: u64) -> Duration { Duration::from_secs(n) };
        assert_eq!(calculate_delay(s(10), s(3), s(0)), (s(7), s(0)));
        assert_eq!(calculate_delay(s(10), s(11), s(0)), (s(0), s(1)));
        assert_eq!(calculate_delay(s(10), s(3), s(3)), (s(4), s(0)));
        assert_eq!(calculate_delay(s(10), s(3), s(9)), (s(0), s(2)));
        assert_eq!(calculate_delay(s(10), s(12), s(15)), (s(0), s(17)));
    }

    #[test]
    fn fixed_rate_test() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = CoreExecutor::new().unwrap();
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    let mut counter = counter_clone.write().unwrap();
                    (*counter) += 1;
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 6);
    }

    #[test]
    fn fixed_rate_slow_task_test() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = CoreExecutor::new().unwrap();
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    // TODO: use atomic int when available
                    let counter = {
                        let mut counter = counter_clone.write().unwrap();
                        (*counter) += 1;
                        *counter
                    };
                    if counter == 1 {
                        thread::sleep(Duration::from_secs(3));
                    }
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 6);
    }

    #[test]
    fn fixed_rate_slow_task_test_pool() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = ThreadPoolExecutor::new(20).unwrap();
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_remote| {
                    // TODO: use atomic int when available
                    let counter = {
                        let mut counter = counter_clone.write().unwrap();
                        (*counter) += 1;
                        *counter
                    };
                    if counter == 1 {
                        thread::sleep(Duration::from_secs(3));
                    }
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 6);
    }
}